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Summary
The extraordinary sensitivity and specificity of T cells for their cognate antigen make them a
highly attractive cancer therapeutic. However, the rarity of tumor-reactive T cells in cancer
patients, the difficulty isolating them in sufficient numbers for adoptive immunotherapy, and the
unpredictable persistence of transferred cells have been significant obstacles to broad application.
Technologies that enable genetic modification of T cells have been refined and are being used to
redirect the specificity of T cells to tumor antigens. An issue the field is now grappling with is
how the diverse phenotypic and functional heterogeneity in T cells that could potentially be
genetically modified can be capitalized upon to enhance the efficacy, safety, and reproducibility of
cancer immunotherapy.

Introduction
Gene transfer to redirect the specificity of any human T lymphocyte is a rapidly developing
area in cancer immunotherapy. This approach relies on introducing genes into T cells that
encode T cell receptors (TCR) specific for a tumor associated antigen, or chimeric antigen
receptors (CAR) that typically consist of a single chain Fv constructed from a monoclonal
antibody specific for a tumor cell surface molecule and linked to one or more T cell
signaling moieties [1–3]. The initial clinical applications of adoptive immunotherapy with
genetically retargeted T cells have primarily employed unselected T cells from the patient’s
peripheral blood for gene transfer, which ignores the considerable phenotypic diversity of T
lymphocytes that have been programmed for distinct functions by previous experience [4–
7]. Here, we will review the strategies being used to engineer therapeutic T cells, and
discuss how the phenotypic and functional diversity of human CD8+ T cells may provide
opportunities to enhance cancer immunotherapy with genetically modified cells.
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Genetic modification of T cells to confer tumor specificity
The potential for adoptively transferred T cells to eradicate human malignancies is
illustrated by the graft versus leukemia effect of allogeneic T cells administered as part of a
stem cell transplant [8], and by the dramatic tumor regressions that can occur in melanoma
patients who receive autologous T cells derived from the tumor infiltrate and expanded ex
vivo prior to transfer [9]. Although culture methods have improved, it is still not possible to
rapidly derive tumor-reactive T cells from the blood or tumor infiltrates of most patients
with cancer. Even when T cells are isolated from the endogenous repertoire, expanded, and
adoptively transferred, their ability to persist and mediate antitumor activity in vivo has been
unpredictable [10]. An approach to overcome the low frequency of tumor-reactive T cells in
patients and potentially ensure predictable behavior after adoptive transfer is to redirect the
specificity of T cells using gene insertion (Figure 1). Vector systems to deliver transgenes
into primary human T cells have been developed and the advantages and disadvantages of
the various gene delivery methods have been reviewed [11,12].

T cell receptor gene transfer
Tumor antigens are predominantly derived from non-mutated self-proteins that are either
cell lineage specific, aberrantly expressed, or overexpressed in tumor cells; and most T cells
that express TCRs with high affinity for such self-determinants are eliminated by thymic
selection. Although rare, moderate and high avidity T cells specific for self-antigens can
occasionally be cloned from patients or healthy individuals. These T cells provide a source
of TCR α and β genes that can be used de novo or after mutation to increase affinity, as “off
the shelf” reagents that confer tumor reactivity to T cells from any patient with the
appropriate HLA restricting allele. TCR genes have been cloned that redirect specificity to
several tumor antigens including MART-1, gp-100, WT-1, NY-ESO-1, and CEA [13–17].

A problem with TCR gene transfer is mispairing of the introduced TCR chains with the
endogenous TCR chains, creating potentially deleterious reactivity with normal host tissues
[18]. Such off-target toxicity has not been definitively observed in the small clinical trials
that have been performed thus far [19,20], however studies in animal models have clearly
demonstrated the potential for toxicity resulting from acquired self reactivity as a
consequence of mispairing in TCR gene-modified T cells [21]. The potential for toxicity can
be minimized by modifications to the design of TCR transgenes that promote appropriate
pairing of the introduced chains [18], and by the selection of defined T cells as recipients of
TCR gene transfer, such as TCRγδ cells that lack endogenous αβ chains, or virus-specific T
cells that utilize a very limited endogenous TCR repertoire [21,22].

