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Background—Intracranial pressure (ICP) remains a pivotal physiological signal for managing
brain injury and subarachnoid hemorrhage (SAH) patients in neurocritical care units. Given the
vascular origin of the ICP, changes in ICP waveform morphology could be used to infer
cerebrovascular changes. Clinical validation of this association in the setting of brain trauma, and
SAH is challenging due to the multi-factorial influences on, and uncertainty of, the state of the
cerebral vasculature.

Methods—To gain a more controlled setting, in this articel, we study ICP signals recorded in
four uninjured patients undergoing a CO2 inhalation challenge in which hypercapnia induced
acute cerebral vasodilatation. We apply our morphological clustering and analysis of intracranial
pressure (MOCAIP) algorithm to identify six landmarks on individual ICP pulses (based on the
three established ICP sub-peaks; P1, P2, and P3) and extract 128 ICP morphological metrics. Then
by comparing baseline, test, and post-test data, we assess the consistency and rate of change for
each individual metric.

Results—Acute vasodilatation causes consistent changes in a total of 72 ICP pulse
morphological metrics and the P2 sub-region responds to cerebral vascular changes in the most
consistent way with the greatest change as compared to P1 and P3 sub-regions.

Conclusions—Since the dilation/constriction of the cerebral vasculature resulted in detectable
consistent changes in ICP MOCIAP metrics, by an extended monitoring practice of ICP that
includes characterizing ICP pulse morphology, one can potentially detect cerebrovascular changes,
continuously, for patients under neurocritical care.

Keywords
Intracranial pressure; Hemodynamic signal; Cerebral vasodilation; Hypercapnia; Waveform
morphology

Introduction
Traumatic brain injuries (TBI) is a leading cause of death and disability around the globe
especially among young people [1, 2]. Continuous measurement of intracranial pressure
(ICP) is a well-established brain monitoring modality used in diagnosing and managing
different neurological conditions including TBI and subarachnoid hemorrhage (SAH).

ICP depicts the ability of the craniospinal space to accommodate changes in intracranial
volume assuming a non-linear and hyperbolic relationship between the pressure and volume
[3]. It has oscillating components at two different frequencies (cardiac and respiratory) [3, 4]
and, particularly, consists of three characteristic peaks referred to as P1 (percussion wave),
P2 (tidal wave), and P3 (dicrotic wave) in its cardiac component [5, 6], which is also
referred in this work as an ICP pulse. A particular form of an ICP pulse is formulated by
transforming an incidental arterial pressure pulse under the influences from multiple
intracranial compartments. ICP pulse wave morphology represents a complex sum of
various components; the pulsations of major arteries and choroid plexus contribute to P1
component, whereas P2 may be dependent upon the intracranial compliance [7], and P3
component might be the result of venous pressure [8, 9]. As a result, the quantitative metrics
of ICP pulse morphology may provide additional information regarding the intracranial
pathophysiology [10–12] beyond what can be provided by the average value of this complex
signal which is the only metric currently offered by the monitoring devices.

The modern signal processing and pattern recognition algorithms could provide the essential
tools to extract the subtle patterns of ICP changes influenced by the large brain structural
changes. Our recently developed and validated Morphological Clustering and Analysis of
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Intracranial Pressure (MOCAIP) algorithm [13] is a technical advancement toward a new
paradigm of more comprehensive information extraction from ICP. But due to the
complexity involved in accurately describing, in mathematical terms, how these ICP
morphological metrics reflect changes in the cerebral vasculature, a data-driven engineering
approach toward quantifying and assessing this relationship is needed [14–17].

To date, the influence of cerebral vascular changes, including vasoconstriction and
vasodilatation, on the ICP has not been well studied in humans. In the setting of brain
trauma and SAH, clinical validation of the association of ICP with the cerebrovascular state
is challenging due to the multi-factorial influences on, and uncertainty of, the state of the
cerebral vasculature [18, 19]. For example, studies have shown that in head injured patients,
as the cerebral perfusion pressure (CPP) decreases, the amplitude of pulsatile blood inflow
increases [20] and consequently, the exponential shape of the pressure–volume relationship
would not be the only factor influencing the magnitude of ICP pulse wave [21, 22].

