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Stem cell behaviours, such as stabilization of the undecided state of pluripotency or multipotency,
the priming towards a prospective fate, binary fate decisions and irreversible commitment, must all
somehow emerge from a genome-wide gene-regulatory network. Its unfathomable complexity defies
the standard mode of explanation that is deeply rooted in molecular biology thinking: the reduction
of observables to linear deterministic molecular pathways that are tacitly taken as chains of causa-
tion. Such culture of proximate explanation that uses qualitative arguments, simple arrow–arrow
schemes or metaphors persists despite the ceaseless accumulation of ‘omics’ data and the rise of sys-
tems biology that now offers precise conceptual tools to explain emergent cell behaviours from gene
networks. To facilitate the embrace of the principles of physics and mathematics that underlie such
systems and help to bridge the gap between the formal description of theorists and the intuition of
experimental biologists, we discuss in qualitative terms three perspectives outside the realm of their
familiar linear-deterministic view: (i) state space (ii), high-dimensionality and (iii) heterogeneity.
These concepts jointly offer a new vista on stem cell regulation that naturally explains many
novel, counterintuitive observations and their inherent inevitability, obviating the need for ad hoc
explanations of their existence based on natural selection. Hopefully, this expanded view will
stimulate novel experimental designs.
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1. INTRODUCTION
The very concept of ‘regulatory pathways’ is the
default, taken-for-granted paradigm of explanation in
our quest for understanding biological phenomena in
molecular terms. In stem cell biology, understanding
how stem cells maintain multi-potency, resolve their
state of indeterminacy and make cell-fate decisions
accordingly relies almost exclusively on this unques-
tioned epistemic principle of molecular causation.
However, the surge of data for genome-wide gene
expression and molecular interactions for stem cells
[1–4] associated with these cellular processes is
mounting insidious pressure to confront this custom
of biological understanding [5–7]. But old habits
die hard.

Molecular pathways, typically schematized in the
form of an arrow–arrow diagram (A! B! C! etc.,
top of figure 1a), represent biochemical cascades and
are seen as the molecular embodiment of chains of cau-
sation, thereby providing comfortable explanation for
many cell phenotypes. However, such linear pathways
are in reality embedded in complex, genome-wide
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networks and the flood of ‘omics’ data undermine this
familiar notion of linear causation. The unfathomable
complexity of molecular networks that broad genome-
scale analyses has produced and whose ubiquitous
graphical representations are often derided as ‘fuzzball’
because of their impenetrable density, obviously
defy the clarity and the simplicity of the linear logics of
causation that has satisfied our minds used to the
arrow–arrow schemes of molecular pathways. Yet,
the blind hope that by mapping out the entire ‘road
map’ or ‘wiring diagram’of the genomicnetworkof regu-
latory interactions, one day wewill fully comprehend how
stem cells maintain multi-potency and make decisions
continues to drive the collection of genome-wide infor-
mation and its integration into networks. Despite calls
for a ‘systems’ or ‘integrative’ approach [8–10], the
desire to discover within the fuzzball networks simple
causal relationships, for instance ‘pluripotency genes’
[11] and their molecular targets to explain ‘pluripo-
tency’, has promoted the brute-force genome-wide
characterization of all the molecular partswhile obviating
the development of rigorous formal concepts for under-
standing the collective action of the parts. Entirety of
analysis has trumped analysis of entirety [8].

It is obvious to many biologists that increasing the
density of the molecular fuzzball by ceaseless discovery
of new regulatory relationships, now accelerated by
This journal is q 2011 The Royal Society
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Figure 1. Schematic of the three perspectives discussed in this paper. (a) From gene-regulatory network topology to dynamics
in the state space (§2). The traditional paradigm of a linear pathway as a chain of causation consisting of genes X1, X2, X3
extracted out of the network context is shown as a contrast underneath the network topology map. On the right, a three-dimen-

sional state space capturing the dynamics of a hypothetical three-gene network (genes X1, X2 and X3) is shown. Any point in
this space represents a (theoretical) network state S at time t, defined by the expression values x of the sub-network’s three
genes, S ¼ (x1, x2, x3) (gene-expression pattern) at time t. Three arbitrary states (blue balls), S1, S2 and S3 are shown.
Their gene-expression patterns (x1, x2, x3) are indicated and, by acting as the space coordinates, define the position of the
states in the state space. Since, as most states, they do not represent stable network states, they are driven by the network inter-

actions to seek a stable state; hence they move in state space along trajectories (red solid lines) that lead to the stable attractor
state. The trajectory denoted by asterisk (*) best represents the movement of the state discussed in the main text that manifests
the regulatory relationship ‘X1 inhibits X2’—however, it is modulated by other inputs from the network. The dashed trajectory
represents an example of a trajectory that has been perturbed (e.g. by drugs that affect expression of genes X1, X2 and X3)
away from its natural course defined by the network interactions into regions of the state space that are even less stable, and

hence quickly returns to the trajectory that leads to the attractor. In summary, the states, S1, S2, S3 and the perturbed trajec-
tory all lie within the state-space region that ‘drain’ to the particular attractor S*, hence they all lie within its basin of attraction.
(b) Illustration of both neglected (‘hidden’) dimensions (§3) and heterogeneity of clonal populations (§4). A typical two-
dimensional flow cytometry dot-plot output (for hypothetical proteins X1 and X2) with three subpopulations is shown,

along with the separate histograms of the projection on the two individual dimensions X1 and X2 (schematic, from simu-
lations). Note that subpopulation S1 (which may represent an attractor with respect to protein X2) when sorted and
probed for protein X1 is actually bimodal with respect to the latter.
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genome-wide chromatin immunoprecipitation (ChIP)
assays [12,13], is inapt for providing an intuitive
grasp of the observable, emergent stem cell behaviours
that are actually quite simple and readily described
in few words, such as the decision of an embryonic
stem cell to either stay pluripotent or to commit to
either the trophoectoderm or the inner cell mass line-
age [14,15]. The conceptual simplicity of such nested
binary choices at the cell behaviour level stands in
stark contrast to the vastly complicated molecular
Phil. Trans. R. Soc. B (2011)
network with countless circular control loops which,
one naively hopes, may offer linear causal explanations
when carefully combed.