Chimeric antigen receptor gene transfer
Redirecting T cells to recognize tumor antigens through TCR gene transfer is inherently
constrained by the requirement for MHC restricted peptide presentation by tumor cells.
Chimeric non-MHC restricted artificial receptors that recognize tumor cell surface
molecules have been developed to overcome this limitation. A CAR is typically comprised
of a fusion gene that encodes monoclonal antibody-derived single chain variable fragments
(scFv), consisting of heavy (VH) and light (VL) chains joined by a flexible linker, and then
fused through a transmembrane domain to cytoplasmic signaling moieties consisting of
CD3ζ alone, or CD3ζ combined with activation domains from costimulatory molecules [2].
As with TCRs, CARs have been constructed for many tumor-associated molecules including
CD19, CD20, EGFR, Her2neu, GD2, PSMA, CAIX and ROR1 [23–29].
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Heterogeneity of peripheral blood CD8+ T cells
Several clinical trials in which polyclonal T cells are obtained from the peripheral blood,
genetically modified with either a TCR or a CAR, expanded, and re-infused into the patient
are in progress. Impressive antitumor activity has been observed in some trials, but
inconsistent T cell persistence and serious toxicities that are often not fully explained have
also been reported [17,30,31]. A factor that is emerging as an important variable is the
potential for vast differences in the composition of T cell products if unselected T cells are
used for genetic modification. For brevity, this review will focus on heterogeneity in human
CD8+ T cell subsets and the implications for deriving genetically modified T cells for
adoptive therapy, however the issues discussed are equally germane for redirecting CD4+ T
cells for tumor reactivity.

A variety of phenotypic and functional subsets of CD8+ T cells are present in peripheral
blood, and this heterogeneity ensures appropriate responses to neo-antigens and to antigens
to which the host has been previously exposed (Figure 2). CD8+ T cells are broadly divided
into CD45RA+ antigen inexperienced naïve T cells (TN) that contain the greatest diversity of
endogenous T cell receptors [32], and express CD62L+ and CCR7+ to enable their transit
through lymph nodes where they survey for foreign antigens; and CD45RO+ memory T cells
that have clonally expanded in response to prior antigen encounter, and can be subdivided
into CD62L+ central memory (TCM) and effector memory (TEM) subsets [33]. In humans,
the CD45RO TCM and TEM subsets have recently been shown to contain a major population
of distinct CD161hi, IL-18Rαhi T cells that remain to be fully characterized but differ
significantly in functional properties from their CD161lo counterparts [35–37]. A subset of
memory T cells with a CD44loCD62LhiSca-1hiCD122hi bcl-2hi phenotype that is
intermediate between that naïve and memory cells was identified in a murine model of graft
versus host disease (GVHD) and suggested to represent a “memory stem cell” based on the
ability to self-renew, and give rise to effector (TE), and TCM and TEM subsets [34]. A
counterpart for this memory CD8+ T cell has not been reported in viral infections in mice or
in humans, and whether specialized CD8+ T cells with stem cell qualities develop after
antigen exposure remains unproven.

An important consideration for genetic modification of T cells is that the proportion of each
of the TN, and CD161hi and CD161lo TEM and TCM subsets in the blood of normal
individuals and cancer patients can vary dramatically depending on age, pathogen exposure,
and prior chemotherapy [5,35,37]. This heterogeneity poses a potential variable that could
impact safety and efficacy of cancer immunotherapy if polyclonal unselected cells derived
from the blood are genetically modified with TCR or CAR genes. Indeed, recent data
suggests that depending on the clinical situation it may prove valuable or even essential to
select T cells for therapy from a defined subset, or of singular antigen specificity.

Properties of effector cells derived from CD8+ TCM and TEM
The longevity of T cell memory is a cardinal feature of adaptive immunity, and the cell
intrinsic and extrinsic mechanisms that determine memory cell differentiation and survival
continue to be intensively studied [38,39]. Adoptive transfer studies in humans demonstrated
that virus-specific TE cells could be isolated and expanded from the memory pool of
immune hematopoietic stem cell donors, expanded in vitro as clones or polyclonal
populations and transferred to transplant recipients to restore durable immunity [40,41].
However, whether TE cells from the TCM or TEM subsets contributed more or less to
reconstitution was unknown.

