

Off-axis quantitative phase imaging processing

using CUDA: toward real-time applications

Hoa Pham,
1,*

 Huafeng Ding,
1
 Nahil Sobh,

2
 Minh Do,

1
 Sanjay Patel,

1
 and

Gabriel Popescu
1

1Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

61801, USA, and Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA

2National Center for Supercomputing Applications, Department of Civil and Environmental Engineering, and

Department of Mechanical Engineering and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
61801, USA

*hoapham2@illinois.edu

Abstract: We demonstrate real time off-axis Quantitative Phase Imaging

(QPI) using a phase reconstruction algorithm based on NVIDIA’s CUDA

programming model. The phase unwrapping component is based on

Goldstein’s algorithm. By mapping the process of extracting phase

information and unwrapping to GPU, we are able to speed up the whole

procedure by more than 18.8× with respect to CPU processing and

ultimately achieve video rate for mega-pixel images. Our CUDA

implementation also supports processing of multiple images

simultaneously. This enables our imaging system to support high speed,

high throughput, and real-time image acquisition and visualization.

© 2011 Optical Society of America

OCIS codes: (180.3170) Interference microscopy; (170.6920) Time-resolved imaging;

(100.5070) Phase retrieval; (100.5088) Phase unwrapping.

References and links

1. G. Popescu, in Methods in Cell Biology, B. P. Jena, ed. (Academic Press, San Diego, 2008), pp. 87–115.

2. C. Depeursinge, “Digital holography applied to microscopy,” in Digital Holography and Three-Dimensional

Display, T.-C. Poon, ed. (Springer, 2006), p. 98.
3. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley,

New York, 1998).

4. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure
and dynamics,” Opt. Lett. 31(6), 775–777 (2006).

5. D. Kirk and W.-m. Hwu, Programming Massively Parallel Processors Hands-on With CUDA (Morgan

Kaufmann, Burlington, MA, 2010).
6. P. A. Karasev, D. P. Campbell, and M. A. Richards, “Obtaining a 35x speedup in 2d phase unwrapping using

commodity graphics processors,” in 2007 IEEE Radar Conference (IEEE, 2007), pp. 574–578.

7. P. Mistry, S. Braganza, D. Kaeli, and M. Leeser, Accelerating Phase Unwrapping and Affine Transformations
for Optical Quadrature Microscopy Using CUDA (ACM, Washington, D.C., 2009), pp. 28–37.

8. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier

phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
9. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in

transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).

10. Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and
G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci.

U.S.A. 107(15), 6731–6736 (2010).

11. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index
maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl.

Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).

12. H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of
inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).

13. NVIDIA, NVIDIA CUFFT Library.

14. NVIDIA, NVIDIA CUDA Programming Guide 3.2 (2010).

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1781

1. Introduction

In the past decade, quantitative phase imaging (QPI) has attracted increasing scientific interest

in the area of cell and tissue imaging as it can study structure and dynamics with nanoscale

sensitivity and without exogenous contrast agents [1,2]. Typically, in order to obtain the

pathlength map from an acquired interferogram image, QPI involves off-line post processing.

In particular, off-axis methods require an unwrapping algorithm to remove the high-frequency

spatial modulation. Phase unwrapping is the process of reconstructing the true phase

information from the measured wrapped values which are between –π to + π. High

throughput, high speed, real-time phase unwrapping is highly desirable in many applications

including applied physics and biomedicine. However, to the best of our knowledge, currently

there are no phase unwrapping algorithms that allow QPI operation at video rates (i.e., ~30

frames/s).

There are two main types of phase unwrapping algorithms: path-following algorithms and

the minimum-norm algorithms [3]. We chose Goldstein’s branch cut method, which is a

classic path-following algorithm and allows for high throughput. Although Goldstein’s

algorithm is the fastest phase unwrapping algorithm, its implementation in sequential code is

still slow and far from meeting the real-time requirements. For example, for our diffraction

phase microscope [4], C-code Goldstein’s algorithm takes about 150 milliseconds to unwrap a

1024x1024 phase image, in addition to about 300 milliseconds to extract phase image from

the raw microscopy data. The total processing time is about half a second which is much

larger than our 30 ms target.

