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Formal, quantitative approaches are now widely used to make predictions about the likelihood of
an infectious disease outbreak, how the disease will spread, and how to control it. Several well-
established methodologies are available, including risk factor analysis, risk modelling and dynamic
modelling. Even so, predictive modelling is very much the ‘art of the possible’, which tends to drive
research effort towards some areas and away from others which may be at least as important. Build-
ing on the undoubted success of quantitative modelling of the epidemiology and control of human
and animal diseases such as AIDS, influenza, foot-and-mouth disease and BSE, attention needs to
be paid to developing a more holistic framework that captures the role of the underlying drivers of
disease risks, from demography and behaviour to land use and climate change. At the same time,
there is still considerable room for improvement in how quantitative analyses and their outputs
are communicated to policy makers and other stakeholders. A starting point would be generally
accepted guidelines for ‘good practice’ for the development and the use of predictive models.
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1. INTRODUCTION
This review is concerned with three kinds of predictions.
The first kind is to do with the risk that an exotic or
novel infection will appear in a given host population.
This risk has been formally estimated for, for example,
rabies or foot-and-mouth disease (FMD) being intro-
duced into the UK [1,2]. The second kind is that,
given an infectious disease is present, how fast will it
spread, how many people or animals will be affected
and how long will it persist for? This has been attempted
for a wide variety of infectious diseases including
Aquired Immune Deficiency Syndrome (AIDS) [3],
bovine spongiform encephalopathy (BSE) [4] and
FMD [5]. The third kind of prediction is to do with
what might happen if an intervention is attempted: if
people or animals are to be treated, vaccinated or quar-
antined in an attempt to contain an epidemic then how
many, how selected and how quickly? There is a sub-
stantial literature addressing this type of question, e.g.
FMD [6] or human influenza [7].

The review will consider the need for quantitative
models (§2), the kinds of approaches available (§3),
data requirements (§4) and applications to the emer-
gence of novel infectious diseases (§5). Recurring
themes are the need for quantitative analyses that
account for the nonlinear dynamics of infectious disea-
ses, the links between models and data, the importance
of communication with end users (especially policy
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makers) and the inter-disciplinary nature of the research
agenda needed to improve predictive capacity in the
future. The focus here is mainly on infectious diseases
of humans and animals, although many of the issues
are equally relevant to plant diseases, as has been
discussed elsewhere [8,9].
2. ROLE OF QUANTITATIVE MODELS
Making the kinds of predictions listed in §1 requires some
kind of ‘model’, even if this is only a mental model based
on previous experience, expert opinion or a back-of-the-
envelope calculation. For some questions, this may be
adequate; an example is given below (§3a). For other
questions, these informal approaches can be highly unre-
liable, the reason being that infectious diseases have
nonlinear dynamics. One way to express this is that the
biggest risk factor for acquiring an infection is the presence
of infectious individuals, which introduces positive feed-
back into epidemic processes, in turn making the
expected trajectory of an epidemic or the likely impact
of control measures considerably more difficult to
predict than is the case for non-communicable diseases
such as stroke, cancer or obesity. On occasion, these
nonlinearities can make infectious disease dynamics
counterintuitive: some examples are shown in figure 1.

The first example (figure 1a) illustrates the simple
but important observation that decreasing the trans-
mission rate (achieved, for example, by more rapid
quarantining of cases) does, as might be expected,
reduce the size of an outbreak but may increase
rather than decrease the duration of the outbreak.
When some of the major consequences of an epidemic
are indirect—such as closure of schools, restrictions on
This journal is q 2011 The Royal Society
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Figure 1. Non-linearities in infection dynamics. (a) Force-of-infection and duration of an outbreak. Reduced force-of-infection can
increase the expected duration of an outbreak, as illustrated by two numerical realizations of the standard susceptible–latent–infec-

