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Abstract

Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein

function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and
its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pull-

down potential in vivo targets of Y nitration in the Arabidopsis thaliana proteome. Further shotgun liquid

chromatography–mass spectrometry (LC-MS/MS) proteomic analysis of the immunoprecipitated proteins allowed

the identification of 127 proteins. Around 35% of them corresponded to homologues of proteins that have been

previously reported to be Y nitrated in other non-plant organisms. Some of the putative in vivo Y-nitrated proteins

were further confirmed by western blot with specific antibodies. Furthermore, MALDI-TOF (matrix-assisted laser

desorption ionization-time of flight) analysis of protein spots, separated by two-dimensional electrophoresis from

immunoprecipitated proteins, led to the identification of seven nitrated peptides corresponding to six different
proteins. However, in vivo nitration sites among putative targets could not be identified by MS/MS. Nevertheless, an

MS/MS spectrum with 3-aminoY318 instead of the expected 3-nitroY was found for cytosolic glyceraldehyde-3-

phosphate dehydrogenase. Reduction of nitroY to aminoY during MS-based proteomic analysis together with the in

vivo low abundance of these modifications made the identification of nitration sites difficult. In turn, in vitro nitration

of methionine synthase, which was also found in the shotgun proteomic screening, allowed unequivocal

identification of a nitration site at Y287.
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Introduction

During the last 20 years, nitric oxide (NO) has been

characterized as an essential regulator of many physiolog-

ical processes in animals. More recently, NO has been

characterized as a signal molecule regulating plant defence
against pathogens (Romero-Puertas et al., 2004; Mur

et al., 2006), resistance to abiotic stress (Zhang et al.,

2006), and different developmental processes including

seed dormancy and germination (Bethke et al., 2006; Liu

et al., 2007), floral transition (He et al., 2004; Simpson,

2005), and leaf senescence (Mishina et al., 2007). NO acts

as a regulator of gene expression at the transcriptional

level by regulating disease resistance processes (Polverari
et al., 2003) and the expression of stress-related transcrip-

tion factors and signalling-related kinases (Parani et al.

2004), and by the interaction with other signalling mole-

cules such as salicylic acid and jasmonic acid (Grün et al.,

2006).

Some of the regulatory properties of NO are exerted

through NO-mediated post-translational modifications in-
cluding nitrosylation of thiol groups and nitration of

tyrosine (Y) residues (Gow et al., 2004). This is thought to

affect the activity, the stability, or the intracellular location

of proteins, thus potentially altering their functions and

eventually cell signalling. The regulation of protein function

at the levels of NO-related post-translational modifications

represents a new area of research in plant biology, and it

will help to elucidate the mode of action of NO in
regulating many processes in plants. Recent reports suggest

that S-nitrosylation is specific and regulated (Lindermayr

et al., 2005; Romero-Puertas et al., 2008), and it may play
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a regulatory role in central processes in plants such as

ethylene biosynthesis (Lindermayr et al., 2006). The in-

teraction between NO and superoxide leads to the forma-

tion of peroxynitrite, a reactive molecule with strong

nitrating activity (Szabó et al., 2007). The production of

peroxynitrite under physiological conditions in plants has

been reported (Bechtold et al., 2009; Chaki et al., 2009).

Some proteins are targets of peroxynitrite, and the nitration
of Y residues to 3-nitrotyrosine represents a hallmark of

post-translational protein modification associated with

human pathologies and biological ageing (Hong et al.,

2007). Although well characterized in mammals, scant

information is available on nitration of Y residues of

proteins in plants. Detection of nitrated proteins was first

reported in tobacco plants with reduced nitrite reductase

activity (Morot-Gaudry-Talarmain et al., 2002). Later, the
detection of in vivo nitrated proteins in plants treated with

exogenous nitrating reagents (Saito et al., 2006) as well as

under physiological conditions in both unstressed condi-

tions (Chaki et al., 2009) and upon pathogen challenge

(Romero-Puertas et al., 2007; Cecconi et al., 2009) was

reported. However, in all these recent reports there are no

data about unequivocal identification of nitrated peptides

or proteins (i.e. nitration sites). Here the identification of
potential in vivo nitration sites of some Arabidopsis proteins

is reported. Drawbacks in proteomic approaches to identify

Y nitration post-translational modification under physio-

logical conditions are also discussed. The analysis of the

regulatory functions of Y nitration of proteins in any plant

biological process will require, after initial identification of

potential targets, a case-by-case analysis. Recent proteomic

approaches based on the protection of the primary amino
group by acetylation followed by the reduction of nitroY to

aminoY residues, and further derivatization of the amino

group from aminoY residues (Chiapetta et al., 2009;

Tsumoto et al., 2010), will help to overcome some of the

difficulties found due to the low abundance and limited

stability of nitroY residues in proteins determined to be

potentially nitrated in vivo in this work.

Materials and methods

Plant growth conditions

Seeds of the Col-0 wild-type accession of Arabidopsis thaliana were
sown in moistened soil and grown under photoperiodic conditions
(cycles of 8 h day and 16 h night for short days, at 22 �C and
20 �C, respectively) as mentioned in different experiments. Plants
were illuminated with 150 lE m�2 s�1 cool white fluorescent lamps
and grown under 60% relative humidity. Alternatively, surface-
sterilized seeds were germinated and grown in sterile liquid or
agar-supplemented Murashige and Skoog (MS) medium (Duchefa,
Haarlem, The Netherlands) with 1% (w/v) sucrose.

Protein extraction and immunoprecipitation

Two-week-old seedlings were frozen and ground in liquid nitrogen.
Proteins were extracted by adding extraction buffer [10 mM TRIS-
HCl, pH 7.4, 150 mM NaCl, 1% (v/v) protease inhibitor cocktail
from Sigma, USA] and briefly vortexing. Protein extracts were
obtained by centrifugation at 13 000 g at 4 �C. Protein extracts

(43 1 mg) were pre-cleared with 50 ll of protein A–agarose
(EZView Sigma, USA) for 8 h at 4 �C. The unbound fractions
were each incubated overnight with 0.1 lg of monoclonal anti-3-
nitroY antibody (Cayman, USA) at 4 �C. To recover 3-nitroY-
containing proteins, 60 ll of protein A–agarose were added and
incubated for 8 h at 4 �C. After extensive washing with extraction
buffer, proteins were eluted at 95 �C with elution buffer [1% SDS,
100 mM dithiothreitol (DTT), 50 mM TRIS-HCl pH 7.6] three
times. After removing agarose beads with a 0.2 lm filter (Costar
Corning, NY, USA), the proteins were precipitated, combined,
and processed with a 2D-Clean Up Kit (GE, UK) for subsequent
two-dimensional electrophoresis (2-DE) and liquid chromatogra-
phy–tandem mass spectrometry (LC-MS/MS) analysis.

2-DE and image analysis

Protein samples (100 lg) were dissolved in DeStreak Rehydration
solution (GE, UK) before electrophoresis. For the first dimension,
18 cm pH 3–10 NL (non-linear) strips were passively rehydrated
overnight at room temperature. The set-up of the IPGphor3 (GE,
UK) was 1 h at 50 V step-and-hold, 1 h at a 150 V gradient, 1 h
30 min at a 500 V gradient, 1 h 30 min at a 1000 V gradient, 2 h at
a 4000 V gradient, 2 h at a 8000 V gradient, and 7 h at a 8000 V
step-and-hold. The strips were then treated with 1 mg ml�1 DTT
for 15 min and alkylated with 25 mg ml�1 iodoacetamide for
15 min in equilibration buffer (6 M urea, 75 mM TRIS-HCl pH
8.8, 29.3% glycerol, 2% SDS, and 0.002% bromophenol blue), and
the focused proteins were then separated on 12.5% acrylamide gels
in the EttanDalt six electrophoresis unit (GE, UK) as recommended
by the manufacturers for an overnight run. The gels were stained
with a DeepPurple (GE, UK) or PlusOne� Silver Staining Kit
(GE, UK), digitalized with Typhoon (GE, UK), and analysed by
using Image Master Platinum 5.0 (GE, UK) software.

MS analysis

Samples were digested with sequencing grade trypsin (Promega,
USA). Peptide separation by LC-MS/MS was performed using an
Ultimate nano-LC system (LC Packings) and a QSTAR XL Q-
TOF hybrid mass spectrometer (MDS Sciex-Applied Biosystems).
Samples (5 ll) were delivered to the system using a FAMOS
autosampler (LC Packings) at 40 ll min�1, and the peptides were
trapped on a PepMap C18 pre-column (5 mm, i.d. 300 m; LC
Packings). Peptides were then eluted from a PepMap C18
analytical column (15 cm, i.d. 75 m; LC Packings) at 200 nl min�1

and separated using a 55 min gradient of 15–50% acetonitrile
(120 min for the mixtures). The QSTAR XL was operated in
information-dependent acquisition mode, in which a 1 s time of
flight (TOF) MS scan from 400 m/z to 2000 m/z, was performed,
followed by 3 s product ion scans from 65 m/z to 2000 m/z on the
three most intense doubly or triply charged ions. A database
search on Swiss-Prot and NCBInr databases was performed using
the MASCOT search engine (Matrix-Science). Searches were done
with tryptic specificity allowing one missed cleavage and a tolerance
on the mass measurement of 100 ppm in MS mode and 0.8 Da for
MS/MS ions. Carbamidomethylation of C was used as a fixed
modification, and oxidation of M, deamidation of D and E, and
nitration or amination of Y as variable modifications.