Considering the implications in TBI and SAH patients, obtaining information with regard to
how ICP pulse morphology responds to vasodilatation and vasoconstriction in a more
controlled setting, e.g. CO2 challenge test, seems to be a good solution. Thus, the main
objective of the present work is to test the hypothesis that acute hypercapnic cerebral
vasodilatation induces consistent changes in ICP waveform morphology. This hypothesis is
tested on a dataset of ICP signals of uninjured patients undergoing a CO2 inhalation
challenge in which hypercapnia induced acute cerebral vasodilatation. MOCAIP algorithm
[13] were applied to identify six basic landmarks on the individual ICP pulses. In addition,
128 pulse morphological metrics were extracted and quantified based on the identified
landmarks. Then the consistency and rate of changes of each individual metric during the
hypercapnia were assessed. Finally a binary coding scheme of the contribution of the three
individual ICP peaks to each metric was employed to determine the degree of change for
each individual sub-peak region during the hypercapnic cerebral vasodilation.

Materials and Methods
An Overview of the MOCAIP Algorithm

MOCAIP is a pulse analysis framework developed for automatic extraction of
morphological features of ICP pulses in real time [13]. This integrated and modular
framework takes into the consideration the practical problem of handling noises and artifacts
that ubiquitously exist in signals collected in an active neurocritical care environment.
MOCAIP starts by segmenting the continuous ICP into a sequence of individual ICP pulses
using an ICP pulse extraction technique [23] and an ECG QRS detection method [24]. A
hierarchical clustering approach [25] is employed to find the main ICP pulse cluster in the
sequence, the centroid of which is referred as the dominant pulse (a representative cleaner
pulse extracted from a sequence of consecutive ICP pulses). To further avoid signal
segments that are heavily contaminated by artifacts, MOCAIP proposes to use a reference
library of validated ICP pulses whose construction is treated as a training process that
involved data sets from multiple patients. A pulse is judged to be valid if it belongs to a
cluster whose average pulse is highly correlated with any of the reference ICP pulses. To
avoid false rejection of a valid cluster, due to the incompleteness of the reference library, the
rejected pulses by the first step will be further assessed by characterizing the coherence of
the pulse cluster to which it belongs. If a pulse fails both tests, it would be declared as a non-
valid or noisy pulse.

Once a valid ICP pulse has been extracted from the previous step, MOCAIP detects a set of
peak candidates (or curve inflections). Each of them is potentially one of the three peaks or
not a peak. The extraction of these candidates relies on the segmentation of the ICP pulse
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into concave and convex regions which produces a pool of multiple peak candidates. To
identify the three peaks from the set of candidates, MOCAIP relies on a Gaussian model to
represent the prior knowledge about the position of each peak in the pulse. The assignment
is chosen such that it maximizes the probability to observe the peaks given the prior
distributions. These priors have been previously learned from the library of valid ICP pulses.

The modular structure of the MOCAIP algorithm facilitates further improvement of each
individual processing block as demonstrated in our recent efforts. For example, to improve
the performance of recognizing legitimate pulses, a singular value decomposition (SVD)-
based signal/noise space separation algorithm has been proposed [26, 27], whereas the
performance of the optimal peak designation has been enhanced by applying a nonlinear
regression-based [28], an integrated peak recognition technique [29], and a non-parametric
Bayesian tracking algorithm [30].

In summary, the MOCAIP algorithm provides a designation of the three sub-peaks and sub-
nadirs of dominant ICP pulses. Following the identification of the six landmarks on an
individual ICP pulse (Fig. 1), MOCAIP extracts 128 additional pulse morphological metrics
based on the identified landmarks (Table 1).