tious–recovered (SLIR) model [3]. Both have mean latent period¼ 1 time unit and mean recovery period¼ 1 time unit but the per
capita transmission rate is halved from high (red) to low (blue), resulting in a smaller but longer lasting outbreak. (b) Impact of pre-
emptive culling. Analysis of the impact of increased pre-emptive culling effort on the total loss of livestock farms during a FMD
epidemic. Fraction of the global population removed (red line) and fraction of the global population removed within a single
local cluster of 50 farms (blue line) are shown as functions of the number of pre-emptive culls per case. Parameter values used

approximate those for the 2001 UK FMD epidemic. The culling effort minimizing global losses (red arrow) is almost 4�
higher than that minimizing local losses (blue arrow). Figure re-drawn from [10]. (c) Relationship between the presence of disease
and the implementation of control. A local host population is shown moving (blue arrows) in sequence between four states (red
dots): first, disease is introduced; then control is implemented; then disease is eliminated; then control ceases. This describes
the expected sequence of events when control is implemented reactively and locally. Depending on how many local populations

are in each of the four states at a given time point, a cross-sectional study could generate a positive or zero correlation between
levels of disease and control effort as easily as a negative one (the naive expectation), even if control is fully effective.
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travel or trade or loss of tourism revenue—and reflect
only the presence of disease rather than the absolute
numbers of cases, then the increased duration
represents a serious problem.

The second example (figure 1b) is rather more com-
plicated and has been the subject of detailed analysis
[10]. This concerned optimal levels of pre-emptive
culling of livestock on farms in the neighbourhood of
a FMD case, where ‘optimal’ implies minimizing the
total number of farms lost over the course of an epi-
demic. The analysis identified a conflict between
local and global optima. Using parameter values con-
sistent with the UK 2001 FMD epidemic, the
globally optimal culling rate is almost four times as
high as the local optimum; this reflects the need to
reduce the likelihood of disease spreading from one
local cluster to others. From a local perspective, this
level of culling might well be regarded as ‘overkill’,
‘draconian’ or ‘disproportionate’ (all terms that were
used during 2001), but the local perspective is not
the most relevant one for decision makers. Another
result was to illustrate that under-control is more
dangerous than over-control, ultimately leading to
more farms lost (the gradient of the curves are much
steeper to the left of the optima than to the right).
This result is quite general: if control measures are
Phil. Trans. R. Soc. B (2011)
inadequate then an epidemic will not be brought
under control and more of the population will be
affected in the long run. If, as will often be the case
in practice, there is uncertainty about the optimal
level of control effort then it will often be preferable
to err towards too much rather than too little.

The third example (figure 1c) concerns the relation-
ship between causes and effects. Intuitively, it might be
expected that statistical analysis would indicate a nega-
tive relationship between disease incidence and control
effort (at least, if control was effective). Although this
would normally be the case when control is implemen-
ted proactively and uniformly, it is not necessarily the
case when control is implemented reactively and
locally. In those circumstances disease must be present
before a control effort is initiated, disease and control
will then co-occur until disease has been locally elimi-
nated, at which point control will cease. This sequence
of events is depicted in figure 1c and is as likely to
produce a positive correlation or no correlation as a
negative one. This is a well-known paradox that
applies in other contexts too [11], but misinterpreta-
tions persist, e.g. of the effectiveness of control by
pre-emptive culling during the UK FMD 2001 epi-
demic [12,13]. This issue is a good illustration of the
dangers of static analyses of dynamic systems, and is



Table 1. Main infectious disease hazards to humans,

animals and plants globally as identified by a 2006 UK
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a strong argument for the use of dynamic models in
infectious disease epidemiology.
Foresight study [16].

(1) new pathogen species and novel variants
(2) pathogens acquiring resistance
(3) the ‘Big Three’: HIV/AIDS, TB, malaria
(4) acute respiratory infections

(5) sexually transmitted infections
(6) zoonoses
(7) transboundary animal diseases
(8) epidemic plant diseases
3. APPROACHES TO PREDICTION
Whatever methodology is used, a key challenge in
making any kind of prediction is to establish the
extent to which the past is likely to be an accurate
guide to the future. There are different levels of pre-
dictability that may be taken to apply, expressed here
in terms of the structure and parameter estimates of
a mathematical model fitted to a previous FMD epi-
demic but now having to be adapted to make
predictions about a new epidemic.