In the CUDA programming environment, graphics processing units (GPUs) can be

regarded as computation devices operating as coprocessors to the central processing unit

(CPU) [5]. The idea is to process computationally-intensive parts in parallel by using multiple

computation units. The CUDA architecture consists of hundreds of processor cores that

operate together to process different segments of the data set in the application. Previous work

on using GPUs for 2D phase unwrapping include Karasev et al [6] and Mistry et al [7]. The

former implemented a weighted least squares algorithm for Interferometric Synthetic

Aperture Radar (IFSAR) data and the latter implemented a Minimum L
p
 norm phase unwrap

algorithm for optical quadrature microscopy system. However, due to the computational

complexity of minimum norm algorithms, the processing time of these algorithms is still too

large and far from satisfying real-time requirements.

In this paper, we develop an unwrapping algorithm based on Goldstein’s algorithm using

CUDA to achieve real-time requirements. The reasons to choose Goldstein’s algorithm are

twofold. First, it is the fastest algorithm and can potentially be improved with CUDA

implementation to achieve real-time requirements. Secondly, it performs effectively and

satisfactorily for our targeted QPI system. The rest of the paper is organized as follow:

Section 2 briefly introduces background information on our off-axis QPI system. Section 3

describes steps involved in the phase reconstruction process of the QPI imaging method.

Section 4 illustrates our proposed CUDA-based phase unwrapping algorithm. In section 5, we

present performance results of the proposed algorithm. Section 6 includes the conclusion and

our future works. Finally, the Appendix provides information about CUDA GPU architecture,

a summary of Goldstein’s algorithm and details of our CUDA implementation of residue

identification algorithm.

2. Off-axis QPI

Off-axis interferometry takes advantage of the spatial phase modulation introduced by the

angularly shifted (tilted) reference plane wave and the spatially-resolved measurement

allowed by a 2D detector array such as a CCD (Fig. 1). Essentially off-axis interferometry is

the spatial equivalent of heterodyne detection in the time domain. Compared to phase-shifting

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1782

methods (see, e.g., [8]), off axis-interferometry allows for single shot measurements and, thus,

fast acquisition rates.

+1

RL

VPS

G
Inverted

microscope

CCD

L1 L2

SFIP

f1 f2f1 f2

0

Fig. 1. Diffraction phase microscope: VPS virtual point source, RL relay lens, G grating, IP
image plane, SF spatial filter, L1-2 lenses, CCD charged coupled device.

The intensity distribution of the interferogram at the detector plane takes the form (in the

absence of noise)

        
2 2

, , 2 , cos , .i r r iI x y U x y U U U x y k x x y          (1)

The goal is to isolate the term  cos ,k x x y     from the measurement and then

numerically compute its sine counterpart via a Hilbert transform. In order to achieve this, iU

and rU can be independently measured by blocking one beam of the interferometer and

measuring the resulting intensity of the other. As a result, the cosine term is obtained by itself,

which can now be interpreted as the real part of a (spatial) complex analytic signal.

The corresponding imaginary part is further obtained via a Hilbert transform, as [9]

  
 cos ' ',

sin , ,
'

k x x y
k x x y P dx

x x




    
       (2)

where P indicates the principle value integral. Finally, the argument of the trigonometric

functions is obtained uniquely as

      , arg cos , sin .x y kx kx kx           (3)

Importantly, the 2D phase map can be retrieved via a single CCD exposure. The main

challenge is to produce a stable interferogram, i.e., maintain a stable phase relationship

between the reference and the sample field. Diffraction phase microscopy (DPM) [4] is a QPI

technique that combines the single shot feature of off-axis methods with the stability of

common path interferometry and thus, renders highly sensitive phase images with high

throughput. With these features, recently DPM has enabled new biomedical studies [10–12].

Our DPM experimental setup is shown in Fig. 1. The second harmonic radiation of a

Nd:YAG laser (λ = 532nm) is used as illumination for an inverted microscope, which

produces the magnified image of the sample at the output port. The microscope image appears

to be illuminated by a virtual source point VPS. A relay lens RL collimates the light

originating at VPS and replicates the microscope image at the plane IP. A diffraction phase

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1783

grating G (hence “diffraction phase microscopy”) is placed at this image plane and generates

multiple diffraction orders containing full spatial information about the image. We select two

diffraction orders (0th and 1st) that can be further used as reference and sample fields in a

very compact Mach-Zehnder interferometer. In order to accomplish this, a standard spatial

filtering lens system, L1-L2, is used to select the two diffraction orders and generate the final

interferogram at the CCD plane. The 0th order beam is low-pass filtered using the spatial

filter SF positioned in the Fourier plane of L1, such that at the CCD plane it approaches a

uniform field. The spatial filter allows passing the entire frequency content of the 1st

diffraction order beam and blocks all the other orders. The 1st order is thus the imaging field

and the 0th order plays the role of the reference field. The two beams traverse the same

optical components, i.e. they propagate along a common optical path, thus significantly

reduces the longitudinal phase noise.