An explanation of a phenomenon that exceeds in
complexity the phenomenon itself that it seeks to
explain will not afford a natural, satisfactory understand-
ing. There is no understanding without simplification
[16]. Thus, we propose that any efforts to achieve
satisfactory explanation for how a cell-fate decision
ultimately results from the collective action of the
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molecular interactions must be dedicated to the
identification of more abstract, generalizable patterns
or principles that are simple enough to be grasped by
the human mind notwithstanding the complexity of
the impenetrably entangled network of molecular
interactions.

Granted, there has been no shortage of attempts to
cast stem cell behaviour in some kind of simple govern-
ing principles to satisfy our intuitive comprehension.
However, such simplification attempts tend to resort
to ad hoc concepts, using metaphoric terms, such
as ‘blank state’, ‘ground state’ [17], ‘multi-lineage
priming’ [18], ‘collapse’ of the pluripotency network
[3] or ‘occlusion’ of lineage-inappropriate genes [19].
Such mental images are perhaps a bit more hand-
waving than serving to convey deep principles rooted
in formal concepts. However, they are certainly con-
venient and useful in that they assign a label to
abstract phenomena and thus may offer a starting
point for our quest to more formally define general
concepts that ultimately must be deducible from or at
least be consistent with physical and mathematical
principles.

We are fortunately moving towards establishing
such theoretical foundations [10,20] although such
efforts still linger beneath the radar screen of main-
stream stem cell biologists since the discovery and
description of new phenomena are still prevalent in
the young discipline [9]. Yet we have so far collected
a sufficient set of coherent facts concerning emergent
stem cell behaviours that can indeed readily be derived
from the molecular networks that we have assembled
to date using well-known ‘first principles’ of math-
ematics and physics of dynamical systems. Hence,
time is ripe to take a first step from describing facts
to defining basic principles. Whatever stem cells do,
the fundamental laws governing the underlying reg-
ulatory systems must be obeyed. These, in turn,
impose constraints on cell behaviour that cannot be
conceived in the ad hoc schemes of causal arrows or
through metaphors, for the latter are malleable and
not anchored in mathematical principles. In contrast,
if explanations are rooted in a set of first principles,
then the very existence of particular stem cell beha-
viours, such as the robustness of multi-potency and
its destabilization preceding cell-fated decisions, the
binary nature of the latter, etc., will follow as inevita-
ble, necessary consequence from the mathematics
and physics of gene-regulatory networks. Such features
and capacities need not by default be viewed as pro-
duct of Darwinian evolution that serves a functional
purpose.

This is important because the only mode of expla-
nation in biology beyond the currently dominating
‘proximate explanation’ [21] that uses molecular path-
ways as chains of causation is one that holds that
interesting features of living systems have been gener-
ated and optimized by natural selection to meet
some functional requirement. This evolutionary ex-
planation is indeed based on general principles but
does not consider constraints by mathematical laws
[22–25] as organizing force. By viewing evolution as
a powerful tinkerer who seeks the optimal solution in
the engineer’s sense, even if only by trial and error
Phil. Trans. R. Soc. B (2011)
[26], one inadvertently invokes some purposeful
design. Replace the ‘intelligent designer’ in the teach-
ing of opponents of evolution by the term ‘natural
selection’ (the tinkerer)—and the parallels in the argu-
mentation logics between these two explanations of the
biosphere are exposed, for, deeply, they share the very
concept of purposefulness—by divine design or by
evolution’s tinkering. While Darwinian adaptation of
course has its place in shaping living systems, the key
to explaining system behaviours and why they are the
way they are, however, is to first establish, as the null
hypothesis, the fundamental constraints immanent to
the system that make a particular biological phenom-
enon inevitable (given some initial conditions). The
broader goal of this paper is to demonstrate the utility
of such explanatory philosophy using the concrete
questions of cell-fate regulation.

This paper cannot provide a detailed account of the
physical principles of genomic regulatory networks
that impose the constraints. We refer to more extensive
(but still introductory) reviews [10,20,27,28]. How-
ever, the paucity of stem cell biologists who embrace
these principles points to a lack of awareness of useful
intellectual perspectives that exist outside of the realm
of the current monolithic pathway-based thinking.
Hence, the specific goal of this piece is to introduce
three perspectives that have barely entered the con-
science of experimental stem cell biologists: (i) the
state space perspective, which shall replace the biologists’
pathway-based causality scheme, (ii) the perspective of
high-dimensionality, which shall extend the notion of
low-dimensional systems (i.e. consisting of a handful
of variables), and finally (iii) the perspective of hetero-
geneity, which shall take the place of the biologists’
tacit assumption of homogeneity of cell populations
and of determinism of processes. These three distinct
views will offer a new optic to biologists through
which the mathematical principles of gene networks
as dynamical systems, presented here in a permissively
simplified form, and their relevance to stem cells can
be readily comprehended. This will hopefully offer pro-
tection from resorting to ad hoc metaphoric
explanations when facing with the daunting task of
extracting a crisp explanatory meaning from complex
networks of thousands of genes.
2. PERSPECTIVE 1: FROM PATHWAY AND
NETWORKS TO STATE SPACE
Networks of regulatory pathways are viewed as some
kind of wiring diagrams or maps [29,30]—hence the
occasional depiction of a cellular pathway network in
the form of a subway map [31]. Within this metapho-
ric concept, a change of the cellular phenotypic state,
such as loss of pluripotency, is then explained by the
‘collapse’ of the ‘pluripotency network’ that obviously
encompasses genes involved in maintaining pluripo-
tency [3]. This example illustrates the thoughtless
propagation of a false metaphor of which Stephen
J. Gould has warned us [32]. More precisely, it
demonstrates the widespread failure to distinguish for-
mally between network architecture (which includes the
topology of the ‘wiring’) and network dynamics [27,30].
The former is not directly explanatory; only the latter
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can link a gene network to emergent biological
behaviour.