Studies using gene-marked virus-specific TE cells in non-human primates have now
demonstrated that TE cells derived from the CD62L+ TCM subset rather than the TEM subset
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possess a markedly superior capacity to survive in vivo, revert to a memory phenotype, and
establish long-lived immunity that is capable of responding to antigen challenge [42,43]. In
these studies, the transferred TE cells were clonally derived and had uniformly upregulated
granzyme B and perforin, and downregulated CD62L, CCR-7, CD127 and CD28. Despite
the similarities in differentiation markers at the time of infusion, only TE cells derived from
TCM reacquired memory markers and established reservoirs of CD62L+ CCR-7+ CD28+

TCM that largely resided in lymph nodes, and CD62L− TEM in the blood and bone marrow.
This result suggested that TCM-derived TE retain a cell-intrinsic capacity to revert to a
quiescent memory cell through cloning, effector differentiation, and long-term culture [42].
A similar analysis of polyclonal human TCM- and TEM-derived TE cells has been performed
using NOD/SCID/γc−/− (NSG) mice as recipients of the transferred T cells. Here again,
TCM-derived TE exhibited vastly superior engraftment and antitumor activity [44].
Moreover, analysis of the TCR Vβ repertoire of persisting human T cells in the NSG mice
suggest that longevity is a general property of TCM-derived TE, and not confined to a rare
subset of cells [44].

Gene transfer into virus-specific memory T cells
While animal model data has identified superior in vivo persistence of TCM-derived TE, it is
premature to conclude that virus-specific or polyclonal CD8+ TCM should be selected for
introducing tumor-targeting receptors for adoptive therapy in all circumstances. However,
this strategy may improve safety and be necessary in some clinical settings. For example,
genetic modification of unselected T cells from an allogeneic stem cell donor with a TCR or
CAR to direct specificity to leukemia and augment the graft versus leukemia effect after
allogeneic stem cell transplant is likely to be complicated by GVHD mediated by T cells in
the product that have an alloreactive endogenous TCR. Donor CMV and EBV-specific T
cells do not cause GVHD in the allogeneic transplant setting, thus selecting such virus-
specific cells from TCM to genetically modify with a CAR or TCR to treat leukemia should
improve safety. As previously discussed, selecting virus-specific T cells for TCR gene
transfer will also limit the endogenous TCR repertoire available for cross-pairing of the
introduced TCR. Furthermore, stimulation through the endogenous virus-specific TCR
during episodes of viral reactivation or by vaccination could promote selective activation,
survival and expansion of the transferred cells, and potentially overcome tolerance
mechanisms [45].

Modifying virus-specific memory cells rather than unselected T cells may also have
advantages for autologous cell therapy. In a clinical trial performed by Brenner et al, eleven
neuroblastoma patients were treated with cell products that contained both EBV-specific T
cells and anti-CD3 activated T cells that were retrovirally transduced with a GD2-specific
CAR [46]. Sequence differences in the vectors used to transduce EBV-specific or αCD3-
stimulated T cell preparations enabled measurement of persistence of the two products,
which suggested that EBV-specific CAR-transduced T cells were better equipped to survive
after transfer.

CD161hi CD8+ memory cells
Several recent papers have shed light on the function of a specialized subset of CD45RO+

CD8+ memory cells characterized by high levels of CD161 expression. In the course of
studies analyzing chemotherapy resistance of human T cells, we identified CD8+ T cells that
rapidly effluxed fluorescent dyes based on high levels of ABC transporter activity and found
that these effluxing cells were distinguished by the expression of high levels of CD161 and
IL-18Rα [35]. CD161hi CD8+ T cells represent a significant fraction of the total circulating
CD8+ memory pool in normal donors, and are characterized by uniform expression of CD28
and CD27, and high levels of bcl-2 and bcl-xl. In a series of elegant papers, Lantz and
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colleagues have shown that CD161hi CD8+ T cells comprise an innate-like subset that
expresses a semi-invariant TCR Vα7.2-Jα33 that confers specificity for undefined bacterial
ligands presented by the MHC class Ib MR1 molecule [37,47,48]. CD161hi cells also
express tissue homing integrins and preferentially localize to liver and gastrointestinal tract
[37]. Analysis of the functional properties of this subset of CD8+ T cells remains incomplete
but in addition to IFN-γ, CD161hi CD8+ T cells produce IL17 after PMA/ionomycin
stimulation [35–37]. Because these T cells have enhanced resistance to certain
chemotherapy drugs, they may be further enriched in the blood of cancer patients. Thus, if
peripheral blood T cells from cancer patients are genetically modified in bulk, the
expression of tumor-targeting receptor in these peculiar but prevalent memory T cells is
likely to occur to some degree, with uncertain clinical consequences. Infiltration of normal
colon with CD8+ T cells and serious colitis was observed in 3/3 patients treated with
autologous T cells modified with a CEA-specific TCR for metastatic colorectal cancer [17].
This was presumed to be due to recognition of CEA on normal colonic cells by the
transferred gene modified cells raising the interesting possibility that the preferential gut-
homing properties of certain subsets of CD8+ T cells might contribute to toxicity.