Western blot

Protein extracts (10 lg) were separated by SDS–PAGE, blotted
onto a nitrocellulose membrane, stained with Ponceau-S, and
probed with antibodies at the followed dilutions: monoclonal anti-
3-nitroY (Cayman Chemicals) 1:1000, anti-53His (QIAGEN)
1:8000, polyclonal anti-GAPDH (glyceraldehyde-3-phosphate de-
hydrogenase) 1:10 000, anti-CA (carbonic anhydrase) 1:3000, anti-
PKL (PICKLE) 1:5000; anti-FBPase (fructose bisphosphatase)
1:2000, and anti-GRP (glycine-rich RNA-binding protein) 1:2500.
Secondary antibody was anti-mouse or anti-rabbit, for monoclonal
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or polyclonal primary antibodies, respectively, coupled to horse-
radish peroxidase (GE, UK) at 1:10 000 dilution, and an ECL kit
(GE, UK) was used for visualization of proteins.

GAPDH activity

Proteins were extracted in 50 mM TRIS-HCl pH 7.4 and
quantified. GAPDH activity of the extracts was assayed
according to Muñoz-Bertomeu et al. (2009) with minor modifica-
tions. Briefly, 50 lg of protein extracts from plants treated or not
with 2 mM SIN-1 (3-morpholinosydnonimine) were incubated in
reaction buffer (10 mM TRIS-HCl pH 7.4, 20 mM arsenate, 2 mM
NAD, 0.5 mM DTT) and the reaction was initiated by the
addition of 2 mM DL-GAPDH in a final volume of 1 ml. GAPDH
activity was measured following the conversion of NAD to NADH
at 340 nm during 4 min.

Synthesis, purification, and nitration of His-tagged methionine

synthase AtMS1

A plasmid containing AtMS1 cDNA fused to a 63His tag (Dixon
et al., 2005) was used to transform BL21(DE3) competent cells
(Sigma-Aldrich) for recombinant protein production. For protein
induction, cell cultures with OD¼0.7 were treated with 1 mM
isopropyl-b-D-1-thiogalactopyranoside (IPTG) for 5 h. Recombi-
nant protein production was checked by SDS–PAGE and western
blot analysis. Recombinant protein purification was carried out
with the QIAexpress Ni-NTA Fast Start Kit (Qiagen) following
the manufacturer’s recommendations. Purified AtMS1 was treated
or not with a nitrating buffer as described previously (Chen et al.,
2008). Briefly, 10 ll of purified protein was incubated with 500 lM
H2O2 and 500 lM NaNO2 in 0.1 M potassium phosphate buffer
pH 7.2 for NO2 radical-mediated protein nitration at 37 �C in the
dark for 2 h in a total volume of 500 ll. To clean nitrated protein,
the nitrating reaction volume was filtered trough a 10 kDa cut-off
filter (Microcon, Ambion). Proteins were then analysed by SDS–
PAGE and western blot. Protein nitration was confirmed with
anti-3nitroY antibody (Cayman) and the anti-53His antibody
supplied by the manufacturers (QIAGEN). A duplicate gel was
run and stained with Coomassie blue, and the bands were excised,
trypsin digested, and further analysed by LC-MS/MS as described
above.

Protein modelling and structural analysis

Three-dimensional (3-D) protein models were generated by
homology modelling at the SWISS-MODEL workspace (Arnold
et al., 2006) using the coordinates of GAPDH from rat (PDB code
2VYN), serine hydroxymethyltransferase from Mycobacterium
tuberculosis (PDB code 3H7F), transketolase from maize (PDB
code 1ITZ), Rubisco from spinach (PDB code 1IR1), and
mannitol dehydrogenase from Cladosporium harbarum (PDB code
3GDF) as templates. For methionine synthase, the crystal
structure from A. thaliana was used (PDB code 1U1J). Model
qualities were evaluated by ANOLEA, Verify3D, and Procheck
(Melo and Feytmans, 1998; Bowie et al., 1991; Laskowski et al.,
1996, respectively). 3-D models were visualized and manipulated
with Yasara (www.yasara.org) or PyMol (www.pymol.org). The
distance between residues in Amstrongs (Å) and the presence of
hydrogen bonds were analysed with both programs using default
settings.

Results

Crude protein extracts from A. thaliana plants contained

a number of proteins spanning the whole range of

molecular weights that cross-react with antibodies against

3-nitroY in western blot analysis (Fig. 1A). The specific

cross-reaction of antibodies with 3-nitroY residues of those

target proteins was checked by on-membrane protein re-

duction of 3-nitroY to 3-aminoY with sodium dithionite, as

previously reported (Miyagi et al., 2002), thus resulting in

no cross-reaction with the specific antibodies (Fig. 1A).

Upon antibody validation, anti-3-nitroY antibodies were

used as a specific immunoprecipitation reagent together

with protein A–agarose to pull-down 3-nitroY-containing
proteins from crude Arabidopsis seedling extracts. Figure 1B

shows that a small number of proteins present in the crude

extracts, <20 bands as detected by Coomassie staining, were

recovered in the immunoprecipitated fraction. Those pro-

teins were further checked for cross-reaction in western

blots with anti-3-nitroY antibodies (Fig. 1B). A moderate

enrichment in nitrated proteins was thus observed in the

immunoprecipitated fraction (Fig. 1B). Considering the low
resolution capacity of one-dimensional SDS–PAGE, the

complexity of the immunopurified samples was further

assessed by 2-DE and the more sensitive silver staining,

resulting in the separation of ;450 spots with isoelectric

points in the 3–10 range (Fig. 1C).

To identify potential in vivo targets of Y nitration in

Arabidopsis, the immunopurified fraction was then analysed

by MS following two different strategies. First, a shotgun
analysis, based on LC-MS/MS of the immunoprecipitated

proteins, was performed. Comparison of MS-generated

data with the SwissProt database by specifying taxonomy

for Arabidopsis allowed identification of 127 proteins with

a statistically significant MASCOT score of at least 35 and

more than two matched peptides (Table 1). Among

identified proteins, 35% have homologue counterparts that

have been previously reported as nitrated in non-plant
organisms (Supplementary Table S1 available at JXB

online), thus supporting the usefulness of the immunopre-

cipitation approach to enrich the purified fractions in

Arabidopsis potential nitrated proteins. To validate the

proteomic identification further, several of the identified

proteins were detected by western blots with specific anti-

bodies in the samples immunopurifed by precipitation with

anti-3-nitroY antibodies. Some proteins identified with
a MASCOT score >200, such as chloroplastic GAPDH,

CA, or FBPase, and some others with a lower score such as

GRP7 (score 66) and the CHD3-type chromatin remodel-

ling factor PKL (score 58) were selected. All of them cross-

reacted with proteins in the 3-nitroY-immunoprecipitated

samples (Fig. 2), making the proteomic identification reli-

able. For proteins such as GAPDH or PKL showing no

signal in the supernatant, most of the corresponding
proteins were associated with IP resin and a significant

proportion further recovered after washing in the IP. In

contrast, the immunoprecipitation is far less efficient for

others proteins such as FBPase or CA which show a similar

amount of protein in the supernatant and crude extract,

thus suggesting that the corresponding nitrated forms

would not be abundant in the total protein population of

crude extracts. Most of the proteins tested gave complex
patterns of cross-reacting bands in both crude extracts and

immunopurified samples (Fig. 2, Supplementary Fig. S5 at
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JXB online). This is probably due to different cross-reactive

isoforms that are the result of potential post-translational

modifications or to unespecific cross-reaction of the

antibody.

Despite the success in identifying a large number of

potentially nitrated proteins, no MS/MS spectrum with

a good enough MASCOT score was obtained for nitrated

peptides, thus preventing the identification of unequivocal
nitration sites. To overcome this, and because the amount of

protein required for the identification of nitrated peptides is

often a limitation in the method, the most abundant proteins

in 2-DE gels from 3-nitroY-immunoprecipitated proteins

were excised from the gels, digested with trypsin, and further

analysed by MALDI-TOF (matrix-assisted laser desorption

ionization-time of flight). Supplementary Table S2 at JXB

online summarizes the identified proteins, their MASCOT
scores, the number of non-redundant peptides, and the

corresponding sequence coverage. Twenty-two proteins were

identified with a MASCOT score >59, considered as

significant in the proteomic analysis. Unfortunately, no MS/

MS spectra with a high enough score corresponding to

a bona fide Y-nitrated peptide could be obtained. However,

six out of 22 identified proteins showed MALDI-TOF

spectra for potentially nitrated peptides with a signal/noise
ratio >25, considered as significant in the analysis. The

simultaneous identification of nitrated peptides and their

unmodified forms in addition to the length of the nitrated

peptides identified (>7 amino acid residues) makes the

identification more reliable (Stevens et al., 2008). Table 2

shows the identity of those proteins and the corresponding

nitrated peptides with the signal/noise ratio, the molecular

mass of the unmodified and modified peptides, and the
corresponding +45 shift to the modification of Y to nitroY.