The topology of networks, as part of the entire net-
work architecture, is often studied for its own sake.
Herein a network as the object of study is defined as
consisting of a static collection of nodes (¼genes, pro-
teins) and connecting arrows (¼regulatory or physical
interactions). One is then concerned with the struc-
tural aspects of the network as a mathematical graph
(figure 1a): for instance, the average connectivity of
each node (how many target and upstream regulators),
the presence of a power-law distribution thereof (or
not) [29,30], or local network motives, such as the
number of feedback loops [33], etc. The network top-
ology together with the information of how the
individual interactions modulate the expression of a
target gene (e.g. modality, such as inhibition/activation
and logical function, such as ‘AND’ function to
describe the necessity of two upstream positive regula-
tors for activation) form the network architecture that
governs cell behaviour. Naturally, the architecture of
the genome-wide regulatory network that encom-
passes all the genes of a genome is ‘hardwired’ in the
genomic DNA sequence through the structure of
interaction domains of regulatory proteins and the
DNA sequence of cis-regulatory elements.

By contrast, network dynamics is the key concept for
linking network architecture and cell behaviour [27].
Arrows connecting genes can still serve as symbols of
causation to explain a particular event, such as the
induction of a lineage-specific gene (e.g. gene X1 acti-
vates gene X2 that encodes an observable phenotype,
hence gene X1 causes that phenotype). However,
such linear interpretation of network connections as
causation [34] fails to consider the context of the
entire network in which all the causal interactions are
embedded. Here is where the explanatory utility of
network topology or even network architecture ends.
Yet, many stem cell biologists still persevere in using
static gene network architecture as explanatory prin-
ciple while agnostic of network dynamics.

The state space is a general tool for dealing with the
dynamics of a network [20,27,35]. But what is net-
work dynamics? Life is breathed into the static
network structure if we consider that every node i
(gene i) of the network can change its expression
level xi (for simplicity, we lump transcription and
translation and post-translational protein activation
into the quantity ‘expression level’ x). Then the collec-
tive change in time of all the expression levels xi over all
the N genes of the network is referred to as network
dynamics. (This change does not involve change of
the architecture of the network, which remains invar-
iant!). It is immediately obvious that the individual
expression levels xi change in a particularly coordi-
nated way because the genes influence each others’
expression via the ‘arrows’ in the network. With N in
the thousands of genes that change their expression
level, one will quickly lose track. Here is where the
state space perspective becomes indispensable. First,
we introduce a network state S(t) at time t, which is
collectively defined by the expression levels xi of all the
N genes i of the network at time t: S(t)¼ [x1, x2, x3,

. . . xn]. The state S(t) (depicted as blue balls in
Phil. Trans. R. Soc. B (2011)
figure 1a) is a point in the continuous, N-dimensional
space, the state space, which contains all possible
states S, that is, all the possible combinations of
expression levels xi, each located at a characteristic
position that is defined in the following way. The state
space is spanned by the N axes, each representing a
gene. The position of a state S(t) in this space is then
determined by the value of the expression levels of
each gene xi that act as the respective coordinates in
each of the N dimensions, x1, x2, x3, . . . xn. (Technically,
the expression profile (x1, x2, x3, . . . xn) acts as a state
vector.) Figure 1 (right panel) shows the state space of
a three-gene (sub-)network (n ¼ 3), thus the state
space has three dimensions (which still allows for a
graphical representation of the position of S in this
space), affording a visual intuition of how the network
state S is defined by the levels of expression of the
three genes it contains. In summary, an abstract network
state S(t)¼ (x1, x2, . . . xn) at time t, which also
represents a particular gene-expression profile, hence
the state of a cell, is mapped into a point object
characterized by its position.

Now, where is the dynamics? The execution of all
regulatory interactions between the genes, as defined
by the network, will change the network state S(t)—
or the gene-expression profile, in a particularly co-
ordinated manner. For instance, let us for clarity’s
sake focus on the X1–X2 plane (and ignore X3 dimen-
sion for a moment): if the network architecture
determines that gene X1 inhibits gene X2 (figure
1a), then increasing x1 will lead to a decrease in the
value of x2 and S(t) will move according to the corre-
sponding change of its coordinates, for instance from
a spot with (xLOW

1 , xHIGH
2 ) to the position (xHIGH

1 ,
xLOW

2 ) in state space. (This is most prominently seen
in the trajectory in figure 1a for the movement of S3,

whose trajectory is denoted by an asterisk (*).) In
other words: S moves along trajectories in the state
space as the genes exert their regulatory action onto
each other. The movement of the state S in state
space manifests the coordinated change of all the
genes of the network. Its journey is predestined by
the ‘laws of motion’ (of a different kind) encoded in
the architecture of the genomic network. Thus, the
genome, via the regulatory network that it encodes,
constrains the movement of the state S of each cell.
We have now arrived at a first step in formalizing
how genomic information translates into rule-governed
cell behaviour.

Thus, it is important to note that the network archi-
tecture encoded in the genome (which, again,
encompasses the topology of the interaction network
and the modalities of all the individual regulatory
interactions) does not change in a lifetime—except
when somatic mutations occur [35]. The network
architecture is essentially a static entity in the time
scale of an individual life. What is dynamic, i.e. what
changes and causes changes in cell phenotype, is the
constrained alterations in the expression values of the
genes, xi. This in turn shifts the position of the state
S ¼ (x1, x2, x3 . . . xn). Such changes in S can be
caused by: (i) network intrinsic processes owing to
either the execution of regulatory interactions given
an unstable initial state (see below) or to spontaneous,
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noisy fluctuations in gene expression (see §4); (ii)
external influences from outside the cell that via
signal transduction affect the expression values xi of a
set of genes. These changes push S ¼ (x1, x2, x3 . . . xn)
around along the trajectories in state space that are
allowed under the constraints of the genomic regulatory
network.

In summary, an entire network and its state S at a
time t maps into one point in state space. The trajec-
tory in state space captures the coordinated change
in gene expression as dictated by the gene-regulatory
network. Since the network state S also represents a
gene-expression profile, which in turn determines the
cell phenotype, a trajectory tracks the cell’s phenotype
change. The state space trajectory is thus a directed
curve that truly represents a developmental process,
such as differentiation. Unlike an arrow in a network
diagram or a ‘pathway’, which is merely a shorthand
symbol that has been over-interpreted as a causal
explanation in biology, the arrow in state space or tra-
jectory (figure 1a, red arrows) is a formal physical
entity and represents a biological process in its entire-
ness; it is a true ‘path’.