Calculation of Hourly Rate of Change for each ICP Metric Using a Weighted Least Square
Method

The following procedure has been applied to obtain the hourly rate of change for each metric
over a specific time segment; first a line has been robustly fitted to the extracted metric
values over the segment of interest using weighted least square method and then the slope of
this line has been employed to calculate the hourly rate of the metric change.

Furthermore, the sign of the obtained hourly rate of change (negative vs. positive) has been
utilized to determine the trend of change (decreasing vs. increasing).

Patient Data
The hypercapnic dataset consists of the ICP and electrocardiograph (ECG) recordings of
four female patients (21, 24, 32, and 54-years-old), who were admitted at UCLA medical
center for the evaluation of their chronic headaches. They consented for allowing their data
to be analyzed under the protocol as approved by the UCLA Internal Review Board.

During their hospitalization, the patients received continuous ICP monitoring for the clinical
purpose using Codman intraparenchymal microsensors (Codman and Schurtleff, Raynaud,
MA, USA) situated in the right frontal lobe. They also underwent a CO2 challenge test by
inhaling a 5% CO2 mixture for less than 3 min. Simultaneous cardiovascular monitoring was
also performed using the bedside GE monitors. ICP and lead II of ECG signals were
recorded at a sampling rate of 400 Hz using a mobile cart at the bedside that was equipped
with the PowerLab TM SP-16 data acquisition system (ADInstruments, Colorado Springs,
CO, USA).

A data segment including the recorded signals during CO2 test with few minutes preceding
(baseline) and proceeding (post-test) the test was selected for each patient. The ECG-aided
pulse detection algorithm [23] was used to delineate each ICP pulse in the segment. Each
pulse was saved and visualized using the software developed in-house to screen obvious
noise or artifacts, so that only clean beats were further processed. Then, given the good
quality of the signal; the MOCAIP was able to work on individual pulses to extract 128 ICP
pulse morphological metrics as explained in the previous section.

Asgari et al. Page 4

Neurocrit Care. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Data Analysis and Validation Protocol
The duration of the selected data segment for the headache patients was (5.1 ± 0.7 min).
This data segment included (1.5 ± 0.5 min) of baseline, (2.5 ± 0.5 min) of CO2 challenge
test and (1.1 ± 0.2 min) of post-test data. Following the procedure described in “Calculation
of Hourly Rate of Change for each ICP Metric Using a Weighted Least Square Method”
section, the slope of the lines fitted to each of the extracted metrics over the rising edge of
ICP signal during CO2 challenge test and the falling edge of ICP signal during the post-test
normal breathing, have been employed to define the hourly rate of change during the test
and post-test normal breathing, respectively. For the purpose of comparing the hourly rate of
change between different metrics, each metric rate was normalized by the average value of
the corresponding metric over either the last 10 beats of the baseline (if the metric is
extracted from the rising edge of the ICP signal) or the first 10 beats of the stabilized part of
the post-test data (if the metric is extracted from the falling edge of the ICP signal).

By comparing the results of data processing from baseline, test, and post-test, we assessed
(1) the consistency of changes of individual metrics; (2) differences in rate of metric
changes; and (3) which of the sub-peak regions (P1, P2, and P3) has a more dramatic change
during the cerebral vasodilation. For the later purpose, we calculated the region-weighted
relative hourly rate of change averaged over the subset of consistent metrics as the
following; a binary coding scheme was used to quantify the contribution of the three
individual sub-peak regions to each individual metric. In this scheme, each metric is
represented by a three bit binary word where the least significant bit indicates the possibility
of the contribution of the first peak to that metric (1 vs. 0). For example, the binary word for
the metric dPP1P2 (which represents the peak ratio of the first and second peak, Table 1) is
011. Note that since the third peak does not contribute to this metric, the most significant bit
in the corresponding word is set to 0.