Three out of those six proteins (Rubisco, Rubisco activase,

and transketolase) showed nitrated peptides containing

a single Y residue and a +45 mass shift, thus allowing the

assignment of a putative nitration site for those proteins.

For serine hydroxymethyltransferase, the nitrated peptide

contained two Y residues and showed a mass shift of +90,

compatible with two Y nitration sites. Finally, for the other
two proteins, a cytosolic GAPDH and a putative mannitol

dehydrogenase, the nitrated peptides contained two Y

residues and showed a mass shift of +45, corresponding to

a single nitration event, so no nitration site could be

proposed for these proteins (Table 2).

Y residues contained in the nitrated peptides were

checked to see if they fulfilled the previously characterized

factors determining the selectivity of Y nitration in proteins.
These factors include the proximity of a basic amino acid

within the primary sequence, the exposure of the aromatic

Fig. 1. Detection of 3-nitroY-containing proteins. (A) Crude protein

extracts (10 lg per lane) were separated using 10% SDS–PAGE in

duplicate. The left panel shows the silver-stained gel with the

position of a molecular weight protein ladder. The central panel

shows the corresponding western blot performed with anti-3-

nitroY primary antibody, and the right panel the corresponding

western blot after reduction of 3-nitroY to 3-aminoY with 100 mM

sodium dithionite for 30 min. (B) In vivo immunoprecipitation of

Arabidopsis 3-nitroY-containing proteins. Crude extracts (CE) were

immunoprecipitated with antibody against 3-nitroY. The resulting

supernatants (Sup) and immunoprecipitated proteins (IP) alongside

the CE were separated by one-dimensional SDS–PAGE in

duplicate and either Coomassie stained (left panel) or transferred

to a nitrocellulose membrane and probed with anti-3-nitroY

antibodies by western blot (right panel). Immunoprecipitated

proteins detected by one-dimensional SDS–PAGE are marked

with black arrowheads. The protein A which is released from the

resin in the immunoprecipitates is marked with a grey arrowhead.

(C) Immunoprecipitated proteins (0.1 mg) were separated by 2-DE

with isoelectric focusing in the range of pH 3–10 NL and a second

dimension 10% gel. The identification of spots corresponding to

nitrated proteins was performed by comparing four independent

sets of 2-DE gels corresponding to biologically independent

replicates with similar spot patterns. Molecular mass marker

positions are indicated in kDa on the left side. Proteins were silver

stained.
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Table 1. Immunopurified Y-nitrated proteins identified in Arabidopsis thaliana seedlings by a shotgun LC-MS/MS approach

Those proteins that have been previously reported as nitrated in other plant systems are been marked with a single (Chaki et al., 2009) or

double asterisk (Cecconi et al., 2009).

SwissProt
locus

AGI code Description MASCOT
score

Peptides
matched
(no.)

Best two peptides (ion score)

ATPB_ARATH AtCg00480 ATP synthase subunit beta 1150 23 R.FVQAGSEVSALLGR.M (85)

K.IGLFGGAGVGK.T (80)

METE_ARATH At5g17920 Methionine synthase 1 1014 27 K.DEALFSANAAALASR.R (97)

K.MLAVLEQNILWVNPDCGLK.T(91)

G3PB_ARATH At1g42970 GAPDH B, chloroplast 884 22 K.IVDNETISVDGK.L (85)

R.KDSPLEVVVLNDSGGVK.N (75)

G3PA_ARATH At3g26650 GAPDH A, chloroplast 831 18 R.VPTPNVSVVDLVVQVSK.K (68)

K.KVIITAPGK.G (60)

RCA_ARATH At2g39730 Rubisco activase, chloroplast** 761 20 R.GLAYDTSDDQQDITR.G (81)

R.VQLAETYLSQAALGDANADAIGR.G (72)

GOX1_ARATH At3g14415 Probable peroxisomal glycolate oxidase1 670 16 R.AASAAGTIMTLSSWATSSVEEV

ASTGPGIR.F (101)

K.DIQWLQTITNMPILVK.G (58)

GOX2_ARATH At3g14420 Probable peroxisomal glycolate oxidase2 651 16 R.AASAAGTIMTLSSWATSSV

EEVASTGPGIR.F (101)

R.IPVFLDGGVR.R (52)

SAHH1_ARATH At4g13940 Adenosyl homocysteinase 1* 581 18 K.VALLHLGK.L (55)

R.DSAAVFAWK.G (54)

PGKH_ARATH At1g56190 Phosphoglycerate kinase, chloroplast 542 14 K.LASLADLYVNDAFGTAHR.A (77)

K.FAAGTEAIANK.L (75)

ATPA_ARATH AtCg00120 ATP synthase subunit alpha** 504 12 R.EAYPGDVFYLHSR.L (64)

R.EQHTLIIYDDLSK.Q (62)

EFTU_ARATH At4g20360 Elongation factor Tu, chloroplast 491 13 K.KYDEIDAAPEER.A (72)

R.SYTVTGVEMFQK.I (54)

G3PC_ARATH At3g04120 GAPDH C, cytosolic 479 13 R.VPTVDVSVVDLTVR.L (71)

K.KVVISAPSK.D (52)

CAHC_ARATH At3g01500 Carbonic anhydrase 1, chloroplast 475 13 K.YGGVGAAIEYAVLHLK.V (64)

R.EAVNVSLANLLTYPFVR.E (60)

EF1A_ARATH At1g07940 Elongation factor 1-alpha 450 11 R.EHALLAFTLGVK.Q (103)

K.FHINIVVIGHVDSGK.S (82)

ACT7_ARATH At5g09810 Actin-7 448 12 K.SEYDESGPSIVHR.K (75)

K.NYELPDGQVITIGAER.F (57)

ACT2_ARATH At3g18780 Actin-2 430 12 K.NYELPDGQVITIGAER.F (57)

K.AGFAGDDAPR.A (52)

KPPR_ARATH At1g32060 Phosphoribulokinase, chloroplast 418 13 R.LDELIYVESHLSNLSTK.F (55)

K.ILVIEGLHPMFDER.V (52)

RUBB_ARATH At1g55490 Rubisco large subunit beta 389 13 R.GYISPYFVTDSEK.M (71)

K.YEDLMAAGIIDPTK.V (52)

CAH2_ARATH At5g14740 Carbonic anhydrase 2 379 11 R.EAVNVSLANLLTYPFVR.E (60)

K.VENIVVIGHSACGGIK.G (59)

TBA6_ARATH At4g14960 Tubulin alpha-6 chain 358 11 R.AVFVDLEPTVIDEVR.T (67)

R.LVSQVISSLTASLR.F (50)

METK1_ARATH At1g02500 S-Adenosyl methionine synthetase 1 334 11 R.FVIGGPHGDAGLTGR.K (73)

K.IIIDTYGGWGAHGGGAFSGK.D (64)

RUBA_ARATH At2g28000 Rubisco large subunit alpha, chloroplast 331 11 K.VVNDGVTIAR.A (60)

K.TNDSAGDGTTTASILAR.E (56)

METK2_ARATH At4g01850 S-Adenosyl methionine synthetase 2 326 11 R.FVIGGPHGDAGLTGR.K (73)

K.IIIDTYGGWGAHGGGAFSGK.D (64)

GLNA2_ARATH At5g35630 Glutamine synthetase, chloroplast/mitochondrial** 314 10 K.VSGEVPWFGIEQEYTLLQQNVK.W (76)

K.HETASIDQFSWGVANR.G (42)

SGAT_ARATH At2g13360 Serine-glyoxylate aminotransferase 306 10 R.AALDLIFEEGLENIIAR.H (61)

K.VFFDWNDYLK.F (42)

RBS1A_ARATH At1g67090 Rubisco small subunit 1A, chloroplast 299 9 K.LPLFGCTDSAQVLK.E (71)
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Table 1. Continued

SwissProt
locus

AGI code Description MASCOT
score

Peptides
matched
(no.)