(i) No change. The input data, parameter values
and the model itself are all judged to be appli-
cable to the new epidemic.

(ii) The input data change. As a simple example,
there may be changes to the location, size and
species composition of livestock farms. Such
changes, if known, would be readily incorpor-
ated into a new model.

(iii) The parameter values change. This would be
the case if, for example, a different strain of
FMD virus was introduced, perhaps with
different transmission characteristics. Or if
farming practices had altered in ways, such as
improvements in biosecurity, which changed
FMD transmission rates. These kinds of
changes would be difficult to quantify a priori,
and new parameter values may need to be
estimated from early epidemic data.

(iv) The model changes (i.e. the original model
structure/assumptions are incorrect for the new
epidemic). This could be the case if, for example,
the strain of FMD virus introduced was much
more liable to airborne transmission, requiring
that this feature be built into the models.

Addressing (ii) is straightforward, (iii) is reliant on
methods for rapid estimation and re-estimation of par-
ameter values as data accumulate (see, for example,
[14] for a state-of-the-art application), but (iv) will most
probably depend on timely input from disease experts.

In practice, various approaches have been used
for making predictions about future disease risks.
These include: expert opinion, statistical methods,
simulation modelling, and risk modelling.

(a) Expert opinion

There is a now a substantial literature on method-
ologies for systematically surveying expert opinion
(e.g. [15]). One example of their application to
future infectious disease risks derives from a 2006
UK government Foresight project (see [16] for
details). There were two components to this study:
the identification and ranking of future disease risks
(or, more correctly, ‘hazards’) and the identification
of factors involved in changes to these risks in the
future (so-called ‘drivers’ of risk).

As with all studies of this nature, the results necess-
arily reflect the expertise, interests and geographical
locations of the participants as well as, crucially, the
Phil. Trans. R. Soc. B (2011)
precise questions they were asked. The main hazards
identified are listed in table 1. The two most consistent
concerns of the experts involved were the emergence
of novel pathogens and of drug-resistant variants of
existing pathogens. There was much less agreement
on the importance of different drivers of changes in
infectious disease risks, presumably in part reflecting
much more variability in these across different disease
systems but also reflecting genuine uncertainty as to
what the main drivers will be. Climate change, for
example, was much more of a concern for infectious
diseases in Africa than in the UK, and for 2030
rather than 2015. Similarly, economic and social factors
were seen as much more important drivers for human
infectious disease risk in Africa than in the UK. The
study had many limitations [16], not least the simplistic
assumption that drivers will act independently on dis-
ease risks, but nonetheless it provides a useful starting
point for more evidence-based approaches (see §5).
(b) Statistical methods

The statistical workhorse of risk factor analysis is the
generalized linear model (GLM) [17,18]. The meth-
odology is well established and its application
routine, but it has its limitations for the analysis and
prediction of infectious disease data. As discussed in
§2, the risks of individuals becoming infected are
dynamic and not independent of one another; this
introduces spatial and temporal autocorrelations that
may be difficult to account for [19]. This problem is
exacerbated when the intention is to predict future
risks, perhaps under different scenarios such as a
range of possible intervention strategies. Extrapol-
ations of statistical models have limited value in this
context. Hence, as discussed below, dynamic models
have often been preferred.