3. Phase reconstruction

In this section, we describe the steps involved in the phase reconstruction process in off-axis

QPI systems. Before the unwrapping process can be started, phase information needs to be

extracted from interferograms captured from the cameras. Figure 2 illustrates the phase

reconstruction procedure in QPI system.

Phase extraction module

Goldstein’s phase unwrapping

module

2D Fourier Transform

FFT shift

Filter out the DC component

Inverse Fourier Transform

Circular shifting

Filter to get phase information

Compute wrapped phase

Locate phase residues

Generate branch cuts

Path-integrate around branch cuts

STOP

START

Phase slope subtraction

Fig. 2. Phase reconstruction in QPI system

3.1. Phase extraction from interferograms

This module is to extract the phase information from the interferograms (Fig. 3a). The Hilbert

transform of a function [Eq. (2)] is equivalent with the following combination: Fourier

transform to frequency domain, followed by multiplication by a step function in the frequency

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1784

domain and inverse Fourier transform to real space. First, an image captured from the cameras

is transformed to the spatial frequency domain using two-dimensional Fourier transform and

then shifted to move the zero-frequency component to the center of the image. This shifting

basically swaps the first quadrant with the third and the second quadrant with the fourth. The

power spectrum of the shifted image, as illustrated in Fig. 3b, contains three peaks with the

middle one located at the center of the image containing the DC component (the fringes of the

interferogram) and the other two first-order peaks contain the same information about the

phase. In the next step, we will need to find the coordinates locating one of these two peaks.

These coordinates will be used to design filters to remove the DC component as well as to

extract the phase information of the image. The circular shifting step is to shift the first-order

peak to the center of the image, which will then be extracted in the next step. Finally, we

apply inverse FFT and compute the phase values using the arg function.

3.2. Phase Unwrapping

The phase of interest, φ, is wrapped to the range (-π, π] such that measured function is:

      2 ,i iki    (4)

where k(i) is an integer such that      and i is the array index. The phase unwrapping

problem is to find an estimate ()i for the actual phase φ(i) from the measured ψ(i).

In 1D, assuming that the true phase has local gradient less than π radians, the wrapped

version of the image can be unwrapped by the following Itol’s method [3]:

Step 1: Compute the phase differences:    1 ()D i i i    , for i = 0,…, N-2, with N

the length of the array.

Step 2: Compute the wrapped phase differences: () arctan{sin (),cos ()}i D i D i  , for I =

0,…, N-2.

Step 3: Initialize the first unwrapped value:  0 (0)  .

Step 4: Unwrap by summing the wrapped phase differences:    1 Δ(1)i i i     , for

I = 0,…, N-2.

Phase unwrapping becomes much more complicated in the 2D space. When noise is

present, phase gradients may be greater than π causing the presence of residues and leading to

image corruption.

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1785

(a) Interferogram (b) Power spectrum

Fig. 3. Interferogram of a red blood cell (a) and its power spectrum (b)

A pixel is called a residue if the integral over a closed four pixel loop is not zero. We have

the following residue theorem [3] for two-dimensional unwrapping:

   2 ,q   r dr (5)

where q is the total residue charges.

Therefore, if the residue charges are balanced by connecting residues of opposite charges

with branch cuts, the unwrapping process gives consistent results along any path which does

not cross branch cuts. We use Goldstein’s algorithm for phase unwrapping. Details of

Goldstein’s algorithm are provided in Appendix B.

The last step in the algorithm is to subtract the horizontal phase slope from the image to

calibrate the tilting of the specimen plane. We first use least square fitting to find the

coefficients of the plane representing the slope of the tilting. This step is very computational.

Fortunately, these tilting coefficients only need to be computed for the first image during one

measurement. For the successive images, we can use the same coefficients to subtract the

tilting plane point by point since it does not change during one measurement.