Best two peptides (ion score)

K.EVDYLIR.N (46)

TBA3_ARATH At5g19770 Tubulin alpha-3/alpha-5 chain 284 8 R.AVFVDLEPTVIDEVR.T (67)

R.LISQIISSLTTSLR.F (65)

PORB_ARATH At4g27440 Protochlorophyllide reductase B 263 12 R.LLLDDLKK.S (53)

K.GYVSETESGKR.L (46)

RBS1B_ARATH At5g38430 Rubisco small subunit 1B, chloroplast 254 7 K.LPLFGCTDSAQVLK.E (71)

K.EVDYLLR.N (46)

ILV5_ARATH At3g58610 Ketol-acid reductoisomerase, chloroplast 240 9 K.VSLAGYEEYIVR.G (44)

K.APVSLDFETSVFK.K (43)

TBB4_ARATH At5g44340 Tubulin beta-4 chain 226 8 K.LAVNLIPFPR.L (54)

R.YLTASAVFR.G (35)

HSP71_ARATH At5g02500 Heat shock cognate 70 kDa protein 1* 217 10 R.MVNHFVQEFK.R (40)

K.ATAGDTHLGGEDFDNR.M (35)

F16P1_ARATH At3g54050 Fructose-1,6-bisphosphatase 214 10 R.TLLYGGIYGYPR.D (58)

R.VLDIQPTEIHQR.V (42)

TBB2_ARATH At5g62690 Tubulin beta-2/beta-3 chain 203 9 K.LAVNLIPFPR.L (54)

R.AVLMDLEPGTMDSLR.S (35)

TBB1_ARATH At1g75780 Tubulin beta-1 chain 193 8 K.LAVNLIPFPR.L (54)

R.AVLMDLEPGTMDSIR.S (35)

PGMP_ARATH At5g51820 Phosphoglucomutase, chloroplast 173 9 K.SLPTKPIEGQK.T (30)

K.LPFFEVPTGWK.F (26)

P2SAF_ARATH At5g23120 Photosystem II stability/assembly factor HCF136 172 8 R.ADGGLWLLVR.G (40)

K.GTGITEEFEEVPVQSR.G (34)

HSP73_ARATH At3g09440 Heat shock cognate 70 kDa protein 3* 172 7 R.MVNHFVQEFK.R (40)

K.ATAGDTHLGGEDFDNR.M (35)

APX1_ARATH At1g07890 L-Ascorbate peroxidase 1, cytosolic 161 5 K.EGLLQLVSDK.A (44)

K.QMGLSDKDIVALSGAHTLGR.C (35)

MTDH_ARATH At4g39330 Probable mannitol dehydrogenase 139 5 K.NYGGYSENIVVDQR.F (47)

K.NYGGYSENIVVDQR.F (34)

CD48A_ARATH At3g09840 Cell division control protein 48 A 120 6 R.KGDLFLVR.G (29)

R.IVSQLLTLMDGLK.S (29)

GME_ARATH At5g28840 GDP-mannose 3,5-epimerase 112 5 R.SFTFIDECVEGVLR.L (43)

K.KLPIHHIPGPEGVR.G (31)

GBLP_ARATH At1g18080 Guanine nucleotide-binding protein subunit beta 103 4 R.LWDLAAGVSTR.R (42)

K.DGVVLLWDLAEGK.K (27)

CLPP_ARATH AtCg00670 ATP-dependent Clp protease 99 2 R.SPGEGDTSWVDIYNR.L (70)

R.TGKPIWVISEDMER.D (30)

GCST_ARATH At1g11860 Aminomethyltransferase, mitochondrial 99 5 K.GGDVSWHIHDER.S (25)

R.AEGGFLGADVILQQLK.D (24)

AAT5_ARATH At4g31990 Aspartate aminotransferase, chloroplast 98 5 K.ATAELLFGAGHPVIK.E (27)

R.VATIQGLSGTGSLR.L (24)

ACA9_ARATH At3g21180 Ca-transporting ATPase 9, plasma membrane 98 7 R.VAIDSMAK.N (28)

R.QAALVLNASRR.F (21)

RH56_ARATH At5g11200 DEAD-box ATP-dependent RNA helicase 56 97 5 K.LSEMEKNR.K (30)

K.VSVFYGGVNIK.I (25)

ENO_ARATH At2g36530 Enolase 96 6 K.AGAVVSGIPLYK.H (30)

K.LAMQEFMILPVGAASFK.E (30)

MRP7_ARATH At3g13100 Multidrug resistance-associated protein 7 86 7 R.YGPHLPMVLRGLTCTFR.G (20)

R.GIEAGWLK.K (17)

AFB3_ARATH At1g12820 AUXIN SIGNALLING F-BOX 3 84 6 R.LWILDSIGDK.G (23)

R.LMSCAPQLVDLGVGSYE

NEPDPESFAK.L (17)

PDX13_ARATH At5g01410 Pyridoxal biosynthesis protein 79 4 K.VGLAQMLR.G (43)

R.NMDDDEVFTFAK.K (14)

PDX11_ARATH At2g38230 Pyridoxal biosynthesis protein 75 3 K.VGLAQMLR.G (43)

K.IAAPYDLVVQTK.E (20)

3506 | Lozano-Juste et al.



Table 1. Continued

SwissProt
locus

AGI code Description MASCOT
score

Peptides
matched
(no.)

Best two peptides (ion score)

EFTM_ARATH At4g02930 Elongation factor Tu, mitochondrial 75 2 R.GSALSALQGTNDEIGR.Q (49)

K.LMDAVDEYIPDPVR.V (26)

MDR11_ARATH At3g28860 Multidrug resistance protein 11 (P-glycoprotein 19) 73 6 K.SSVIAMIER.F (24)

R.AVLKNPTVLLLDEATSALDAESEC

VLQEALERLMR.G (22)

MDHP_ARATH At3g47520 Malate dehydrogenase, chloroplast 70 3 K.DVNVVVIPAGVPR.K (35)

K.LFGVTTLDVVR.A (22)

SR54C_ARATH At5g03940 Signal recognition particle 54 kDa protein, chloroplast 70 5 R.GVKPDQQLVK.I (16)

R.QEDAEDLQKK.I (16)

MDHG1_ARATH At5g09660 Malate dehydrogenase, glyoxysomal 70 3 R.TGAEEVYQLGPLNEYER.I (31)

K.LLGVTTLDVAR.A (30)

TAF1B_ARATH At3g19040 Transcription initiation factor TFIID subunit 1-B 69 7 R.ENLKQLNSDARGR.L (20)

K.EIGTPICQMKKILK.E (17)

TYW23_ARATH At4g04670 tRNA wybutosine-synthesizing protein 69 5 R.ADPLNILNDVWR.L (24)

K.RVIIAIRCSIR.M (15)

CATA3_ARATH At1g20620 Catalase-3 69 3 R.LGPNYLQLPVNAPK.C (32)

K.GFFEVTHDISNLTCADFLR.A (28)

KASC1_ARATH At5g46290 3-Oxoacyl-[acyl-carrier-protein] synthase I, chloroplast 68 3 K.LLSGESGISLIDR.F (53)

R.ADGLGVSSCIER.C (9)

ATPG1_ARATH At4g04640 ATP synthase gamma chain 1, chloroplast 68 2 R.ALQESLASELAAR.M (52)

R.ASSVSPLQASLRELR.D (16)

GRP7_ARATH At2g21660 Glycine-rich RNA-binding protein 7 66 1 R.ALETAFAQYGDVIDSK.I (66)

FDH_ARATH At5g14780 Formate dehydrogenase, mitochondrial 66 5 R.QAVVDAVESGHIGGYSGDVWD

PQPAPK.D (18)

R.LQMAPELEK.E (17)

HSP83_ARATH At5g56010 Heat shock protein 81-3* 62 5 K.GIEVLYMVDAIDEYAIGQLK.E (21)

K.EGQNDIFYITGESK.K (16)

TGA2_ARATH At5g06950 Transcription factor TGA2 61 4 K.LTQLEQELQR.A (19)

R.LQTLQQMIR.V (15)

TCPA_ARATH At3g20050 T-complex protein 1 subunit alpha 61 6 R.NKIHPTSIISGYR.L (19)

R.GANDYMLDEMER.A (15)

CAPP3_ARATH At3g14940 Phosphoenolpyruvate carboxylase 3 60 4 K.LLVSEDLWAFGEKLR.A (22)

K.RLVSDLGK.S (15)

WRK19_ARATH At4g12020 WRKY transcription factor 19 60 6 K.CTYLGCPSKRK.V (19)

K.LCQVEGCQKGAR.D (16)

THI4_ARATH At5g54770 Thiazole biosynthetic enzyme, chloroplast 59 2 K.HAALFTSTIMSK.L (33)

K.ALDMNTAEDAIVR.L (26)

OMT1_ARATH At5g54160 Quercetin 3-O-methyltransferase 1 59 2 K.NPEAPVMLDR.I (34)

K.VLMESWYHLK.D (25)

IF5A2_ARATH At1g26630 Eukaryotic translation initiation factor 5A-2 (eIF-5A) 59 2 K.LPTDDGLTAQMR.L (33)

K.CHFVAIDIFTAK.K (26)

PKL_ARATH At2g25170 PICKLE chromatin-remodelling factor 58 6 K.GLLHPYQLEGLNFLR.F (19)

K.AYKSNHRLK.T (14)

Y1934_ARATH At1g09340 Uncharacterized protein chloroplast 57 3 K.SSLSAEGFDVVYDINGR.E (26)

R.FIGLFLSR.I (16)

VIN3_ARATH At5g57380 VERNALIZATION-INSENSITIVE 3 56 5 R.GIVNRLSSGVHVQKLCSQ

AMEALDK.V (27)

R.NEIMKIICAEMGKER.K (14)

PME4_ARATH At2g47030 Pectinesterase-4 (VANGUARD1-like protein 1) 54 6 K.AVQGICQSTSDKASCVK.T (16)

K.NTAGPMGHQAAAIRVNGDRAV

IFNCR.F (12)

APT1_ARATH At1g27450 Adenine phosphoribosyltransferase 1 (APRT 1) 54 3 R.AIIIDDLIATGGTLAAAIR.L (35)

K.DTIALFVDR.Y (15)