Making epidemiological predictions requires knowl-
edge of both the risk of infection but also, crucially, the
risk of transmitting infection if infected. The scientific
literature contains many thousands of studies of the
former but far less attention has been paid to the
latter (see [20] for an example). Sometimes suscepti-
bility and transmission may be closely related, e.g.
for vector-borne diseases, but for others they may be
quite distinct, e.g. for faecal–oral transmitted infec-
tions. There are some obvious reasons for this lack of
attention. First, it is often much harder to establish
that an individual has transmitted infection than that
it has acquired infection, whether this information is
to be inferred from contact tracing studies (as carried
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Figure 2. Estimated risk of FMD in Scotland in September 2007. Black dots represent ‘at risk’ farms linked (directly or
indirectly) by livestock movements to the FMD-affected region in Surrey. Colour scale shows the relative risk of secondary

cases if FMD were present in the ‘at risk’ farms, as derived from an analysis of risk factors using data from the UK 2001
FMD epidemic [23].
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out during the 2001 UK FMD epidemic [21]) or from
the analysis of pathogen typing or sequence data (as car-
ried out during the 2007 UK FMD outbreak [22]).
Second, the sample size available is not the total popu-
lation but the infected population (each of whom may
or may not have transmitted infection onwards), typi-
cally a much smaller number with a corresponding
loss of statistical power to identify risk factors.

The outputs of a risk factor analysis are routinely
expressed in terms of odds ratios associated with
each of the risk factors in the model, identifying the
main drivers of risk in the study population. Often,
however, it is also useful to calculate the risk (e.g.
the probability of being infected) for each individual
in the population, based on their individual risk factors
(e.g. [19]). A risk profile or risk map is thus generated
which can be used for direct surveillance, prevention
or control efforts. An example of this occurred in Scot-
land in September 2007, when there was a FMD
outbreak in Surrey in England [23]. A risk map was
generated based on livestock movement records and
local risk factors, and this was used to direct
Phil. Trans. R. Soc. B (2011)
surveillance efforts, allowing Scotland to provide evi-
dence of freedom from disease much more quickly
than would otherwise have been possible, and so
accelerating the lifting of movement restrictions
imposed in response to the risk of FMD (figure 2).
(c) Risk modelling

Here, risk modelling is defined as the formal, quantitat-
ive estimation of the probability of specified adverse
effects from defined hazards [15]. A variety of approa-
ches can be used in risk modelling, sometimes in
combination for complex problems.

Indeed, in practice, applications to specific pro-
blems often require a bespoke quantitative analysis.
For example, estimation of the risk of rabies entering
the UK through imported pets (expressed as the
mode and distribution of the number of years between
rabies entries) [1] or the risk of FMD entering the UK
through illegally imported meat products (partitioned
by geographical origin of the imports) [2]. In prin-
ciple, similar kinds of approaches could be applied to
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other kinds of question too; for example, estimating
the probability of the emergence of a novel pathogen
(see §5), or the probability that introduction of a
pathogen will lead to an epidemic.

A significant challenge to risk modellers (whatever
methodology is used) is accurate communication of
the results, particularly to decision makers who may
be unfamiliar with the technical details of the analyses
[24,25]. It is now widely accepted that formal
measures of uncertainty (typically 95% confidence/
credible intervals or a full depiction of the range of
outputs obtained) must be linked to the ‘headline’
result. Issues of verification and validation (discussed
in more detail below) also need to be addressed.
(d) Dynamic or process modelling

In the past decade, there has been a shift away from the
deterministic differential equation models—sometimes
referred to as mean field models—that were the foun-
dation of epidemiological modelling for almost a
century [3]. Much recent modelling work on both
human and animal diseases has used stochastic, individ-
ual-based models (IBMs; see [26] for an overview). This
approach has a number of advantages:

— individuals are represented explicitly and their
infection status or any other attribute can be
tracked;

— heterogeneities between individuals (attributes
such as age or spatial location, or risk factors for
infection) can be represented directly and non-
parametrically (i.e. no assumptions need to be
made about statistical patterns of variation across
the population); and

— complex individual histories, e.g. with respect to
interventions, can be incorporated in a fully realistic
manner.

There are also well-recognized disadvantages:

— when tailored to specific events, the models may
lack generality;

— IBMs are often very complex and cannot be
studied analytically, making it hard to understand
the relationship between inputs and outputs;

— the models can be hard to parametrize and efforts
to formally fit IBMs to complex epidemic data,
e.g. for FMD in the UK in 2001, have met with
only qualified success [27,28]; and

— the models may require a large amount of very
detailed input data, e.g. individuals’ travel patterns,
which may be difficult to acquire [7].