4. CUDA implementation

In this section, we present the implementation of the phase reconstruction algorithm on GPU.

To further utilize the GPU power, we developed a program that can process multiple images

simultaneously. This will be useful for streaming-type applications.

4.1. Phase extraction module

The process of extracting phase information from interferogram images includes Fourier

transforms (one for forward and one for inverse direction), building the filters, point-wise

matrix multiplications (for filtering), shifting of matrix entries and computing the argument of

the complex number of every pixel value of the image. All of these steps are quite

computationally intensive in sequential C code and can be implemented in CUDA very

efficiently.

In QPI, since the coordinates of the first-order maxima and thus the filters remain the

same for one measurement, we only need to find these coordinates and compute the filters

once for the first image and use those computed filters to process successive images.

For Fourier transforms, we use the CUFFT library developed by NVIDIA [13]. The

CUFFT library provides functions to rapidly compute 1D, 2D and 3D Fourier transforms in

CUDA C. The filtering part is just point-wise matrix multiplication in the frequency domain

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1786

and very straightforward for parallel implementation since there are no dependencies between

data points. This is implemented using a thread-per-pixel model which assigns a thread to

compute for each pixel of the image. Likewise, FFT shifting swaps the first with the third

quadrants and the second with the fourth quadrants of the image, and thus is highly parallel

and straightforward to be implemented in CUDA. Each thread will be responsible for

swapping one pair of pixels from the first and the third quadrants and one pair of pixels from

the second and the fourth quadrants.

In the circular shifting step, we need to circularly shift all the columns and then rows of

pixels by some shift strides. The shift strides in vertical and horizontal directions of the image

are determined by the coordinates of the first-order peak in the power spectrum as mentioned

in section 3.1. We first copy all the pixel values in the image array to a buffer array and then

each thread copies a pixel value in the buffer array to a corresponding shifted pixel in the

original image array. Finally, the last step is to compute the wrapped phase value at each pixel

by using arctangent function. This computation is also very straightforward for parallelization

and again each thread computes the phase value for one pixel. These values are stored in an

array, called a phase array.

For all the steps in this module, we use a grid of 16 × 16 thread blocks. The number of

block is determined by the size of the image and the number of images we want to process

simultaneously.

4.2. Residue identification

Residue identification is done based on a pixel by pixel basis. A pixel is a positive (negative)

residue if the integral over a closed four pixel loop is greater (smaller) than zero. Therefore, it

is also straightforward for parallelization; each thread computes an integral over a closed four

pixel loop to decide if the pixel top left corner of the loop is a residue or not. This information

is stored in an array of byte type, called bitflag array. Further, for each image we use one

integer-typed variable to store the number of residues and one array to store positions of those

residues. This information is for later use in the branch cut placement step. Details of bitflag

structure and residue identification algorithm are discussed in Appendix C.

4.3. Branch cut placement

The branch cut algorithm includes processes of enlarging and searching over a search box on

the image and the charge is cumulatively computed. This process requires information about

other residues it encounters during the search, such as whether a residue is branch cut pixel or

it has already been connected to some other residues, etc. Thus, this process cannot be

parallelized for CUDA implementation. One way to solve this problem is to implement this

part in the host code. However, in order to do this, we have to copy the data from the GPU

device’s memory to the host and then copy it from the host back to the device after the branch

cut placement has been done, which introduces a significant time delay.

In order to avoid this back and forth copying, we implement this step in CUDA by using

one thread to process the branch cuts for each image. Instead of scanning over the whole

image as in the original Goldstein’s algorithm, we only scan the residue lists stored in the

residue identification step. This way of implementation may be computationally intensive if

the number of residues is large, resulting in longer running time compared to the

implementation of Goldstein’s branch cut algorithm in the host code. For our targeted

applications in optical phase imaging, the number of residues is often small and this

implementation fits well and indeed performs much better than the host code one.