DRL19_ARATH At1g63350 Putative disease resistance protein At1g63350 54 4 R.NAELQRLCLCGFCSKSLTTSYR.Y (17)

K.MCLLYCALFPEDAK.I (16)

FABG_ARATH At1g24360 3-Oxoacyl-[acyl-carrier-protein] reductase, chloroplast 54 3 K.WGTIDVVVNNAGITR.D (25)
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K.ILGTIPLGR.Y (19)

BSL1_ARATH At4g03080 Serine/threonine-protein phosphatase BSL1 53 4 K.IICMHGGIGR.S (16)

R.HGAASVGIRIYVHGGLR.G (16)

PER9_ARATH At1g44970 Peroxidase 9 52 3 K.AYAEDERLFFQQFAK.S (26)

K.EPRMAASLLR.L (13)

UPL1_ARATH At1g55860 E3 ubiquitin-protein ligase UPL1 52 5 K.LLSDIVLMYSHGTSVILR.R (20)

R.LIDFDNKKAYFR.S (16)

HDA5_ARATH At5g61060 Histone deacetylase 5 51 3 R.KVGLIYDETMCK.H (24)

K.LQLAGVSQR.C (18)

HAC12_ARATH At1g16710 HAC12 histone acetyltransferase 51 5 K.LTTHPSLADQNAQNK.E (14)

K.ASGQSDFSGNASK.D (13)

MRP14_ARATH At3g59140 Multidrug resistance-associated protein 14 50 7 R.IATFLEAPELQGGERRR.K (16)

R.VVAVENPTKPVK.E (11)

ASHH2_ARATH At1g77300 Histone-lysine N-methyltransferase ASHH2 50 6 K.ILPRPRPR.M (13)

K.SPSENGSHLIPNAKKAK.H (13)

ATM_ARATH At3g48190 Serine/threonine-protein kinase ATM (PI3Kc_related) 47 8 R.RVLLQILGCEKCTMQHL

LQSASLLR.K (14)

K.QIPMAQLHENEGRK.S (11)

FBX10_ARATH At1g51290 Putative F-box only protein 10 47 4 R.LVICCYDETQQVYIYIVRR.N (16)

K.YVIGYDNKK.R (14)

PSBP1_ARATH At1g06680 Oxygen-evolving enhancer protein 2-1, chloroplast 45 3 K.TNTDFLPYNGDGFK.V (25)

K.EIEYPGQVLR.F (12)

CHLD_ARATH At4g18480 Magnesium-chelatase subunit chlD, chloroplast 45 3 K.IYKAGMSLLVIDTENK.F (26)

R.VAAVGIATQFQERCNEVFR.M (22)

FBK38_ARATH At2g29800 Putative F-box/Kelch-repeat 44 3 K.MANFGGKLVILGCYR.S (20)

R.HLRNMKR.D (16)

GLYM_ARATH At4g37930 Serine hydroxymethyltransferase mitochondrial 44 4 R.GFVEEDFAK.V (22)

K.VLEAVHIASNK.N (11)

SCP37_ARATH At3g52010 Serine carboxypeptidase-like 37 44 3 K.AIHANTTK.L (19)

K.KLPGQPSGVSFR.Q (18)

COL14_ARATH At2g33500 CONSTANS-LIKE 14 44 3 K.LCLPCDQHVHSANLLSR.K (20)

K.SNNIPAAIHSHK.S (14)

SYV_ARATH At1g14610 Valyl-tRNA synthetase 43 7 K.SDLFKADAK.S (16)

K.INLDILRVVGYR.Q (13)

DRP1D_ARATH At2g44590 Dynamin-related protein 1D 43 3 R.MQCAKRLELYK.K (22)

R.MGSEYLAK.L (14)

VATB_ARATH At1g76030 Vacuolar ATP synthase subunit B 43 3 R.NIFQSLDLAWTLLR.I (16)

R.KFVMQGAYDTR.N (15)

SIZ1_ARATH At5g60410 E3 SUMO-protein ligase SIZ1 42 5 K.WQCPICLK.N (15)

R.HRSLNKICIILCAGK.N (12)

HAC2_ARATH At1g67220 HAC2 histone acetyltransferase 42 4 R.ACTGCYTKNRTLR.H (16)

K.LGTVVDIIEPMKCDER.S (11)

TMK1_ARATH At1g66150 Putative receptor protein kinase TMK1 precursor 42 4 K.GNDPCTNWIGIACSNGNI

TVISLEK.M (18)

K.VVNLTNNHLQGPVPVFK.S (12)

SYM_ARATH At4g13780 Probable methionyl-tRNA synthetase 42 3 R.LVEGSCPFEGCNYDSAR.G (26)

K.CKVCQNTPR.I (12)

WEE1_ARATH At1g02970 Wee1-like protein kinase 41 3 R.AMPPPCLK.N (19)

K.LPLLPGHSLQLQQLLK.T (15)

ARR12_ARATH At2g25180 Two-component response regulator 41 5 –.MTVEQNLEALDQFPVGMR.V (17)

R.HCQYHVTTTNQAQK.A (9)

CESA4_ARATH At5g44030 Cellulose synthase A catalytic subunit 4 41 4 K.KAGAMNAMVR.V (22)

K.SSLMSQKNFEKR.F (12)

AUR2_ARATH At2g25880 Serine/threonine-protein kinase Aurora-2 41 3 R.LYGYFYDQKRVYLILEYAVR.G (18)

M.LYQAASEAAQK.R (14)

Y1838_ARATH At1g18380 Uncharacterized protein At1g18380 41 3 R.YIMEDKACR.R (32)
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ring to the surface of the protein, the location of the Y

residue on a loop structure, its association with a neighbour-
ing negative charge, and the proximity of the proteins to the

site of generation of nitrating agents (Souza et al., 1999;

Ischiropoulos, 2003; Chaki et al., 2009). With the exception

of Rubisco activase, for which no structural model is

available, the structures of the proteins were modelled as

indicated in the Materials and methods. All putative

nitrated Y residues had acidic residues close enough (<10 Å
from the Y target) and all of them have basic amino acids in

the primary sequence flanking the Y residue (Table 3).

However, only Y337 and Y135 from transketolase and

putative mannitol dehydrogenase, respectively, were located

in loops, and most of them showed accessibile solvent area

Table 1. Continued

SwissProt
locus

AGI code Description MASCOT
score

Peptides
matched
(no.)

Best two peptides (ion score)

R.SSDSDEGCMKYAEIPMLR.S (8)

2AAA_ARATH At1g25490 Serine/threonine-protein phosphatase 2A regulatory

subunit A alpha

41 4 R.LAGGEWFAAR.V (17)

R.RAAASNLGK.F (11)

FBK84_ARATH At4g19865 F-box/Kelch-repeat protein At4g19865 40 3 K.IEFGNVNEMCAYDTKLCK.W (20)

K.IYVMGGCQGLKDEPWAEVFNTK.T (10)

MSH3_ARATH At4g25540 DNA mismatch repair protein MSH3 40 4 R.LVNAGYKIGVVK.Q (17)

R.LVNAGYK.I (13)

DCDA1_ARATH At3g14390 Diaminopimelate decarboxylase 1, chloroplast 39 1 R.DAAVLMIEYIDEIR.R (39)

GL25_ARATH At5g26700 Probable germin-like protein subfamily 2–5 39 3 R.IDYAPNGLNPPHVHPR.A (17)

K.LPGLNTLGLSMSR.I (14)

CYSK1_ARATH At4g14880 Cysteine synthase (OAS-TL A) 39 3 K.IDGFVSGIGTGGTITGAGK.Y (21)

R.IGFSMISDAEK.K (15)

MRP13_ARATH At1g30410 Multidrug resistance-associated protein 13 39 4 R.KKYYNCVLGLLACYCVVEPVLR.L (22)

R.SVLIKQEER.E (14)

ERG11_ARATH At5g24150 Squalene monooxygenase 1,1 39 3 R.RLLQPLSNLGNAQK.I (18)

R.LFGLAMKMLVPHLK.A (13)

DPOLA_ARATH At5g67100 DNA polymerase alpha catalytic subunit 38 4 K.NGCNVLSIENSERALLNRLFL

ELNK.L (14)

R.KRSGILSHFTVVR.N (13)

CWP17_ARATH At2g06850 23 kDa cell wall protein 38 3 –.IPCRKAIDVPFGTR.Y (19)

R.KAIDVPFGPR.Y (13)

MOCOS_ARATH At1g16540 Molybdenum cofactor sulphurase (ABA3) 38 7 K.LLKSLTPSAIWMHTTSLSIYVK.K (12)

R.YEIDEKR.Q (10)

ALA11_ARATH At1g13210 Phospholipid-transporting ATPase 11 38 5 K.SLTYALEDDFKK.K (18)

R.SMAMRSNGSSLVGDDLDVVV

DQSGPK.I (10)

TAP1_ARATH At1g70610 Antigen peptide transporter-like 1, chloroplast 38 3 R.GCFFGIANMILVKRMR.E (16)

R.QRIGYVGQEPK.L (12)

AGO1_ARATH At1g48410 Protein argonaute 37 2 R.INLLDEEVGAGGQR.R (36)