We have now established the general conceptual fra-
mework. A central idea is that the movement of S is
constrained to particular trajectories (that depend on
the position of S) by the regulatory network of the
genome—much as the laws of motion limit planetary
movements to orbits. Development and homeostasis
take place within these constraints. But what is their
precise nature? What is the specific course of the tra-
jectories of S allowed by the gene-regulatory network?

Now it turns out that biological networks have a
network architecture such that they typically drive tra-
jectories emanating from distinct points within a
particular region of the state space towards equili-
brium states of the network [27,36] where all the
gene-regulatory interactions are harmoniously satis-
fied. For instance, reusing the above example: if gene
X1 inhibits gene X2, then both genes cannot be simul-
taneously highly expressed: the state, S ¼ [xHIGH

1 ,
xHIGH

2 ] is unstable, as exemplified by the states S1

and S2, and to a lesser extent S3, in figure 1a. Instead
it will move to an equilibrium state, where we will
necessarily have the [xHIGH

1 , xLOW
2 ] configuration

(at a particular ratio x1/x2). At such an equilibrium
point, the network state S does not experience any
driving force anymore, it is in a stationary (¼‘not chan-
ging’) or steady state. An equilibrium point is not only
stationary but also stable if trajectories from its state
space environment converge to it. Such stable sta-
tionary states are so-called attractor states (because
they ‘attract’ nearby states). An attractor state, denoted
S*, is exemplified in figure 1a. (But note that other
interactions and genes of the network play a role in
the existence and precise position of the attractor
state, for instance, we have in the network in
figure 1a a feedback loop such that X2 also inhibits
X1. Such mutual inhibition between two regulators
(X1 and X2) is frequently found in gene-regulatory
networks controlling cell fates and is necessary
for establishing a system consisting of two sister
attractor states (‘bistability’)—for more details, see
[10,20,37].)
Phil. Trans. R. Soc. B (2011)
Attractor states have long been proposed to represent
discernible stable cell states, such as differentiated
states, cell lineages or cell types (reviewed in [27]).
They are characterized by stable gene-expression pro-
files that are robust to small perturbations since they
would ‘attract’ all unstable points in their neighbour-
hood (that may have been reached in response to
perturbations) until again all regulatory interactions
are satisfied. Since a whole set of ‘initial states’ (e.g.
S1, S2 and S3 in figure 1a) can end up in the same attrac-
tor state, there are many ways to reach a particular
attractor—a hallmark of stability. The set of initial
states (points in state space) that ‘end up’ in the attrac-
tor state forms its ‘basin of attraction’. The robustness
of attractors is manifest in the size of its basin. Per-
turbations of trajectories (e.g. by drugs that alter
gene-expression levels, hence the state space coordi-
nates), if not too large, will only cause a state to
deviate transiently from the attractor or trajectories
leading to it. The perturbed state will, if it did not
leave the basin of attraction, eventually return to the
attractor state and re-establish the associated speci-
fic gene-expression pattern (dashed trajectories in
figure 1a).

The emergent dynamics of stem cells, that is, the
observable behaviours to be explained, is played on
the stage of this structured state space with trajectories,
attractors and its basins and boundaries. These struc-
tures emanate from the constraints on network
dynamics jointly imposed by all the gene-regulatory
interactions.

Briefly, as an important corollary of the thesis that
cell types are attractors, the state of multi-potency is
then naturally represented by ‘metastable states’ in
state space: states that are located on the boundary
between two attractors, perhaps locally stabilized
because they are in a shallow attractor [38]. This cen-
tral position between two cell-fate attractors naturally
predicts the ‘multi-lineage priming’ of stem cells and
their access to two sister lineages, which underlies
the binary decision. The metastability is also consist-
ent with the local and temporal stabilities of pluri/
multipotent states under particular conditions as well
as their overall instability, epitomized in the natural
proclivity of stem cells to differentiate (reviewed in
[20,39]). On this basis, fate decisions have been math-
ematically modelled as the destabilization of the
metastable stem cell attractor and/or as noise-induced
exit of that attractor which forces the multi-potent
stem cell to ‘choose’ either one of the two adjacent
attractors [15,20,38,40–42].

A recent extension of the concept of state space and
its attractors has been introduced to compare the rela-
tive stability of attractors in a multi-attractor system
[43]. This consideration of ‘global dynamics’ [44,45]
goes beyond conventional dynamical systems theory
that is mostly concerned about local (linear) stability.
Global dynamics introduces the idea of a potential
landscape [45,46]. Very roughly, one assigns to each
state S in state space the probability P(S) to find the
system in that particular state S (at the system’s
steady state). Invoking probability is sensible if we
assume that a system is noisy and the position of S

can thus be determined only in terms of ‘likelihoods’.
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In fact, real systems are noisy owing to random
fluctuations of gene-expression levels xi such that the
point S actually ‘wiggles’ (locally) in state space
even under stationary conditions (discussed in §4).
Moreover, without noise and perturbations, there is
no spontaneous transition between attractors—the
ontological condition sine qua non for comparing stab-
ilities between distinct attractor states. Then, without
dealing with formal details, it is intuitively conceivable
that the more stable an attractor state, the greater is the
probability P(S) (when the system is in a global equili-
brium) to find a state S in that attractor state in a noisy
system. Thus, P(S) is (loosely) related to its ‘stability’.
As in other domains of physics and chemistry, stability
(corresponding here to high P(S)) is graphically rep-
resented as low elevation (valleys, potential wells) and
instability as high elevation (hill tops). Therefore,
P(S) is inversely related to the notion of ‘potential
energy’. One thus often defines a quasi-potential
energy U as the inverse of P(S) and scales it by the
logarithm: U ¼2ln[P(S)]. One then computes the
elevation U(S) for each state S, which results in a
landscape over the state space S. This of course is
only visually intuitive for two-dimensional systems in
which S is a location in the XY-plane and U
would be represented by the Z-axis (figure 2). For
formal accuracy, it is important to note here that
U is not a ‘true’ potential energy in classical mechanics
and, therefore, gradients of U (‘steepness’ of the
landscape at position) cannot be interpreted as an
accurate measure of the driving force for the move-
ment of a given S in state space. This is because of
the non-integrability of the ‘laws of motion’ of the
network mentioned earlier and has to do with the
fact that the network is a so-called non-equilibrium
system [47].