Now suppose that W128×3 is a matrix whose rows represent the binary word of each
individual metric and R128×1 is a column vector of the normalized hourly rate of change.
The total hourly rate of change for the sub-peak regions P3, P2, and P1 could be obtained by
C = WT × R = [c3 c2 c1]T. Then the region-weighted relative hourly rate of change could be
easily calculated by dividing each ci, i = {1, 2, 3} by the total number of metrics whom sub-
peak region Pi contributes to.

Results
Figure 2 depicts the mean ICP value for one of the headache patients (Patient #4) during the
baseline, CO2 challenge test and post-test normal breathing. As the figure illustrates, when
the patient inhales the 5% mixture of CO2, the mean ICP increases over time, reaches to a
saturation level and then stabilizes. When the patient starts to breathe the normal air again,
the mean ICP falls down and goes back to the baseline level in less than 1 min. Figure 3a
and b demonstrates the rising ICP signal and the extracted latency metric obtained during
the CO2 inhalation of the same subject. The slope of the fitted line (using the weighted least
square method described in “Calculation of Hourly Rate of Change for each ICP Metric
Using a Weighted Least Square Method” section) equals to 0.28. This means that the pulse
latency increases during the CO2 inhalation with the hourly rate of (0.28) × (60 × 60) ≅ 1 s.
Figure 3c depicts the plot of the normalized ICP pulses from the first (beat #1) and the last
beat (beat #80) of the segment of interest. The normalization process (normalized by the
mean and standard deviation of each beat) has been solely employed to facilitate the
comparison of the pulse latencies on the same plot. As the figure shows, the latency of the
last beat is greater than that of the first beat and this observation is consistent with the
increasing trend of latency derived from the slope of the fitted line.
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Figure 4 shows a histogram of the eight possible 3 bit binary words over all the 128 metrics.
As the plot shows, only less than 10% of the 128 metrics are exclusively related to each of
the three sub-peak regions. As a result, most of the metrics are related to two or more sub-
peak regions. Note that the total percentage of the P1, P2, and P3 sub-peak region
contribution to the metrics are 69, 64, and 60%, respectively.

Further study of the hourly rate of change for all the 128 ICP metrics during the hypercapnic
and normal breathing post-test data, reveal that; out of 128 ICP metrics, 72 metrics had
consistent changes in association with CO2 changes for all four subjects. Table 2
summarizes the trend of change during the test for these 72 consistent metrics. We observe
that for all subjects, no metrics had the same trend during both the hypercapnic and normal
breathing post-test data. This observation is coherent with our expectation that if a variable
has a specific trend of change (decreasing/increasing) in one condition (e.g. vasodilation
resulted from hypercapnia), the change would be in the opposite direction (increasing/
decreasing) as the condition is reversed (e.g. vasoconstriction resulted from post-test normal
breathing).

We also observe that for all subjects, 50 metrics consistently increased during hypercapnia
and decreased when patients switched back to room air (“+” metrics) and 22 metrics
consistently decreased during CO2 inhalation phase and increased during post-test normal
breathing (“−” metrics).

Figure 5a depicts the 10 metrics among the 50 “+” metrics with the highest absolute value of
the relative hourly rate of change during both hypercapnic and normal breathing. We
observe that these group of metrics include only one metric related to the first sub-peak (P1)
region and have much larger relative hourly rate of change during normal breathing than the
hypercapnia (t test, P = 0.001).

Among 22 “−” metrics, the 10 metrics with the highest absolute value of relative hourly rate
of change are demonstrated in Fig. 5b. A t test on the rate of the changes shows that, similar
to “+” metrics; the relative hourly rate of change during normal breathing is significantly
higher than the hypercapnia (P = 0.006). We also observe that the “+” metrics change more
dramatically, during both hypercapnic and normal breathing; comparing to “−” metrics. In
fact, the mean of the hourly rate of change for the “+” metrics is 2.6 times of that for the “−”
metrics.