R.GYGQPPQQQQQYGGPQ

EYQGRGR.G (4)

FBK19_ARATH At1g32430 Putative F-box/Kelch-repeat protein At1g32430 37 2 K.VEVRELTLNNPGLK.A (22)

R.CIKLEVNEPSLDFLGIGYDNNK.R (14)

LUMI_ARATH At4g02560 LUMINIDEPENDENS 37 2 K.KHMLGSNPSYNK.E (21)

K.HDSSTHPYWNQNK.R (18)

CAPP1_ARATH At1g53310 Phosphoenolpyruvate carboxylase 1 36 2 K.LEELGSVLTSLDPGDSIVIAK.A (23)

K.GIAAGLQNTG.– (14)

WBC16_ARATH At3g55090 Probable white–brown complex homologue protein 16 36 2 K.TIIGDEGHR.G (29)

R.ILFYLCLLLGSKNK.R (8)

CNGC4_ARATH At5g54250 Cyclic nucleotide-gated ion channel 4 36 3 R.IGLTCGGR.R (36)

R.GVDECEMVQNLPEGLR.R (5)

U496I_ARATH At2g18630 UPF0496 protein At2g18630 36 2 K.INSEYTEHLSSYER.A (21)

K.YEKVVRGQK.E (13)

ARFM_ARATH At1g34170 Auxin response factor 13 36 2 K.FVDAMNNNYIVGSR.F (20)

K.FVDAMNNNYIVGSRFR.M (16)

CYSKM_ARATH At3g59760 Cysteine synthase, mitochondrial (OAS-TL C) 35 3 K.IQGIGAGFIPK.N (15)

R.IGYSMVTDAEQKGFISPGK.S (15)
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(ASA) indexes <70 (Table 3), thus having a low probability

of being efficiently exposed to the solvent. Regarding the

proximity of the proteins to the site of generation of

nitrating agents, all the proteins identified are located in

subcellular compartments previously characterized as sites

of NO and superoxide production in plants, such as

apoplasts, mitochondria, and chloroplasts (Corpas et al.,

2001; Bethke et al., 2004; Gupta et al., 2005; Jasid et al.,

2006; Flores-Pérez et al., 2008; Igamberdiev and Hill, 2009).

In addition, the fact that some of the Y residues found to be
potentially nitrated are highly conserved Y residues in

proteins functionally homologous in other organisms (Sup-

plementary Fig. S1 at JXB online) confers potential func-

tional relevance to this post-translational modification as

a regulatory mechanism of their activity/function. Regarding

this, it has been confirmed that treatment of seedlings with

a peroxynitrite donor, such as SIN-1, led to inhibition of

GAPDH activity (Fig. 3A).
Despite efforts made to identify sites of in vivo Y nitration

among proteins immunoprecipitated with anti-3-nitroY, not

a single MS/MS spectrum corresponding to a nitrated

peptide was identified. There might be two explanations for

this lack of success. First, the nitrated form of the identified

proteins could be naturally very low abundant in the

analysed samples, thus making MS/MS-based identification

extremely difficult. Secondly, the lack of detection of
nitrated peptides may be the result of the unstable nature of

nitroY under the conditions used to process samples by MS.

Regarding the latter, it has been proposed that the nitro

group linked to Y residues of proteins can be reduced to an

amino group (Sarver et al., 2001; Tsumoto et al., 2010).

When crude proteomic data from spots excised from gels

after 2-DE were searched for aminoY instead of nitroY

post-translational modification, an MS/MS fragmentation
spectrum corresponding to LVSWYDNEWGYSSR peptide

(monoisotopic mass of neutral peptide of 1776.7631; ion

Fig. 2 Confirmation of the presence of proteins identified through

shotgun proteomic analysis in the immnunopurified nitroproteome.

Crude protein extracts (CE) were immunoprecipitated with anti-3-

nitroY (anti-3-NY) antibodies. The CE, supernatant, and immuno-

precipitate (IP) were separated by 12% SDS–PAGE, transferred to

a nitrocellulose membrane, and probed with specific antibodies

raised against chloroplastic glyceraldehyde-3-phosphate dehydro-

genase (GAPDH), glycine-rich protein 7 (GRP7), fructose bisphos-

phatase (FBPase), PICKEL (PKL), or carbonic anhydrase (CA). The

procedure started from 1mg of total protein in the crude extract

that was immunoprecipitated as described in the Materials and

methods, and then the whole IP was loaded on the gel along with

1% of the CE input and the corresponding supernatant.

Table 2. Putative Y-nitrated peptides identified by MALDI-TOF from 2D gel-excised spots

Samples containing 3-nitroY immunopurified proteins were separated by 2-DE and identified by MALDI-TOF as described in the Materials and
methods. The AGI identifiers for each identified protein are included along with the corresponding Y-nitrated peptide sequence (the residues
susceptible to Y nitration are underlined and unequivocal nitration of Y is indicated in bold). Error (difference between the experimental and
calculated masses); signal-to-noise ratio, relative molecular mass (Mr) observed for the modified and the corresponding unmodified peptide that
appeared in the same MASCOT search. Values in parentheses indicate the absence of the unmodified peptide. The mass shift (Shift) and the
modifications of the corresponding peptide with their respective mass increases are also shown. Those proteins that have been previously
reported as nitrated in other plant systems have been marked with a single (Chaki et al., 2009) or double asterisk (Cecconi et al.. 2009).

Description AGI
identifier

Peptide sequence Error Signal-to-
noise

Mr (observed)
(unmodified)

Mr

(observed)
Shift Modification

Rubisco activase, chloroplast

precursor

At2g39730 351R.VYDDEVR.K359 0.01 110 895.34 940.41 +45.07 NitroY (+45)

72R.GLAYDTSDDQQDITR.G88 –0.05 25 1697.66 1744.66 +46.97 2 Deamination (+2)

NitroY (+45)

Serine hydroxymethyl

transferase

At4g13930 160K.VNFTTGYIDYDKLEEK.A177 0.03 60 1934.83 2025.92 +91.09 Deamination (+1)

2 NitroY (+90)

Transketolase, putative* At3g60750 333K.ANSYSVHGAALG

EKEVEATR.N354

0.15 57 (2090.15) 2135.15 (+45) NitroY (+45)

Glyceraldehyde-3-phosphate

dehydrogenase, cytosolic

At3g04120 313K.LVSWYDNEWGYSSR.V328 –0.06 50 1761.72 1806.72 +45 NitroY (+45)

Probable mannitol

dehydrogenase

At4g39330 133K.NYGGYSENIVVDQR.F148 –0.04 27 1613.63 1658.70 +45.07 NitroY (+45)

Rubisco large chain precursor** AtCg00490 236K.GHYLNATAGTCEEMIK.R253 0.04 25 (1794.84) 1839.84 (+45) NitroY (+45)
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score 43; expected 0.00088) was found for cytosolic GADPH

(G3PC). This spectrum included a +15 shift compatible with

an amino modification of Y318 (Fig. 3B). These data suggest

that from two Y residues found as potential nitration targets

in G3PC (Table 2), part of the 3-nitroY318 residues in the

protein population might undergo reduction to 3-aminoY318
under the conditions used for MS analysis. Since reduction

may occur with any nitroY, the crude data from LC-MS/

MS shotgun analysis were searched for aminoY modifica-

tion, and 51 putative aminoY-containing peptides with ion

scores >15 were found that corresponded to 47 different

proteins (Supplementary Table S3 at JXB online). Compar-

ison of nitroY and aminoY searches led to only five

peptides that were detected to be Y nitrated or aminated in
the same residue, but all of them had ion scores <10, thus

suggesting that the partial reduction of nitroY may lower

the abundance of both modifications, making MS identifi-

cation even more difficult.

To overcome the low abundance of nitrated forms of

proteins found in vivo, one of the proteins identified in the

screen as potentially nitrated, 5-methyl tetrahydropteroyl-

triglutamate-homocysteine S-methyltransferase or methio-
nine synthase 1 (AtMS1) was expressed as a 63His-tagged

version in bacteria. The tagged recombinant protein was

expressed to moderately high levels by 5 h after induction

with IPTG (data not shown). Crude recombinant extracts

were checked for AtMS1 protein content by western blot

with anti-53His tag antibodies and subsequently purified

with Ni-resin. The purified protein was then split into two

equivalent samples, one of them being nitrated in vitro

whereas the other was used as control of no exogenous

nitration. The efficiency of nitration was then checked by

western blot with anti-3-nitroY. No cross-reacting band was

detected in the control protein but a strong signal was

observed in the nitrated recombinant AtMS1 protein

(Fig. 4A). Both samples had comparable levels of recombi-

nant protein as confirmed by western blot with anti-53His

antibodies (Fig. 4A). A duplicate one-dimensional SDS–
polyacrylamide gel was stained with Coomassie blue and

Table 3. Structural features of potential Y targets of nitration in MALDI-TOF-identified proteins

Protein annotation and AGI code along with the Putative nitrated Y are indicated. Parameters were calculated as described in the

Materials and methods. Accessible solvent area (ASA) was calculated by NetSurfP software (Petersen et al. 2009).