Nevertheless, the landscape picture intuitively cap-
tures (for not too densely wired networks) the global
dynamics in a system with multiple attractors. In
such a landscape, the embryonic stem cells would
start in a metastable state in the ‘high mountainous’
region, follow trajectories that ‘bifurcate’ at watersheds
separating two valleys (representing binary cell-fate
decisions), flowing downwards to ultimately end up
in the deep attractors that represent the terminally dif-
ferentiated cell types [20]. This is precisely what
Waddington envisioned with his metaphoric ‘epige-
netic landscape’ [48,49] (figure 2, bottom). For
once, a metaphor is actually formally reducible to fun-
damental principles of mathematics and physics
[20,27]. Although in his latest work [50], Waddington
more explicitly expressed awareness of the link
between metaphor and dynamical systems theory,
perhaps as a result of his interaction with Stuart Kauff-
man (S. Kauffman 2009, personal communication),
and despite the re-emergence of his landscape picture
in the modern stem cell literature, the connection
between Waddington’s landscape that actually dates
back to the 1940s [51,52] and systems biology is
rarely acknowledged.

The embodiment as a landscape of the fundamen-
tal laws that govern how genes cooperate through
regulatory interactions leading to the emergence of
elementary properties of cell behaviour, including the
Phil. Trans. R. Soc. B (2011)
stability of distinct states in deep valleys (attractors),
the instability of multi-potent states on the hills separ-
ating the valleys, the binary fate decisions imposed by
the hills, the directionality and branching nature of cell
differentiation, etc., lucidly demonstrates that these
basic cell behaviours are mathematical consequence
of the collective action of interacting elements that
form a network. They are intrinsic to the network,
and neither the result of purposeful design by an intel-
ligent being nor the product of natural selection
dictated by the purpose of maximizing fitness [53].
In fact, as Kauffman showed [36], a broad class of
complex networks with random topologies would
naturally produce ‘reasonable’ landscapes with valleys
and hills, not too flat and not to rugged, serving as a
stage for ‘interesting’ cell behaviours. Then, natural
selection during evolution of increasingly complex
metazoans would have performed only the fine sculpt-
ing of the landscape to optimize the developmental
trajectories, for instance in ensuring smooth descent
to the attractors of mature cell types in order to pre-
vent cells from getting stuck in unused attractors in
immature regions of the state space near that of stem
cells. Such accidental block of differentiation could
lead to cancer [35].
3. PERSPECTIVE 2: FROM LOW-DIMENSIONALITY
TO HIGH-DIMENSIONALITY
The notion of high-dimensionality, the second neg-
lected perspective to be discussed, pertains to the
dimensionality of the state space just introduced.
While conventional dynamical systems theory typically
deals with systems consisting of two, three or a handful
of nodes (genes), the genome-wide gene-regulatory
network comprises thousands of genes (transcription
factors that target other genes, including transcription
factors) such that the corresponding state space of the
network spans thousands of dimensions. Obviously
this cannot be visually represented as in the case of
our pedagogical three-gene circuit above (figure 1a)
and escapes the realm of intuitive grasp. Yet, the
above principles of dynamical systems, such as trajec-
tories that may converge to stable attractor states,
still hold. Valuable lessons in high-dimensional think-
ing were elegantly obtained by the model of gene-
regulatory networks introduced by Kauffman in
which genes take binary ON–OFF values for their
expression level xi and are connected by Boolean net-
works. The sacrifice of some details in favour of
high-dimensionality is another example of wise
abstraction to remove details that interfere with
human comprehension. It has opened a new window
to the exploration of high-dimensional dynamics by
computer simulations and theoretical analysis [54,55].

Based on such analysis of large hypothetical (gen-
eric) gene networks [36], we can safely assume that
the mammalian genomic network, given the set of net-
work topology features and interaction modalities
found so far, belongs to the class of not too densely
connected networks that produce ‘reasonable’
dynamics. Thus, it can be expected to generate thou-
sands of stable attractor states [27]. Then, the
attractor state Sattr represents a discretely distinct,
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Figure 2. Integration of the three perspectives, state space, high-dimensionality and heterogeneity of populations, into a systems
dynamics picture and its relationship to Waddington’s [48] ‘Epigenetic Landscape’ (see text). State-space dimensions are rep-

resented by the blue arrows/axes. Using the same notation as in figure 1, a starting population of cells (t0) is shown
expanding, owing to gene-expression noise and proliferation, into predestined clusters (t1). Histogram for dimension X2 is
shown, obtained from the information contained in a state-space section parallel to X2 (green). Projection of the high-dimen-
sional state space into a two-dimensional plane (light blue) and plotting the values of the inverse natural logarithm (ln) of the
steady-state probability P(S) to find a cell at each position S, as the ‘quasi-potential’ U (the z-axis) generates the landscape.

Note that the z-axis, U ¼ 2ln(P) does not represent the ‘true’ energy potential that drives the development (rolling down of
the balls)—see text. As above, each blue ball represents a cell and its network state S.
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robust (self-stabilizing) genome-wide gene-expression
profile of a cell type, or any distinct, observable cell
state, such as a pluripotent/multi-potent state, as well
as a terminally differentiated state. Thus, in a simpli-
fied picture, the entire state space of the human
genomic network is partitioned into thousands of
domains defined by attractor states and their sur-
rounding ‘basins of attraction’ (potential wells).
These high-dimensional attractor states represent the
stable gene-expression profiles that we now can
measure, to some approximation, as the characteristic
transcriptomes. They encode the cellular programmes
that map into distinct cell fates or, more generally,
observable cell phenotypes.