4.4. Unwrapping around branch cuts

This step is also difficult to be parallelized, since unwrapping a pixel requires that one of its

neighbors has been already unwrapped. The most direct way to do this in CUDA is that each

thread performs the computation for one pixel by first checking the pixel’s neighbors and then

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1787

unwrapping the pixel if one of the neighbors is unwrapped. After that, all the threads must be

synchronized to update the pixels’ status before repeating the process of checking and

unwrapping. This process stops when all the pixels are unwrapped. However, we know that

only threads in the same block can cooperate, and the maximum number of threads per block

supported by existing devices is 1024, limiting us to very small images. Furthermore, each

iteration needs to read data of the neighboring pixels, thus when the size of the image gets

larger, this process may become computationally intensive due to repeated memory reading.

An alternative way is to use each thread to unwrap one column of the image and scan

through pixels in each column. If any of a pixel’s neighbors is flagged as unwrapped, that

pixel will be unwrapped and then flagged as such. The process will be repeated until all

possible pixels are unwrapped. However, this process requires data from four neighbors for

each pixel. This causes large demand on global memory access and may slow down the

program. Instead, we choose to change the direction of scanning after each scan and in each

scan, we only check the previous pixel in the scanning direction to see if it is flagged as

unwrapped. Specifically, we use one thread to unwrap each row or column of the image. First,

we scan the image from top to bottom, then from the left to the right, then from bottom to top

Yes

No

All pixels in an

isolated area were

unwrapped?

No

All pixels were

unwrapped?

Count = # block

pixels?

No

Yes

Yes

Count = # block

pixels?

Count = # block

pixels?

Wrapped pixels

remain?

Yes

Yes

Yes

No

No
No

Start

Stop

Unwrap the

initial window

Initialize one pixel in

new area

Unwrap leftward

Update count

Unwrap upward

Update count

Unwrap rightward

Update count

Unwrap downward

Update count

(# unwrapped pixels)

Fig. 4. Flow chart of unwrapping algorithm

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1788

and then from right to left. The scanning continues until no more pixels can be unwrapped.

Then, either all the pixels have been unwrapped or there is an isolated region in the image.

For each isolated region, we first initialize a pixel in the region and repeat the above process.

We now discuss in more detail our unwrapping algorithm. We first unwrap pixels in a

small window of pixels at the center of the image by repeating the process of checking and

unwrapping as mentioned above. In our implementation, we choose an initial window of size

of 32 × 32 pixels. After the initial window has been unwrapped, we divide the image into four

regions; each region will be unwrapped by a block of threads. In each block, we use two loops

of scanning and changing scanning directions as described above. The inner loop is to process

pixels in one isolated area and the outer loop is to handle all isolated areas. After each

scanning, if the number of unwrapped pixels equals the total number of pixels in the block,

the scanning process stops. Figure 4 presents a flow chart of the unwrapping algorithm.

In the last step, we need to subtract the phase slope from the image. As mentioned in

Section 3.2, once the tilting coefficients are computed for the first image, we can use those

coefficients to calibrate for the tilting plane from the successive images. Since this tilting

plane subtraction procedure can be done point by point, it can be implemented very efficiently

in CUDA by letting one thread to compute the adjusted phase value for each pixel. Therefore,

this step can be done very fast in our CUDA implementation.

5. Performance results

In this section, we discuss the performance of our algorithm on GPU. We tested the algorithm

on a Windows machine with Intel® Core i5 CPU with clock rate of 3.2 GHz and 8 GB RAM

memory. We use NVIDIA® GeForce® GTX 470M GPU which supports CUDA

programming.

Figure 5 illustrates an example of a red blood cell imaged by DPM. Figure 5a shows the

wrapped phase image associated with the interferogram in Fig. 3a after the phase extraction.

Figure 5b shows the result after the unwrapping procedure. The vertical and horizontal axes

illustrate pixels’ positions in 2D image and the color bar denotes the phase values before and

after unwrapping.

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Wrapped phase image (b) Unwrapped phase image

Fig. 5. Phase unwrapping of red blood cell image

For comparison, we also implemented a C-code based program and use the unwrap

algorithm as described in [3]. For the phase extraction part, we use FFTW library to compute

Fourier transforms. Our GPU version is implemented in CUDA C, and compiled with the

Microsoft Visual Studio compiler.

Table 1 compares the run time between the two implementations. The results shown were

averaged over 20 images for each image size. As mentioned earlier, our program supports

multiple image frames. For sequential C-code program, the run time for multiple frames

simply scales linearly with the number of frames. For GPU implementation, the total run time

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1789

includes time for the memory copy of interferogram from host to device and also a memory

copy of output unwrapped image from device to host.