Protein/AGI Putative
nitrated Y

Distance
to D/E

Proximal basic
amino acids in
primary sequence

Location
in loop

ASA

Rubisco activase, chloroplast precursor_ At2g39730 Y353 (No model) R351, R358, K359 (No model) 5.45

Y76 R72 79.13

Serine hydroxymethyl transferase_ At4g13930 Y167 5.99 Å to E342 K160, K172, K176 No 62.38

Y170 5.04 Å to D197 K160, K172, K176 No 23.35

Transketolase, putative_ At3g60750 Y337 9.01 Å to D268 K333, H340, K347 Yes 66.16

Glyceraldehyde-3-phosphate dehydrogenase,

cytosolic_ At3g04120

Y318 6.08 Å to D319 K313, R327 No 7.35

Y324 6.61 Å to E321 K313, R327 No 19.17

Probable mannitol dehydrogenase_ At4g39330 Y135 4.31 Å to E8 K133, R147 Yes 34.66

Y138 3.75 Å to D53 K133, R147 No 13.55

Rubisco large subunit precursor_ AtCg00490 Y239 6.33 Å to E158 K236, H238, K252, R253 No 6.37

Fig. 3. Effect of nitration on GAPDH. (A) Arabidopsis seedlings

were treated with SIN-1. After the indicated times, the GAPDH

activity levels were measured in crude protein extracts from whole

seedlings as described in the Materials and methods. Measure-

ments for activity were performed in triplicate and the average

values 6SD are shown. (B) MS/MS spectrum of aminated

LVSWYDNEWGYSSR peptide from Arabidopsis glyceraldehyde-3-

phosphate dehydrogenase. Detected peaks of y and b series as

well as immonium ions of L, Y, and W are indicated.
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the bands corresponding to nitrated and non-nitrated

proteins were excised from the gel, digested in gel with

trypsin, and further analysed by LC-MS/MS. The same

YLFAGVVDGR peptide was found from control non-
nitrated protein (m/z 1096.58, score 85) and nitrated protein

(m/z 1141.54, score 53), showing a shift of 44.96 equivalent

to the typical shift of a single nitration (Fig. 4C). The MS/

MS spectrum of nitrated peptide showed most of the peaks

corresponding to the y and b series and also the immonium

ion of a nitrated Y287 residue (Fig. 4B). These data allowed

identification of an unequivocal site of nitration in AtMS1

at Y287. Whether this post-translational modification of
AtMS1 may alter its activity, stability, subcellular location,

or other post-translational modifications will require further

study. Nevertheless, Y287 is conserved in plant methionine

synthases but not in the enzymes from yeast (Supplemen-

tary Fig. S2A at JXB online), and it is located in a loop on

the external surface of the protein far from the 5-methyl

tetrahydropteroyltriglutamate (THG)- and homocysteine

(HC)-binding sites inside the catalytic pocket (Supplemen-
tary Fig. S2B). Y287 forms hydrogen bonds with two

proximal residues, T262 and F264, which may be important

to maintain suitable folding of the protein but which do not

interfere directly with substrate binding or cofactor func-

tion. However, it has been described that methionine

synthase activity is regulated by NO. NO treatment impairs

methionine synthase activity in different models both in

vitro (Brouwer et al., 1996, Nicolaou et al., 1996, 1997) and

in vivo (Danishpajooh et al., 2001), suggesting that tyrosine
nitration might be responsible for the NO-dependent re-

duction of methionine synthase activity.

Discussion

Although several reports regarding proteomic approaches

for the identification of nitrated proteins in mammals have

been published recently (Suzuki et al., 2005; Sultana et al.,

2006; Hong et al., 2007; Zhang et al., 2007) and the

detection of nitrated proteins in pathogen-challenged plants

was also reported (Romero-Puertas et al., 2007), the first

two reports focusing on general proteomic approaches to
nitrated plant protein identification were not published until

very recently (Cecconi et al., 2009; Chaki et al., 2009). Both

groups described the use of anti-3-nitroY antibodies for the

detection of plant putatively nitrated proteins in western

blot and the subsequent identification of the immunoreac-

tive proteins by MALDI-TOF/TOF. A total of 8 and 21

proteins were identified in these reports (Cecconi et al.,

2009; Chaki et al., 2009), respectively. However, no nitrated
peptides and consequently no nitration sites were identified

in either of those reports, probably due to the low level of

nitration under non-stressed conditions (Chaki et al., 2009)

and technical limitations (Cecconi et al., 2009), as described

by the authors. In this work, a proteomic methodology has

been used to purify and identify proteins nitrated in vivo at

Y residues in A. thaliana. The method is based on the

purification of nitrated proteins by immunoprecipitation
with well characterized anti-3-nitroY antibodies (Schmidt

et al., 2003; Gokulrangan et al., 2007), and further

identification by LC-MS/MS. This method has been pre-

viously reported to be useful in identifying nitrated proteins

in mammals (Turko et al., 2003; Liu et al., 2009; Zhan and

Desiderio, 2009). The procedure was sensitive enough to

identify 127 potentially nitrated proteins from Arabidopsis

seedlings. These results are in the range of the best
proteomic methods reported in animal systems (Suzuki

et al., 2005; Sultana et al., 2006; Hong et al., 2007; Zhang

et al., 2007), and they represent the description of the widest

potential in vivo nitroproteome of a plant to date. A litera-

ture search showed that ;35% of the identified Arabidopsis

Y-nitrated proteins were previously described as Y nitrated

in other organisms (Supplementary Table S1, and references

therein), which supports the reliability of the method in
identifying potentially Y-nitrated proteins. Moreover,

a large proportion of the proteins reported to be potential

targets of nitration in the two previous reports on plants

(Cecconi et al., 2009; Chaki et al., 2009) were also identified

as putatively nitrated in the present work. Moreover, some

Fig. 4. Identification of the nitration site in recombinant tagged

methionine synthase 1 from Arabidopsis. (A) Equal amounts (5 lg)

of recombinant AtMS1 protein were nitrated (+) or not (–),

separated by one-dimensional SDS–PAGE, and blotted onto

nitrocellulose to be probed by western blot with anti-3-nitroY (anti-

3NY) antibodies. After stripping, membranes were further probed

with anti-53His antibodies. Molecular size markers are shown on

the left side of the panels. (B) MS/MS spectrum of nitrated

YLFAGVVDGR peptide from AtMS1. The insert shows the

detected y and b series as well as a detail of the spectrum

showing the immonium ion corresponding to nitrated Y (C).
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of the MS-based protein identifications used have been

technically validated by detection of the corresponding

proteins in the immunopurified samples by western blot

with specific antibodies (Fig. 2). Although the methodology

presented in this work seems to be reliable and robust

enough to be considered a good starting point for the

characterization of Y-nitrated plant proteins, no un-

equivocal nitration sites were found by MS/MS. Due to the
low abundance of Y residues in proteins and because the

nitration sites were usually restricted to one or two Y re-

sidues per protein (Abello et al., 2009), a low level of

occurrence of Y nitration is expected.

The most abundant protein spots in 2-DE gels from anti-

3-nitroY-immunoprecipitated proteins were analysed and

searched for Y nitration modification. Nitrated peptides for

GAPDH, ribulose bisphosphate carboxylase large subunit,
Rubisco activase, mannitol dehydrogenase, and transketo-

lase were identified (Table 2). The identifications are based

on peptide mass fingerprinting data obtained by MALDI-

TOF because no good fragmentation MS/MS spectra were

obtained. Only molecular ions with a signal-to-noise ratio

>25 and a difference between the experimental and calcu-

lated masses of <0.15 were selected. Furthermore, in silico

analysis of potentially nitrated peptides showed that most
of them fulfilled most of the criteria to be nitration targets:

Y residues were located in loops with a large solvent-

accessible area and had a basic amino acid in the vicinity

and a proximal negative charge (Table 3). Gene Ontology

tools for the analysis of the potentially Y-nitrated identified

proteins showed a significant over-representation of pro-

teins located in the chloroplast, peroxisome, mitochondria,

and apoplast, subcellular compartments that have been
proposed as a source of NO and superoxide anions in

plants (Corpas et al., 2001; Bethke et al., 2004; Gupta et al.,

2005; Jasid et al., 2006; Flores-Pérez et al., 2008; Igamber-

diev and Hill, 2009), thus representing cellular domains

where the nitrating reagent peroxynitrite is produced (Szabó

et al., 2007). These data support the previously proposed

idea that the proximity of proteins to the site of generation

of nitrating agents is a main factor in directing protein
nitration (Ischiropoulos, 2003).