CD8+ naïve T cells
As noted above, TN have clear disadvantages for immunotherapy in the allogeneic stem cell
transplant setting because this subset has been shown to be primarily responsible for GVHD
[49]. However, TN exhibit many traits that could be advantageous when genetically
modifying autologous T cells for adoptive therapy. Elegant cell transfer studies in mice have
indicated that a single TN can give rise to TE, TCM, and TEM cells, illustrating both the
proliferative and differentiation potential of this subset [50]. In a murine TCR transgenic
model, superior tumor elimination was demonstrated after transfer of engineered TE derived
from TN compared to those derived from TCM and TEM, and this was linked to less
upregulation of KLRG-1, which is a marker of a terminal effector cell [51]. The properties
of human TE cells derived from TN, TCM, and TEM and modified with a tumor-specific TCR
have thus far only been compared in vitro. These studies demonstrated that TN cells were
easily transduced, and the derived TE cells exhibited greater proliferation without acquiring
markers of late effector differentiation, and retained longer telomeres -- traits that would be
preferred in therapeutic T cell products [52]. However, in the absence of in vivo
experiments, it remains uncertain whether TN that are expanded and differentiated in vitro
will have the cell-intrinsic properties that have been convincingly demonstrated to confer
long-term survival of adoptively transferred CMV and EBV-specific TE cells. The answer to
this critical question will require carefully designed clinical adoptive transfer studies.

A potential advantage of TN is their plasticity, which could enable modifications of culture
conditions to direct cell fate decisions. For example, an in vitro counterpart of the memory
stem cell identified in murine GVHD studies has been generated by chemical augmentation
of Wnt signaling during in vitro priming of murine TCR transgenic CD8+ T cells, which led
to upregulation of Tcf-1 and Lef-1 and arrested the acquisition of effector function [53].
After adoptive transfer, these T cells exhibited enhanced in vivo recall responses and
antitumor activity in murine models compared with TCM and TEM. In vivo pharmacologic
manipulation of mTOR activation and fatty acid metabolism has also been demonstrated to
augment the generation of memory T cells during priming in animal models [54,55]. These
results suggest that altering signaling pathways involved in directing cell fate decisions
might be used in vitro during genetic modification to derive T cells with selected qualities
that promote in vivo persistence and function.
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Conclusions
The past decade has seen an apparent coming of age of T cell adoptive immunotherapy for
cancer, due in large part to the success in melanoma where the use of lymphodepleting
therapy before T cell transfer led to improvements in the in vivo persistence of transferred
cells and therapeutic efficacy, and to advances in T cell genetic engineering. Our
understanding of the fundamental properties of heterogeneous subsets of T cells is also
evolving and suggests that selection of defined populations for gene modification may be
necessary to capitalize fully on the opportunities for adoptive immunotherapy for cancer.
Clinical investigation of distinct cell populations will require the development of improved
cell sorting and selection technologies that enable cell manipulation without compromising
function, and current approaches have serious limitations in this regard. It is also imperative
that future clinical trials incorporate detailed characterization of the cell products that are
infused and sophisticated monitoring of their fate, migration and function in vivo, to provide
insight into the basis for therapeutic success and toxicity, and direct subsequent
investigation.
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Figure 1. Redirecting T cell specificity by insertion of genes encoding a TCR or CAR
Peripheral blood T cells (or selected subsets) are activated and exposed to a gene delivery
vector to introduce a tumor targeting T cell receptor (TCR) or chimeric antigen receptor
(CAR). In the case of TCR introduction, the possibility of mispairing with endogenous α and
β chains leads to the potential for four receptors to be expressed on the transduced cell.
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Figure 2. Surface markers and functional attributes of major subsets of CD8+ T cells in
peripheral blood
CD8+ T cells can be identified as naïve or memory based on the acquisition of the CD45RO
isoform on memory cells. Memory cells can then be broadly subdivided into CD161hi and
CD161lo subsets. Within the CD161lo pool of memory cells, the expression of CD62L
distinguishes functionally disparate central (TCM) and effector memory (TEM) subsets,
although it should be noted that there are cells with an overlapping phenotype. The CD161hi

memory cells are predominantly CD62L− and differ in specificity and function from
CD161lo memory cells. The functional properties of the small subset of CD62L+CD161hi

cells have not been separately evaluated.
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