Table 1. CUDA implementation versus C based sequential implementation

Image Size CPU/GPU

Phase

extraction

(ms)

Residue

Identification

(ms)

Branch cut

Placement

(ms)

Unwrap

(ms)

Total

(ms)

1024 × 1024 CPU 317.42 43.42 6.74 89.32 460.7

1 frame GPU 5.05 0.58 1.125 10.014 24.55
 Speedup factor 62.86 74.19 5.99 8.92 18.77

1024 × 1024 CPU 3174.2 434.2 67.4 893.2 4607.4

10 frames GPU 40.486 5.55 1.128 45.285 111.1
 Speedup factor 78.4 78.19 59.71 19.72 41.47

512 × 512 CPU 71 11 5 16 105

1 frame GPU 2.18 0.2 0.02 1.87 8
 Speedup factor 32.61 55.84 250 8.55 13.13

512 × 512 CPU 710 110 50 160 1050

10 frames GPU 11.57 1.4 0.02 6.722 26

 Speedup factor 61.37 78.57 2500 23.8 40.38

Clearly, the GPU implementation demonstrates tremendous improvement on run time

performance. The total run time for a single 1024 × 1024 image reduced from an average of

460 milliseconds for the sequential C-code implementation to 24.55 milliseconds on GPU,

which is now suitable for video rate. The total run time for a single lower resolution (512 ×

512) image is 8 milliseconds, allowing for much higher image acquisition rates. Furthermore,

we note larger speedup when multiple images are processed simultaneously which is

extremely useful for streaming applications.

6. Conclusion and future work

In this paper, we presented a phase unwrapping algorithm in CUDA C. The algorithm is based

on the classical Goldstein’s branch cut algorithm. The algorithm demonstrates a tremendous

improvement, of a factor of about 18× for single images, and 40× for 10 images, over

sequential implementation. By implementing all functions in CUDA, we eliminate all

intermediate memory copies between the host and the GPU device, reducing the run time. We

obtained a speedup of 18.77× for images of size 1024 × 1024 and reduced a total run time to

about 24 milliseconds which is suitable for real-time, high resolution phase reconstruction.

We anticipate that in the near future, from the unwrapped phase images, CUDA-based

modules will compute in real-time quantitative parameters of the imaged objects, e.g., cell

volumes, refractive indices, tissue morphological parameters, etc, useful for both basic

biological studies and medical diagnosis.

Appendix A: CUDA computing architecture

In this section, we briefly describe NVIDIA’s Compute Unified Device Architecture model

(CUDA) to justify our CUDA-based phase unwrapping algorithm. CUDA GPU was designed

to process thousands of threads simultaneously by underlying parallel stream processors. It

consist of several streaming multiprocessors (SMs) as illustrated in Fig. 6a.

A CUDA program consists of both host code and device code. The host code is straight

ANSI C code, which is used when there is little or no data parallelism and the device code is

used when there is a rich amount of data parallelism. The NVIDIA C Compiler (NVCC)

separates the two. The host code is straight ANSI C code and is compiled with standard C

compilers. CUDA extends C by allowing developers to define C functions, called kernels, and

the device code is compiled by the NVCC and executed on a GPU device. Based on single-

instruction, multiple-thread (SIMT) architecture [5,14], CUDA maps a single kernel to a grid

of threads to process different input data simultaneously. Threads in a grid are organized into

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1790

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Share memory

Processor 1 Processor N…

Register Register

Constant Cache

Texture Cache

Instruction
Unit

Device memory

Host Device

Kernel 1

Kernel 2

Grid 1

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Grid 2

Block (0,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

(a) (b)

Fig. 6. CUDA GPU architecture

a two-level hierarchy, as illustrated in Fig. 6b. Threads are organized into blocks of up to

three dimensions and the blocks are then organized into a one-dimensional or two-

dimensional grid of thread. Each thread has its own register and each block has a shared

memory which is available to all threads in that block. All threads in a block can synchronize

their execution but two threads from different blocks cannot cooperate. Numbers of threads

and blocks must be provided to a call of a kernel through an execution configuration. Then all

threads will execute the same instruction but on different input data identified by their thread

indices and block indices.

Appendix B: Goldstein’s algorithm

Goldstein’s algorithm includes three steps [3].