In stark contrast to the high-dimensionality of cell
states, human imagination and thinking covers only
low-dimensional systems—as is manifest in our habit
to operationally define a cell type by a just handful of
molecular markers. This has practical implications.
For instance, in daily experimental practice, such as
in flow cytometry measurement and fluorescence-acti-
vated cell sorting (FACS), murine haematopoietic
stem cells can be identified and separated based on
the expression of the marker configuration Sca-1þ,
c-kitþ and the absence of lineage-specific markers
[56]. More generally speaking, assume now a homoge-
neous cluster of (lineage-negative) cells expressing
the markers X1 and X2 (figure 1b), e.g. Sca1þ and
c-kitþ , in the two-dimensional flow cytometry dot
plot in the X1–X2 graph. This plane obviously
Phil. Trans. R. Soc. B (2011)
corresponds to a projection of a state space into a
two-dimensional plane. Although the functional
heterogeneity of these FACS-sorted populations has
repeatedly been pointed to by Bryder et al. [56], a
uniformly looking dense cloud of points in the two-
dimensional dot plot or even just in a histogram
(subpopulation S1 in figure 1b) sometimes tempts inves-
tigators to interpret it as sign of ‘purity’ because of
the absence of outlier dots in that plane or because of
the smooth looking bell-shaped histogram. With our
notion of high-dimensional state space, it is now obvious
that such measurements are but a projection of a high-
dimensional state space into a lower-dimensional one
and that a uniform cluster or peak actually may stretch
over wide ranges in the other, not observed dimensions.
Of course, the use of additional markers, i.e. extending
the perspective to expose additional dimensions, readily
uncovers multiple clusters (multimodality) with respect
to these other non-observed dimensions, as discussed
below under the perspective of heterogeneity [57]
(figure 1b). While such loss of information owing to
projection appears conceptually trivial, in experimental
practice and with thousands of state-space dimensions,
there are biological consequences of high-dimensionality
that could be missed.

One less trivial implication of the habitual neglect of
‘hidden’ dimensions in the study of dynamics is the fol-
lowing. From theoretical studies of higher-dimensional
dynamical systems [58], it is known that the typical
time scales of their dynamics, that is, the ‘speed’ of
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movement of S in state space, can differ dramatically
between different dimensions: S may move vastly
faster or slower when projected in one or another
dimension, not unlike a rain droplet that moves fast
in the vertical direction compared with the much
slower drift in the horizontal direction owing to
wind as it falls. This coexistence of distinct time
scales for movement of S in different dimensions
enriches the dynamics in ways that we only begin to
appreciate. For instance, a cell may be stable in an
attractor S1 with respect to gene X1, while moving
slowly along the dimension spanned by another gene
X2. The level of X2 may dictate the extent to which
a cell characterized by the relatively uniform and
stable expression of a particular level of gene X1 (for
instance, stem cell marker Oct4) is prone to leave the
attractor with respect to dimension X1 (i.e. to differen-
tiate in the case of Oct4). X2 thus is a factor that
stratifies the apparently homogeneous population with
respect to X1 levels into those that are more or less
prone to differentiate into a particular direction. The
transcription factor Nanog, for example, when present
at low levels, marks those cells (within an otherwise
apparently homogeneous population—see below)
which have the proclivity to lose pluripotency
[59,60]. Similarly, in apparently uniform bipotent hae-
matopoietic progenitor cells, those that exhibit above
average levels of the surface marker Sca-1 harbour a
higher tendency to commit to the myeloid than the
erythroid lineage [61]. Thus, stratification of a popu-
lation that appears uniform in dimension X1 by
considering another dimension X2 is a manifestation
of high-dimension heterogeneity (see §4) and of
practical importance for stem cell investigators.

A lucid illustration of our neglect of higher dimen-
sionality beyond those dimensions that we measure is
offered by experiments in which a bimodal distribution
of the expression of a differentiation marker Z, as seen
in flow cytometry, is interpreted as manifesting the
presence of two subpopulations (figure 1b, see
legend). For instance, in a common scenario, the
treatment of a stem cell culture with submaximal
doses of a differentiating cytokine will yield a
differentiated (Zþ) and a non-differentiated (Z2)
subpopulation if Z is a marker of differentiation. How-
ever, assume now that we have two distinct
differentiation inducers, A and B that both cause
only partial differentiation, hence each leaving its
own (Z2) subpopulation, (Z2)A and (Z2)B when
stem cells are treated with the respective inducer. In
this scenario, one can show that these two (Z2) sub-
populations are distinct. When after the treatment of
two stem cell cultures with either A or B, respectively,
the two (Z2) subpopulations in these two cultures,
(Z2)A and (Z2)B, are sorted out and their transcrip-
tome compared, one observes quite significant
differences in the genome-wide gene-expression profiles
of the two subpopulations, (Z2)A and (Z2)B. Thus,
these two (Z2) subpopulations do not simply represent
the same, ‘non-responsive cells’ but instead, these (Z2)
cells have responded distinctly to condition A versus B
with respect to a high-dimensional space—but in both
cases did not (yet) induce the marker Z (H. Chang &
S. Huang, unpublished observation).
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The above observations indicate a broad but hidden
spectrum of all kinds of degrees of intermediate stages
of differentiation that are not yet manifest in the
expression levels of the monitored marker(s) [57].
Thus, differentiation is not simply a discrete switch
from one state (attractor) to another that can be distin-
guished by the two levels of expression status (Xlow

versus Xhigh, or X2 versus Xþ) of a single marker
as commonly assumed. Instead, it is a convoluted,
multi-step journey in multiple state-space dimensions.
This stepwise nature and high-dimensionality of devel-
opmental trajectories contribute to a heterogeneity of
cell populations that is further accentuated by the sto-
chastic asynchrony of the individuals cell’s progression
in the long, multi-step journey [62]. Moreover, cells
can, depending on the stimulus, take different trajec-
tories to move from one state to another. After all it
is now appreciated that, because the destination state
represents a high-dimensional attractor, multiple
paths (state space trajectories) converge in attractor
states [63]. While from the state-space perspective
this is not surprising, the discovery of new, rarely
used or of artificially induced developmental trajec-
tories continues to stun stem cell biologists [20]. The
intermediate states hidden in non-monitored state-
space dimensions during phenotype conversion [57]
are also encountered in induced pluripotent stem
cells reprogramming [64,65] and are thought to con-
tribute to the low rate and frequency of the desired
state transition [20]. The advent of single-cell, high-
dimensional expression profiling [4,66–68] will
extend single-cell resolution measurements of gene
expression, which is currently the domain of low-dimen-
sional flow cytometry, by many dimensions, and will
enable us to explore new dimensions —mathematically
and metaphorically—of cell-fate dynamics.
4. PERSPECTIVE 3: FROM HOMOGENEITY TO
HETEROGENEITY
The discussion on hidden intermediate states in non-
monitored dimensions of the state space illustrates
not only the two perspectives, state space and high-
dimensionality, but already leads to the third neglected
perspective that is inseparably linked to the former
two: the non-genetic heterogeneity of a putatively uni-
form population of cells, notably, stem cells. This
‘heterogeneity’ is ‘non-genetic’ because it refers to
the fact that in a clonal (isogenic), hence nominally
uniform, population of cells tacitly assumed to be phe-
notypically identical to each other, the individual cells
in reality are quite distinct from each other (reviewed
in [28]). The population thus displays cell-to-cell
variability. Accordingly, the cells display cell-indivi-
duality—a phenomenon that has long been observed
in single-cell organisms [69–71]. If the property X
(e.g. abundance level of protein X ) is measured for
every cell j, one could plot the results as a histogram
that displays the number of cells observed as a function
of the value of X that each cell displays (figure 1b).
However, putting this familiar output format of flow
cytometry in the perspective of high-dimensional
state space, we now can more formally state that
such histograms represent the statistical distributions
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of the cells’ positions in state space projected to the
dimension of X. As mentioned above, if two variables
are measured, X and Y, then each cell can be rep-
resented as a dot on the two-dimensional XY-plane,
the projection of the state space in two dimensions.
A heterogeneous population is thus manifest by a clus-
ter of points that appear as a ‘cloud’ in this state space
[28] (figure 1a,b).