The region-weighted (P1, P2, P3) relative hourly rate of change of the 50 “+” metrics
calculated following the procedure described in Sect. 2.4 were (0.518, 1.076, and 0.976),
respectively. And finally the region-weighted relative hourly rate of change averaged over
22 “−” metrics were (0.20, 0.32, and 0.27), respectively.

Discussion
The management of many neurological disorders relies on the continuous measurement of
ICP. Dynamics of ICP reflect the brain’s compensatory capability to intracranial volumetric
changes and pathophysiological changes of the cerebral vasculature. Despite this
importance, signal processing capabilities in existing commercial ICP monitoring devices
remain poor providing clinicians with limited amount of information that is confined to
mean ICP. As a consequence, clinical decisions related to treating ICP related abnormalities
are typically made solely based on mean ICP although raw continuous waveform data are
usually available.

One very desirable way of characterizing ICP dynamics is through the extraction of
morphological features of ICP. Our group’s MOCAIP related work, a technical
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advancement toward this direction, is a new paradigm of more comprehensive information
extraction. However, revelation/validation of what these morphological metrics mean and
how to use them is still under way.

It has long been recognized that pulsatile ICP originates mostly from cerebral arterial
pulsations with some contributions of venous origin. Now given the vascular aspect of
MOCAIP metrics, a basic question is what kind of morphological changes are associated
with the dilation/constriction of the cerebral vasculature. In other words, if the ICP pulse
could indeed provide information related to cerebral vascular changes, one would expect to
observe consistent changes in ICP MOCIAP metrics during the dilation/constriction of the
cerebral vasculature. One ideal test that can offer the data to investigate such hypothesis is
CO2 challenge test which is the main motivation behind this work.

Our results showed that out of 128 ICP metrics, 72 metrics had consistent changes in
association with CO2 changes for all four subjects. 50 metrics (including mean ICP, pulse
latency and diastolic pressure) showed increasing/decreasing pattern during the rising/falling
edge of ICP signal. The increase/decrease of mean ICP and diastolic pressure is in
agreement with the fact that the ICP signal makes a plateau wave as increases gradually with
the onset of hypoventilation, reaches a saturated level and then starts to decrease when the
subject resumes inhaling the normal air [31]. The increase/decrease of pulse latency during
the rising/falling edge of ICP signal is related to the dilation/constriction of the vessels. As
the cerebrovasculature dilates/constricts, the pulse wave velocity decreases/increases and
this results in an increase/decrease in the latency (Fig. 3a) [23, 32].

The comparison of relative hourly rates of change for different metrics revealed that the
morphological features of the ICP signal changes more rapidly during the post-test normal
breathing than that of CO2 inhalation. An explanation could be that while the ICP signal
increases gradually to the maximum level (average time duration of ICP rising is 56.5 s), it
decreases rapidly as the subjects resume breathing in the normal air (average time duration
of ICP falling is 16.5 s).

The average rate of change for the “+” metrics were 2.6 times of that of the “−” metric. This
means that the ICP MOCAIP metrics whose pattern of change is in accordance to that of the
mean ICP signal, changes more dramatically than the metrics whose pattern of change is in
the opposite direction of the mean ICP. This may be attributed to the inherent hysteresis
property of the system.

The majority of the metrics with the highest rate of change were not related to P1 sub-peak.
Also the calculated region-weighted relative hourly rate of change indicated that P2 and P3
regions experienced larger degree of changes during hypercapnic cerebral vasodilation.
Considering the origins of the sub-peaks, this observation may suggest that, during the
hypercapnia, the intracranial compliance and venous pressure are more affected than the
choroid plexus pressure.

In summary, this work provides positive preliminary results related to the hypothesis that the
dilation/constriction of the cerebral vasculature result in detectable consistent changes in
ICP MOCIAP metrics. Our future plan could include further validation of these findings in a
larger study group of uninjured patients or in a setting where cerebral vasoreactivity is
disturbed (SAH or traumatic brain injury). We conclude that, by an extended monitoring
practice of ICP that includes characterizing ICP pulse morphology, one can potentially
detect cerebrovascular changes of interest including cerebral vasospasm.