When the Gene Ontology tools were used for the analysis

of the Y-nitrated identified proteins, it was found that >60%

were involved in primary metabolism. Post-translational

nitration of key enzymes and the subsequent alteration of

their catalytic properties may represent a new level of

regulation of primary metabolism. It is noteworthy that one

of the proteins identified as putatively nitrated in this work
(S-adenosyl homocysteine hydrolase, Table 1) has also been

reported to be nitrated in sunflower hypocotyls (Chaki et al.,

2009). The activity of the enzyme was inhibited upon

nitration (Chaki et al., 2009), thus suggesting that the

activity of the Arabidopsis counterpart may also be regulated

through nitration. Moreover, Rubisco activase, ATP syn-

thase subunit a, and glutamine synthetase 2 have also been

identified as putative nitrated proteins in pathogen-
challenged Arabidopsis (Cecconi et al., 2009). It has been

discussed that nitration of these proteins may be a way to

modulate defence-related responses including the hypersen-

sitive response (Cecconi et al., 2009). Alternatively, nitration

of abundant proteins such as those involved in photosynthe-

sis and carbon metabolism may represent just a non-selective

scavenging system for reactive nitrogen and oxygen species

produced under standard or stress-related conditions. More-

over, the functional relevance of this post-translational

modification on these targets is further supported by the fact
that most of the identified nitrated Y residues are strictly

conserved in the amino acid sequence of homologous pro-

teins from other organisms (Supplementary Fig. S1 at JXB

online), thus supporting a potential functional effect of this

post-translational modification.

In the case of GADPH, the two Y residues identified as

nitrated in peptide LVSWY*DNEWGY*SSR were not only

conserved in the rabbit GAPDH but were actually also
identified as nitrated LISWY*DNEFGY*SNR, resulting in

complete loss of catalytic activity (Palamalai and Miyagi,

2010). GAPDH models for rat and Arabidopsis overlapped

greatly throughout the molecule and particularly on nitrated

Y residues (Supplementary Fig. S3). In addition, as reported

for yeast and mammals (Buchczyk et al., 2000; Palamalai

and Miyagi, 2010), Arabidopsis GAPDH activity was also

inhibited by peroxynitrite (Fig. 3A). Notwithstanding, sev-
eral proteins participating with GAPDH in the gluconeogen-

esis conversion of malate to sucrose were also identified as

nitrated forms in Arabidopsis (Table 1 and Supplementary

Fig. S4), thus suggesting a potential for Y nitration as a

significant regulatory level on this principal metabolic path-

way. Interestingly, among potential targets of Y nitration in

Arabidopsis were also three enzymes involved in the bio-

synthesis of methionine, the 5-methyl tetrahydropteroyltriglu-
tamate-homocysteine methyltransferase, also called

methionine synthase, the S-adenosylmethionine synthetases 1

and 2, and S-adenosylhomocysteinase 1 (Supplementary

Fig. S4). It has been previously reported that NO probably

inhibits mammalian methionine synthase activity by reaction

with cobalt-containing cobalamin cofactor (Brouwer et al.,

1996; Nicolaou et al., 1997; Danishpajooh et al., 2001).

Nevertheless, in the light of the results obtained here, this
mode of action for NO is compatible with the mechanism of

control of methionine synthase activity through nitration of

key Y residues of the protein. Moreover, the fact that not

only a key regulatory step but most of the enzymes involved

in methionine biosynthesis are potentially nitrated in Arabi-

dopsis suggests that Y nitration may represent an important

regulatory level to control the biosynthesis of this amino

acid in plants. Furthermore, nitration of S-adenosylmethio-
nine synthetases could also represent an interesting regulatory

point in ethylene production. Regarding this, the S-nitro-

sylation of S-adenosylmethionine synthetase 1 resulting in

reduced activity and decreased ethylene production in Arabi-

dopsis has recently been reported (Lindermayr et al. 2006).

The fact that neither in this work nor in the two previous

reports on protein nitration in plants (Cecconi et al., 2009;

Chaki et al., 2009) were any nitrated peptide and the
corresponding nitration site unequivocally identified needs

further discussion. It is well known that Y nitration is a very

Protein nitration in Arabidopsis | 3513

Supplementary Fig. S4
Supplementary Fig. S4
Supplementary Fig. S4
Supplementary Fig. S4
Supplementary Fig.&nbsp;S4
Supplementary Fig.&nbsp;S4


low abundant post-translational modification as compared

with other protein modifications such as phosphorylation

(Abello et al., 2009). In fact, only 0.033–0.43 mmol of

nitroY per mol of Y has been detected in plant proteins,

depending on the tissue or species studied (Bechtold et al.,

2009; Chaki et al., 2009). Moreover, it is also likely that

under non-stressed conditions, when only basal levels of

NO and superoxide and thus low amounts of peroxynitrite
are generated by cells, even lower abundance is expected.

Nevertheless, because the presented methodology enriched

samples in potentially Y-nitrated-containing proteins by

immunoprecipitation with a specific anti-3-nitroY antibody,

the identification of some nitrated peptides by MS/MS

should be expected. A survey of the literature on identifica-

tion of nitrated proteins in different organisms points to a

very low number of nitrated sites identified, thus suggesting
the existence of technical difficulties intrinsically associated

with MS-based analysis of this kind of protein modification.

A possible explanation for the lack of nitroY signatures

could be related to alterations produced by the treatments

performed before mass spectrometry analysis or during the

ionization of the protein samples. It has been reported that

the treatment of nitrated proteins with DTT and elevated

temperature, as used for trypsin digestion, can reduce the
nitroY to aminoY or other related species (Söderling et al.,

2007). Moreover, the ionization energy for MALDI or

electrospray ionization (ESI) technologies is too aggressive

for the nitrated Y residues, and the laser-induced photo-

chemical decomposition of nitroY to aminoY during

MALDI-MS analysis has been reported (Sarver et al.,

2001). Therefore, a conversion of nitroY to aminoY in the

samples during sample processing before MS analysis may
explain the lack of detection of nitrated peptides in the

present studies. To validate this hypothesis, the proteomic

experiments were searched for aminoY modification instead

of nitroY modification. By selecting aminoY as a variable

modification in the MASCOT data analysis in MALDI-

TOF/TOF experiments, a fragmentation MS/MS spectrum

corresponding to a peptide containing a 3-aminoY residue

was found in the protein spot corresponding to GADPH
(Fig. 3). More precisely a peptide containing aminoY318

was found, suggesting that from the two Y residues found as

potential targets to be nitrated in G3PC (Table 2), part of

the 3-nitroY318 residues in the protein population might

undergo reduction to 3-aminoY318 under the conditions

used for MS analysis. Moreover, although no further MS/

MS spectra corresponding to aminoY-containing peptides

were obtained, ;50 additional putative aminoY-containing
peptides with an ion score >15 were found (Supplementary

Table S3 at JXB online). This confirms the hypothesis that

the lack of identification of nitrated peptides in this work,

and probably in others, may be due to the conversion of the

nitroY to aminoY. Such a conclusion leads to the proposal

that future analysis of Y nitration of proteins should be

based on a simultaneous search for both nitroY and aminoY

variable modifications. Eventually, the chemical reduction of
all nitroY to aminoY by means of a strong reducing reagent

such as sodium dithionite may represent an advantage in

further proteomic analysis either searching directly for

aminoY or after derivatization of aminoY (Ghesquière

et al., 2009; Abello et al., 2010).

The proteomic method described in this work represents

a tool to identify proteins undergoing in vivo Y nitration in

plants. The application of this methodology, with the

improvements discussed above, to the analysis of different

biological processes in plants will allow the identification of
Y nitration protein targets. Because of the low abundance

and limited stability of this post-translational modification,

the obtained data suggest that after identification of in vivo

targets, the confirmation of the modification sites and the

functional consequences have to be addressed through in

vitro assays with larger amounts of modified protein. These

Y-nitrated proteins may represent nodes for a new unex-

plored level of regulation of proteins exerted by NO
through post-translational modification. Further character-

ization of the identified Y-nitrated proteins will provide key

information about new regulatory features of NO in many

aspects of plant growth, development, and defence.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Potential Y nitration targets in glyceraldehyde-

3-phopsphate dehydrogenase, serine hydroxymethyltrans-

ferase, transketolase, Rubisco large subunit, and Rubisco

activase are conserved in different plants and other organ-
isms.

Figure S2. Conservation and structural modelling analy-

sis of plant methionine synthases.

Figure S3. Alignment of 3D structure models of rat and

Arabidopsis glyceraldehyde-3-phosphate dehydrogenases.

Figure S4. Scheme displaying primary carbon and

sulphur metabolism enzymes highlighting those that have

been identified in this work as potentially nitrated in
Arabidopsis.

Figure S5. Confirmation of the presence of proteins

identified through shotgun proteomic analysis in the

immnunopurified nitroproteome. The entire gels for western

blots performed in Fig. 2 are shown to account for the

specificity of the antibodies.

Figure S6. ROS and NO detection in roots of wild-type

plants grown under standard conditions. Nitroblue tetrazo-
lium (NBT) staining of roots in different zones (A, B).

Roots were pre-incubated with 10 U ml�1 superoxide

dismutase (SOD) prior to NBT staining (C, D). DAF-FM

DA staining of roots pre-treated (G, H) or not (E, F) with

the NO scavenger cPTIO under UV illumination (E, G) or

bright field (F, H).

Table S1. Putative Y-nitrated proteins identified from

Arabidopsis and the corresponding functional Y-nitrated
counterparts in other organisms.

Table S2. Identification of potentially Y-nitrated proteins

by MALDI-TOF peptide fingerprinting of the most abun-

dant 2D gel-excised spots from anti-3-nitroY-immunopreci-

pitated Arabidopsis proteins.
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Table S3. Identification of potential targets of 3-aminoY

modification by shotgun LC-MS/MS analysis.
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