The above issues underline the importance of model
verification and model validation. Verification is dem-
onstration that the model accurately represents the
developer’s conceptual description and specifications,
i.e. that it does what it is supposed to do. Validation
means simply that the model achieves pre-set perform-
ance requirements, i.e. that it is fit for purpose.
Verification and validation are essential features of
good practice in the development and the use of math-
ematical models [29,30] especially, of course, when
the models are intended to be policy-relevant.
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The scientific literature tends to treat dynamic
modelling and statistical risk analysis as distinct activities,
but recently there have been attempts to relate the two
approaches to one another. One study [19] compared
the ‘accurary’ (a measure of the correspondence between
estimated risk and actual outcome) of a logistic regres-
sion model and a previously published IBM-based
analysis [31], in the context of predicting which farms
were at risk of being infected with FMD during the UK
2001 epidemic. The statistical approach performed
slightly better using this measure, suggesting possible
refinements to the simulation model. Another study
[32] compared statistical risk factor analysis and stochas-
tic simulation models fitted using maximum-likelihood
methods, as applied to Escherichia coli O157 on cattle
farms. Reassuringly, the two approaches agreed well in
terms of identifying which risk factors were important
and which farms were at most risk of infection.
4. DATA INPUTS
The kinds of data inputs required to make predictions
about future disease risks can usefully be divided
into those concerning the disease, the host or the
environment.

(a) Disease

Disease data fall into two categories. First, there are data
concerning the ‘natural history’ of infection, including
the latent, incubation and infectious periods [33]. Again
there is an asymmetry in research effort, here between
studies addressing pathogenesis (how the pathogen affects
the host and vice versa) and studies addressing trans-
mission of the pathogen from one host to another. For
example, it is often unclear whether the latent period
(time from exposure to becoming infectious) is longer or
shorter than the incubation period (time to showing clini-
cal symptoms or signs), yet this basic information is
crucial when control efforts depend on detecting infection
on the basis of clinical observation, as is the case for many
epidemic diseases including influenza, severe acute
respiratory syndrome (SARS) and FMD.

Second, there are surveillance data describing the dis-
tribution and spread of infection through space and
time. Correct interpretation of these data requires
knowledge of the sensitivity and specificity of the diag-
nostic test used, and of reporting patterns (especially
under-reporting and reporting delays). Under-reporting
is a major problem for diseases such as human influenza
or sheep scrapie, where the great majority of cases may
be unrecognized and unreported. This was also the
case during the early stages of the BSE epidemic [4].
This may mean that actual infection rates are orders of
magnitude higher than indicated by reported case num-
bers (e.g. pandemic H1N1 in England in 2009 [34]).
Reporting delays can also obscure epidemic dynamics
in real time. Without a detailed understanding of report-
ing patterns, case data (and, no less, indirect measures
such as Internet search behaviour [35]) become unreli-
able inputs into quantitative analysis and need to be
supplemented or replaced, e.g. by active case finding
or serosurveillance (looking for evidence of exposure
to infection based on detection of specific antibody
responses).
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(b) Host

Knowledge of host demography is an essential compo-
nent of any epidemiological analysis. Key demographic
variables typically include the age and sex structure of
the population and its density and spatial distribution.
In many instances these may not be known precisely,
raising the question of how good is good enough?
This issue has been addressed in detail for the specific
issue of the potential spread of FMD between cattle
farms in the USA where the behaviour of simulated epi-
demics was compared given different levels of precision
regarding farm location, allowing specification of the
level of spatial resolution required to make robust
recommendations regarding control strategies [36].