Step 1: Locate the residues

Step 2: Generate the branch cuts

Step 3: Path-integrate around the branch cuts

. . .

4

m
n

-0.2-0.1

0.1 0.2 0.3

-0.4

-0.3-0.2-0.2

. . .

.
.

.
.

.
.

31

2

Fig. 7. Detecting residues in 2D arrays

The first step is to locate the residues in the images. For the pixel at coordinate (i,j), its

residue charge will be obtained by summing the wrapped phase differences around the closed

path as illustrated in Fig. 7,

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1791

4

1

k

k

q


 

where

1

2

3

4

{ (, 1) (,)}

{ (1, 1) (, 1)}

{ (1,) (1, 1)}

{ (,) (1,)}

W i j i j

W i j i j

W i j i j

W i j i j

 

 

 

 

   

     

     

   

In the second step, the Goldstein’s algorithm first scans the phase image pixel by pixel

until a residue is detected. Then a 3 × 3 box is placed around the residue to search for other

residues. If another residue is present, a branch cut is placed between them. If they are of

opposite polarities, the charge will be balanced; otherwise the search will be continued. When

another residue is found, it is connected to the residue at the center of the box whether the

new residue has been connected to some other residue or not and in the latter case, its polarity

will be added to the cumulative sum of the other residues. When the cumulative charge is

zero, the residues are called balanced. If the cumulative charge is not zero after the search

over the 3 × 3 box, the box is moved to center at each of the other residues in the previous box

and searched. If the cumulative charge is still nonzero, then the box is enlarged and centered

at each of the residues. This process stops when either the cumulative charge becomes zero or

a border pixel is encountered.

The last step uses a flood-fill algorithm. First, a pixel is selected and its phase is stored as

the unwrapped value. Then, the four neighbors of this pixel are unwrapped and the pixels are

inserted into a list, called an adjoin list. Then, the algorithm will iteratively select a pixel from

the adjoin list and unwrap and insert its neighbors into the adjoin list if those neighbors are

not branch cut pixels or have not been unwrapped. Finally, when the adjoin list becomes

empty, either all the non-branch cut pixels have been unwrapped or there is a region isolated

by branch cuts. Isolated regions can be unwrapped independently by starting with one pixel in

the region and repeating the process. The branch cut pixels are then unwrapped using their

unwrapped neighboring pixels.

Appendix C: Residue identification

Table 2 illustrates the data structure of the bitflags. Bits of each byte contain binary

information for one pixel of the image.

Table 2. Structure of bit flag array elements

Bit Information

1st bit POS_RES

2nd bit NEG_RES

3rd bit VISITED

4th bit ACTIVE

5th bit BRANCH_CUT

6th bit BORDER

7th bit UNWRAPPED

8th bit POSTPONED

The first two bit flags of each element mark whether the pixel is positive or negative

residue. The seventh bit flag marks if a pixel is unwrapped or not (in the unwrapping step).

Other bit flags are used in the branch cut placement step. Additionally, for each image we use

one integer-typed variable, resNum, to store the number of residues and one array, res_list, to

store positions of those residues. This information is for later use in the branch cut placement

step. Since threads work independently and are not synchronized, multiple threads may try to

update resNum and res_list at the same time and may end up with incorrect results. In order to

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1792

avoid this, we use a built-in function, called atomicAdd, to update the number of residues.

This ensures that the operation of one thread is not interfered with by other threads. This

function returns the old value of its argument, thus we can use this returned value to update

our residue lists. A flow chart of residue identification function is summarized in Fig. 8. An

instance of this function is run on each thread independently. The parameter k indicates the

position of the pixel to be tested.

No No

Yes Yes

q(k) > 0

Start

Compute q(k)

q(k) < 0

Stop

bitflags(k) |= POS_RES bitflags(k) |= NEG_RES

index=atomicAdd(resNum,1)

res_list(index)=k

Fig. 8. Residue identification flow chart.

Acknowledgments

This research was supported in part by the National Science Foundation (grants CBET 08-

46660 CAREER, CBET-1040462 MRI) and the National Cancer Institute (grant R21

CA147967-01). For more information, visit http://light.ece.uiuc.edu/.

#145283 - $15.00 USD Received 14 Apr 2011; revised 23 May 2011; accepted 30 May 2011; published 1 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2, No. 7 / BIOMEDICAL OPTICS EXPRESS 1793