By contrast, measurement of expression of X by tra-
ditional biochemical analysis, such as Western blots, RT-
PCR and microarrays, provides only a singular value
that represents the physical average of the entire popu-
lation [28]. The key additional information offered by a
statistical distribution includes the variance of the distri-
bution (‘diversity’ of the population) and the presence
or absence of partitioning into discrete (‘quantized’) sub-
populations, as discussed above. The presence of two
subpopulations in a putatively homogeneous population,
manifest as two (often overlapping) ‘peaks’ in the histo-
gram, centred around two values, Xhigh and Xlow, would
go unnoticed in population averaging methods. While it
appears trivial that such a bimodal distribution indicates
the presence of two discretely distinct subpopulations,
as discussed in the previous section in detail, in the light
of the high-dimensional state space, a bimodal distri-
bution is highly indicative (but not proof) of the
presence of two possibly high-dimensional attractor
states—projected to the state space dimension of X
[57], so that each ‘peak’ may itself represent multiple
discrete subpopulations (figure 2).

‘Heterogeneity’ describes not only such discretely
distinct subpopulations (which we refer to as ‘macro-
heterogeneity’) but also can refer to a continuous
range of a varying property in a unimodal distribution
(‘micro-heterogeneity’) [28,72]. In fact, the two tails
of a single bell-shaped curve distribution consist of
cells that can be biologically distinct, notably in
terms of their priming (reversible pre-commitment)
to a particular fate. Intriguingly, even cells in the var-
ious intermediate regions of a uniformly looking
distribution could behave vastly differently because
of the ‘missed dimensions’, as discussed in the pre-
vious section. Cell sorting experiments with multi-
potent cells indicate that fractions of a distribution,
e.g. the tails of a one-dimensional histogram or sub-
regions of a cloud of points of the two-dimensional
state space (in a two colour flow cytometry) contain
cells with distinct proclivities to commit to various
lineages (reviewed in [28,72]). Thus, the dispersion
in state space of a heterogeneous population is tightly
associated with differential priming of multi-potent
stem or progenitor cells [61,73–76].

Heterogeneity of cell populations is also increas-
ingly appreciated in studies with new digital
microscopy techniques and computational image
analysis of cell cultures that integrate the information
of entire populations rather than view individual cells
as mere replicates of each other [76,77].

Awareness of cell population heterogeneity offers a
new dimension of biological exploration. The fact
that in flow cytometry measurements the values of xi

are ‘distributed around a mean’ (broad ‘peak’ in the
histogram) has for a long time been tacitly dismissed
as measurement noise by cell biologists. Then, in the
Phil. Trans. R. Soc. B (2011)
past decade, such broad dispersion of single-cell
measurement values has been interpreted as ‘gene-
expression noise’ by physical scientists [78,79]—an
interesting physico-chemical phenomenon that is
caused by the stochasticity (randomness) inherent in
the thermal nature of chemical reactions, which is not
‘averaged out’ when involving only a small number of
molecules. This is certainly the case, for instance, in
transcriptional initiation (where a few thousand copies
of a given transcription factor bind to just one or two
copies of its cognate responsive DNA motif in the
regulatory region that is accessible).

Evidently, the spread of the peak in cytometry
histograms does not simply reflect the measurement
error in the determination of X in individual cells
since such error contributes only approximately 10
per cent of the observed variance [61]. However, nor
is the spread a pure manifestation of elementary
chemical stochasticity—or gene-expression noise. We
have recently learned that reality is more complex.
Measurement of the dynamics of X in individual
cells or in population fractions has revealed that the
variance of X in the histograms is not due to fast tem-
poral fluctuations of X that are frozen in time in
histograms when the population snapshot for the his-
togram was taken. Instead, individual mammalian
cells have some memory of their individuality in X
that can last across several cell generations and only
slowly decays [61,80]. For instance, a cell that within
the heterogeneous population has extreme high levels
of X might maintain its ‘outlier’ status for quite a
while (days–weeks)—over a much longer time scale
than what would be expected from low-dimensional,
purely thermal (stochastic) fluctuations. But the pres-
ence of memory by definition is not consistent with
pure stochasticity, where events are not influenced by
the past. By contrast, the level of X of a given cell
appears to fluctuate rather slowly as a cell wanders ran-
domly and aimlessly in state space within the attractors
state, spending most time in the vicinity of the centre
of the attractor (mean value of X )—hence producing
a ‘peak’ there. Outliers with extreme values of X only
fully relax back to the mean values with considerable
delay. Thus, cells do not jump erratically from one
spot to another as one would expect if the spread is
governed by pure noise only. In other words, the
apparent ‘gene-expression noise’ manifest in broad
distributions of X in population snapshots is not
pure thermal noise but heavily constrained by the
complexity of the process of protein expression that
involves multiple layers of regulation and regulatory
inputs from the network.