Another key issue for disease spread is patterns of
host movement. These have been extensively studied
for livestock for which, in the UK and elsewhere, com-
prehensive records of movements of individual or
batches of animals between agricultural holdings have
been available for more than a decade [37,38]. The
availability of high-quality movement data makes it
much easier to identify movement as a risk factor, but
for some infections, such as E. coli O157, other,
harder-to-quantify factors (relating to wider environ-
mental contamination) may be of much greater
epidemiological significance [39,40]. For humans,
although information on specific kinds of movements
such as commuting distances or international air
travel is often available, these sources provide at best
an incomplete and potentially a biased picture of rel-
evant human movement patterns. In the case of
wildlife, data on migratory patterns have been used as
inputs into risk analysis, for example, for the spread
of avian influenza internationally by wildfowl [41].

These aspects of host demography and movements,
together with other aspects of host phenotype (e.g. be-
haviour, infection history and immune status) and
sometimes genotype, make the host population hetero-
geneous with respect to the potential for the spread of
infectious diseases. These heterogeneities can have a
major impact on disease dynamics, and need to be
recognized and quantified to assess properly the risk
of spread of infection and the potential impact of inter-
ventions [42]. One example is the influence of spatial
heterogeneity in livestock densities in the UK on the
potential spread of FMD [43]: in 2001, the disease
reached areas of high livestock densities, resulting in
a major epidemic; in 2007, it remained confined to
low-density areas and spread was, as predicted at the
time, limited.

A common confounding issue is the involvement of
additional host populations, be they reservoirs of infec-
tion (such as badgers for bovine tuberculosis or
wildfowl for H5N1 influenza), or vectors (such as culi-
coides midges for bluetongue virus). Typically, much
less demographic information is available for reservoirs
(especially wildlife reservoirs) and vector populations,
which may constrain predictive analysis.
(c) Environment

Here, ‘environment’ is taken to refer to any factor that
is not an attribute of the pathogen or the host(s). This
encompasses a vast range of possible influences on
Phil. Trans. R. Soc. B (2011)
disease dynamics, ranging from levels of hygiene in
hospitals to land use and climate, including factors
that influence disease vectors or intermediate hosts,
or those that influence reservoir host populations.

Climate has commonly been investigated as a poss-
ible environmental driver of disease risk. Examples
include associations of climate-related factors with
outbreaks of African horse sickness [44], cholera
[45] and Rift Valley fever [46] or shifts in endemic
levels of malaria infection [47]. Climate change is an
important and topical subject, but that is not its only
attraction for studies to predict changes in disease
risk. Climate data are quantitative, measured at fine
spatial scales and, crucially, sophisticated projections
are available describing how climate variables are
expected to change over coming decades. A few
other drivers, such as human demography (population
density, age structure, urbanization, etc.) have similar
attributes. Many others (such as investment in public
health, population displacement, natural disasters,
war, etc.) may well be just as important but their role
is hard to quantify and their future behaviour even
harder to predict [16]. In short, identifying drivers of
disease risk and predicting their future impact are very
much the art of the possible. As an example, two
events that could have major impacts on the future of
livestock disease in European countries are reform
of the Common Agricultural Policy (CAP)—which
would greatly influence farming practices—and the
accession of countries such as Turkey that regularly
experience exotic infections such as FMD. These
events are extremely hard to ‘predict’, in contrast to
the way that climate change is predicted, but may well
turn out to have considerably greater epidemiological
consequences over the next few decades.

Disease prevention programmes and/or reactive
control efforts are, of course, key ‘environmental’ dri-
vers of the dynamics of many infections at a variety
of spatial and temporal scales, and may vary for
many reasons, including shifts in policy objectives
[48]. Some kinds of intervention are relatively easy to
quantify and evaluate: examples include the impact
of vaccination programmes and the role of herd immu-
nity [49], or the impact of culling for the control of
animal diseases [50]. For other interventions—such
as biosecurity measures against FMD, or the use of
face masks against influenza—their use is not reliably
reported nor their efficacy known. Another difficulty
is knowing the way in which control measures are
applied in practice. For example, the pre-emptive cul-
ling during the UK 2001 FMD epidemic was found
retrospectively to have been significantly biased
towards lower risk farms (mostly smaller sheep
farms) rather than higher risk farms (mostly larger
farms with cattle). The actual impact of the culling
programme is, therefore, likely to have been less than
anticipated when the policy was first proposed [51].
5. EMERGING INFECTIOUS DISEASES
An important, topical and challenging application of
methods to predict disease risk concerns the emer-
gence of novel pathogens. Pathogens are emerging
and re-emerging at alarming rates [52]. Numerous



Table 2. The 10 most frequently cited drivers of the

emergence and re-emergence of infectious diseases [53].