Asgari et al. Page 7

Neurocrit Care. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Conclusion
Acute vasodilatation caused consistent changes in a total of 72 ICP pulse morphological
metrics. In addition, it appears that the P2 sub-region responded to cerebral vascular changes
in the most consistent way with the greatest changes as compared to P1 and P3 sub-regions.
Information with regard to how ICP pulse morphology responds to vasodilatation and
vasoconstriction may allow surrogate, continuous monitoring of the cerebral vasculature.
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Fig. 1.
Illustration of the six landmarks detected by the morphological clustering and analysis of
ICP (MOCAIP) algorithm
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Fig. 2.
Mean ICP during baseline, CO2 challenge test and post-test normal breathing for a headache
patient. The dashed lines are the robustly fitted lines to the rising and falling edge of ICP
employed to define the direction of the mean ICP change
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Fig. 3.
a The rising segment of the ICP signal, b the extracted pulse latency and the robustly fitted
line to define the hourly rate of change, c the normalized ICP pulses from the first and last
beat of the segment, obtained during CO2 inhalation of the subject of Fig. 2
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Fig. 4.
The histogram of the three bit binary words based on the contribution of the three sub-peak
regions to the 128 MOCAIP metrics
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Fig. 5.
The relative hourly rate of change during hypercapnia and normal breathing post-test for the
10 metrics with the highest relative rate of change from a the “+” group, b the “−” group.
The 10 metrics from “+” group in the ascending order of index (1,…,10) are
(‘RCurvp2Curvp3’, ‘diasP’, ‘Curvp2’, ‘mICP’, ‘k2’, ‘RCurvp2Curvv3’, ‘dV3’, ‘RC3’,
‘dP3’, ‘dP2’). The 10 metrics from “−” group in the ascending order of index are
(‘RCurvp3Curvv2’, ‘RCurvp1Curvv2’, ‘RCurvv1Curvp2’, ‘RLv3p3Lp1p2’, ‘Lv3p3’,
‘RP1V3’, ‘RV1V3’, ‘RLv1p3Lv2p2’, ‘RV2V3’, ‘RLv3p3Lp1p3’)
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Table 1

128 metrics derived from an ICP pulse-based on the landmarks of Fig. 1

28 Basic metrics extracted from individual landmarks or over all characteristics

dV1, dV2, dV3, dP1, dP2, dP3 Amplitude of landmark relative to the minimum point prior to initial rise

LV1P1, LV1P2, LV1P3, LV2P2, LV3P3 Time delay among landmarks

Curvv1, Curvv2, Curvv3, Curvp1, Curvp2, Curvp3 Absolute curvature of each landmark

K1, K2, K3, RC1, RC2, RC3 K1, K2, K3 are slope of each rising edge and RC1, RC2, RC3 are time-constants of each
descending edge

mICP, diasICP Mean ICP and diastolic ICP

LT Time delay of V1 to ECG QRS peak

mCurv Mean absolute curvature of the pulse

WaveAmp Maximum among dP1–dP3

100 extended metrics calculated as ratios among metrics within each group

dPp1p2,… Ratio among landmark amplitudes

LV1P1/LT,… Ratio among time delays

Curvv1/Curvv2,… Ratio among curvatures

K1/RC1,… Ratio among slopes/RCs
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Table 2

Distribution of the 72 ICP metrics (out of 128 total metrics) with a consistent change for all four subjects
during the CO2 inhalation and post-test normal breathing

CO2 Inhalation

Metrics with
Increasing trend

Metrics with
decreasing trend

Post-test normal breathing

  Metrics with Increasing trend 0 50 (named as “+” metrics)

  Metrics with decreasing trend 22 (name as “−”metrics) 0
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