Since the cloud in a flow cytometry dot-plot
output or the iconic ‘salt-and-pepper’ appearance in
microscopy images of the distribution of regulatory
factors in individual cells of early embryos [81–83],
which both epitomize non-genetic heterogeneity, rep-
resent snapshots in time, they do not permit the
distinction of slow fluctuations (or in the extreme
case, cell-to-cell variability of stable, i.e. time invariant
properties) from purely stochastic, rapid fluctuations
owing to gene-expression noise. Discerning between
these two scenarios will require knowing the rate at
which the individual points in the cloud move
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around (speed and trajectory) in state space. This can
be achieved by observation in real-time digital
microscopy of fluorescent reporters for the expression
of genes X of interest [84]. Knowledge of the average
persistence time of the expression status of key tran-
scription factors (autocorrelation time of fluctuation)
is important to address the question to what extent
the history (previous states in regard to other dimen-
sions that may have been influenced by external
signals) of an individual cell biases lineage choice
when otherwise no underlying pattern is visible for
fate commitment [85].

While fast fluctuations would be attributed to ther-
mal noise that is unconstrained except for a mean-
reverting force (owing to the attractor), the physical
basis for the relatively slow fluctuations of X in individ-
ual cells is currently debated [28]. Given the complex
high-dimensional gene-regulatory network that con-
strains the movement of the states and the multiple
layers and players that participate in the very process
of initiating a gene expression, including slow pro-
cesses, such as chromatin reorganization, it is not
surprising that the apparent noise is rich in structure,
stretching fluctuations into the time scales of long
enduring cell individuality.

This so-called ‘non-ergodicity’ [28] allows random
variability to carry biological significance, for it
grants sufficient time to random outliers with particu-
lar expression levels of a gene X to exert their
regulatory activity, leading to coherent genome-wide
fluctuations of entire network states as recently
observed [61,85]. Since the high-dimensional trajec-
tory of the genomic network is constrained, this may
explain the observed priming of stem cells for specific
fates as a function of their position in a multi-colour
flow cytometry dot plot (representing a low-dimen-
sional projection of the state space) because the
entire genome-wide state of a cell may swing
back and forth between state-space regions (in the
high-dimensional state space) that encode states
pre-committed for particular fates [86].
5. INTEGRATION AND CONCLUSION
In the three new views presented here, the elementary
properties of dynamical systems that underlie cell-fate
behaviours spring to eye. These three perspectives
are natural in the physical sciences. They are not con-
structed to explain a particular biological phenomenon
like many of the mechanistic, ad hoc explanations
in biology but instead help expose the fundamental
constraints rooted in the laws of physics of complex
dynamical systems. These constraints give rise to
biological phenomena, such as the instability of unde-
cided states or the stability of committed states. By
integrating the three new vistas into one, we arrive at
the following self-consistent model of development of
multi-cellularity [86] (figure 2).

Cell-type diversification starts with the totipotent
zygote that occupies a single point in the high-dimen-
sional state space of the genomic regulatory network
that governs development. Then, development of the
wide spectrum of cell types that provide the building
blocks of the organisms consists of both the
Phil. Trans. R. Soc. B (2011)
multiplication of cells and the diversification of cell
types. Thus, as the zygote divides, its daughter cells
and their progenies, if we think in state space rather
than physical space, represent points in state space
that multiply and swarm out from the initial point of
the zygotic state as their gene-expression profiles
change, primarily driven by gene-expression noise
but constrained by the trajectories that lead to attrac-
tors. This results in an uneven expansion of a cloud
of states in state space. Local fluctuations owing to
gene-expression noise generate micro-heterogeneity
represented by the size of individual clouds and the
partitioning of the state space into multiple clouds pro-
duces macro-heterogeneity, manifesting the cell-type
attractors [28].

This picture resembles the expansion of a gas of
molecules into the three-dimensional (physical)
space driven by thermal energy (entropy)—with the
formal differences that the cells also multiply in this
process—which accelerates the ‘space filling’ and that
they expand in the abstract state space, not in physical
space (figure 2). The very fundamental, essential
difference between gas expansion and development
in state space however, is that in the latter case, the
movement of particles (points) that represent cell
states is highly constraint, channelled towards the
local clouds representing attractors. The ensemble of
all cell states cannot simply uniformly fill a space as
one would expect of gas molecules. This unique van-
tage point tells us that the wonderful diversity of cell
types in a living organism is perhaps not achieved by
an active process but instead the result of the limitation
of ‘entropy’ maximization that would have filled the
entire gene-expression state space, if the constraints
owing to gene–gene-regulatory interactions did not
exist. Thus, the apparent high degree of ‘organization’
that we associate with complex living systems may
actually simply reflect the deficit, or frustration,
owing to internal constraints, of the noise-driven pro-
cess in maximizing (a kind of) ‘entropy’ that seeks to
realize all mathematically possible gene-expression
configurations. The diversity of cell types may thus
be, to paraphrase the biologist and philosopher
Stuart Kauffman, just a form of ‘order for free’, or
more bluntly, simply ‘inevitable’ [36]. On top of this
fundamental, inevitable and hence robust process,
everything else that is required to build a functioning
organism, such as the correct relative proportions of
cell types and their relative positions in the body as
well as the array of other mechanisms needed in
tissue morphogenesis, can in this view be attributed
to further constraints at the level of cell–cell com-
munication networks whose detailed design would
have been accomplishment by natural selection
during metazoan evolution. But the elementary pro-
cess of diversification of cell types in metazoans is
likely to be given by the physics of dynamical systems
and not to be fully credited to natural selection.

The three perspectives presented here introduce a
conceptual framework that helps explain the funda-
mental inevitability of stem cell features. But this is
more than a mere academic exercise. It is of course
still necessary to work out the molecular details of
the specific pathways that were faulted as not being
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explanatory in the opening of this paper. Knowledge of
the precise molecular pathway diagrams with specific
details is still indispensable for designing methods to
interfere with cell-fate regulation in order to steer
their development into a particular, useful state.
If characterization of specific pathway diagrams pro-
vides a road map, the study of the state space will
one day reveal the topography, exposing the valleys
in hidden dimensions and the possibly surmountable
hills between them. Such information on the structure
of the epigenetic landscape will be needed for harnes-
sing the natural forces and constraints that drive cell
state changes in order to reprogramme cell fates.

The author would like to thank the Canadian Institutes of
Health Research, the Natural Sciences and Engineering
Research Council of Canada as well as iCore (Alberta
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