(1) changes in land use or agricultural practices
(2) changes in human demographics and society
(3) poor population health
(4) hospitals and medical procedures
(5) pathogen evolution

(6) contamination of food sources or water supplies
(7) international travel
(8) failure of public health programmes
(9) international trade

(10) climate change
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studies of specific pathogens have linked their emer-
gence/re-emergence to particular drivers (table 2),
although most such studies are purely descriptive
and the association with drivers is based on no more
than a subjective interpretation of events. Better evi-
dence is needed to make strong assertions about
cause and effect:

— individual drivers need to be identified more pre-
cisely than high-level descriptors such as ‘climate
change’;

— drivers need to be measured and mapped, and
changes in drivers need to be monitored;

— interactions between multiple drivers need to be
identified;

— statistical associations between emergence events
and drivers or combinations of drivers need to be
tested; and

— ideally, functional relationships between emer-
gence events and drivers need to be demonstrated.

At present, however, there are very few examples of
systematic studies of the relationship between emer-
gence and drivers of emergence. Jones et al. [54]
carried out a literature survey of emerging disease
events (defined as the first reported appearance of a
previously unknown pathogen species or strain,
including drug-resistant strains) since the 1940s and
attempted to relate these to a set of possible drivers
using multi-variate logistic regression. They found
associations between emergence events and drivers
such as human population density and growth rate,
latitude, rainfall and biodiversity. The main challenge
was fully accounting for highly suspect reporting pat-
terns, with fully one-third of all reported events
occurring in the USA and very few in countries such
as China, India, the Philippines or Mexico [55]. An
interesting conclusion from this study was to suggest
the existence of emerging disease ‘hotspots’, an impor-
tant concept that will no doubt be refined by further
analysis in the future.

The same study [54] also suggested that emergence
events have increased in frequency through time.
Again, this result is sensitive to the robustness of
their reporting bias correction, but it echoes the
more descriptive notion of a ‘perfect storm’ for emer-
ging diseases in the early twenty-first century (L. King
2005, personal communication). This idea reflects the
view that many drivers of emergence (table 2) are
changing in ways that, at least intuitively, should
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promote the emergence of novel pathogens. Even so,
there are no hard data to compare on trends in emer-
gence rates prior to the past few decades. Nonetheless,
it is reasonable to conclude that the emergence of
novel pathogens happens over time scales of years
and decades (i.e. these are not rare events) and it is
happening as fast as ever, if not faster, in the early
twenty-first century.

More detailed characterization of the drivers of
emergence events and more mechanistic explanations
of the emergence process based on in-depth investi-
gation are few and far between. Possible examples
(exhibiting different levels of rigour) include the ori-
gins of HIV-1, BSE, SARS coronavirus, H5N1
influenza A and Nipah virus [56]. The origin of each
of these pathogens is a unique and complex story
and does not immediately suggest obvious generaliz-
ations. Nonetheless, although the emergence of a
specific pathogen may always be essentially unpredict-
able, patterns are discernable [54]. The challenge is to
move beyond statements that may well be correct but
have little practical value, such as ‘new pathogens
will emerge’, towards more informative (quantitative)
predictions of how often this might happen, where it
is likely to happen, and whether it is likely to represent
a serious threat to human or animal health. This kind
of information would be of considerable practical
value, for example, in helping determine what kinds
of disease surveillance systems are needed and where
they should be deployed [52]. Meeting the challenge
requires a better (and more quantitative) understand-
ing of the drivers of pathogen emergence than exists
at present.
6. THE FUTURE
The kinds of formal, quantitative analysis described
here can be valuable guides towards answering ques-
tions such as how probable a disease outbreak is,
how far and how fast it will spread, and how best to
control it. But how much reliance should be placed
on the outputs of these analyses? One area where
quantitative analysis and prediction have been highly
successful in informing policy is climate change mod-
elling. In this context, the inherent uncertainties in
making predictions about a complex and incompletely
understood system are well recognized and widely dis-
cussed. There are a substantial number of climate
change models, and these agree in some respects and
disagree in others [57]. It is not expected that the
models will be correct in every detail; what is expected
is that model predictions can be considered a reason-
able basis for action by stakeholders. The same
applies, over much shorter time-scales, to weather
forecasting: we do not expect the weather forecast to
be precisely correct on every occasion we look at it,
but we do expect it to be sufficiently accurate often
enough to be useful. ‘A reasonable basis for action’
seems a sensible aspiration for predictions about
future disease risks.

One way to help judge whether a particular analysis
constitutes a reasonable basis for action (i.e. that it is
policy-ready as opposed to merely policy-relevant)
is to be able to point to commonly accepted professional
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standards. A recently published guide to good practice
for quantitative analysis of epidemiological data [58] is
intended to be helpful ‘to users of the outputs, particu-
larly funders and policy-makers, to assist them in
making an informed assessment (recognizing that
needs, expectations and standards evolve through
time). The kinds of issues that are addressed include:
clarity of objectives, transparency, good documentation
and record keeping, verification, validation, the role of
peer review and audit, reproducibility, and clear and
accurate communication of outputs, assumptions and
uncertainties. Indeed, an important advantage of
formal quantitative models over informal approaches
to prediction is that the models’ inputs, assumptions
and logical structure are set out explicitly, allowing
them to be criticized and modified as appropriate [59].
Informal approaches, such as those based on expert
opinion, tend to be much less transparent.

Nonetheless, while the techniques available for
quantitative analysis become ever more sophisticated,
useful predictions of future disease risk still depend
ultimately on the quality and the availability of input
data. Often, this is a severe limitation. In some cases,
this reflects a genuine lack of data but in others it
reflects an unwillingness to share data. The latter is a
serious issue at the international level, with some
countries sometimes unwilling to report disease data
to the World Health Organisation (WHO) or the
World Organisation for Animal Health (OIE).
Implementation of the 2005 International Health
Regulations should improve the situation, at least for
human diseases, but the underlying issue is for the
international community to provide incentives for
reporting that compensate for the often severe disin-
centives associated with disease outbreaks, such as
restrictions on travel and trade [52]. Even at the
national level, government departments, public and
animal health agencies, or academic institutes may
be unwilling to release data on disease, host or drivers,
thereby relinquishing ‘ownership’ of those data. Since
the timely flow of usable information is an essential
part of managing disease risks, not least when a
human or animal health emergency arises, this pro-
blem needs to be addressed, noting that it is a
cultural issue rather than a technical one. To do so,
it is important that responsibilities for data curation,
quality control and dissemination are set out and
that individuals are recognized and appropriately
rewarded for these activities.

In conclusion, the application of formal, quantitative
methods to predict future infectious disease risks has
become both more sophisticated and more widely
accepted in recent years. This subject is very much the
domain of epidemiologists, but nonetheless draws
heavily on other disciplines. Clinicians and biologists
provide a detailed understanding of the disease process;
demographers and behavioural scientists provide
knowledge of host populations; a wide variety of disci-
plines—e.g. climatology, agricultural economics, trade
law, urban planning and food science—contribute to
understanding drivers of disease risks; public and
animal health workers, and also sociologists, provide
understanding of the implementation of and compli-
ance with intervention measures; and mathematicians,
Phil. Trans. R. Soc. B (2011)
statisticians and computer scientists provide the analyti-
cal tools for data management, analysis and modelling.
An important challenge for the future is to develop fra-
meworks for integrating these disparate kinds of activity
to provide more reliable and useful predictions of future
disease risks.
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