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We describe a method for comparing the abundance of gene transcripts in cDNA libraries. This method allows
for the comparison of gene expression in any number of libraries, in a single statistical analysis, to identify
differentially expressed genes. Such genes may be of potential biological or pharmaceutical relevance. The
formula that we derive is essentially the entropy of a partitioning of genes among cDNA libraries. This work
goes beyond previously published analyses, which can either compare only two libraries, or identify a single
outlier in a group of libraries. This work also addresses the problem of false positives associated with repeating
the test on many thousands of genes. A randomization procedure is described that provides a quantitative
measure of the degree of belief in the results; the results are further verified by considering a theoretically
derived large deviations rate for the test statistic. As an example, the analysis is applied to four prostate cancer
libraries from the Cancer Genome Anatomy Project. The analysis identifies biologically relevant genes that are
differentially expressed in the different tumor cell types.

The introduction of high throughput sequencing and
robotics technology has transformed the field of mo-
lecular biology. In the field of gene expression, the in-
troduction of array technology has made it possible to
monitor the expression of thousands of genes in single
experiments (Phimister 1999) This approach is playing
a fundamental role in the quantitative analysis of gene
expression. However, it is limited by the propensity for
cDNA clones and oligos to generate hybridization ar-
tifacts, especially the cross-hybridization of highly re-
lated family members. Complementary approaches use
the frequency of a gene in a cDNA library as a measure
of its tissue-specific expression. One approach, termed
serial analysis of gene expression (SAGE) relies on high
throughput sequencing of 14-bp gene-specific se-
quence tags to enumerate the expression of individual
genes in a cell (Velculescu et al. 1995). A different ap-
proach uses EST counts to infer the relative level of
expression of a gene (Okubo et al. 1992; Lee et al. 1995;
Franco et al. 1997). Both methods, with their own ad-
vantages and limitations, can identify novel genes dif-
ferentially expressed in a biological sample. Microar-
ray-based gene expression analysis relies on an existing
DNA sequence being present on the array and there-
fore can detect only expression of a predefined set of
genes.

There are a growing number of cDNA library data-
bases available both commercially and in the public
domain. These include the BodyMap project (Okubo et

al. 1992; http://www.imcb.osaka-u.ac.jp/bodymap/)
and Incyte’s LifeSeq database (http://www.incyte.
com). Recently, the NCBI has launched the Cancer Ge-
nome Anatomy Project (O’Brien 1997; http://
www.ncbi.nlm.nih.gov/ncicgap/). This project aims to
understand the molecular bases of the transformation
of specific normal epithelial cells into pre-malignant
populations, and their further transformation into in-
vasive and metastatic cancer. To circumvent the prob-
lem of tissue heterogeneity, different cell types are first
dissected out of the tumor mass by use of a laser-based
technology (Emmert-Buck et al. 1996) and then con-
verted into cDNA libraries.

One of the uses of cDNA libraries is to identify
genes whose expression differs between the tissue
sources of the libraries (Lee et al. 1995; Franco et al.
1997; Bortoluzzi and Danieli 1999). Such genes may be
of potential biological or pharmaceutical relevance.
Thus, as this type of data is becoming more widely
available, analysis techniques are now being developed
to identify differentially expressed genes.

The Cancer Genome Anatomy Project use Fisher’s
Exact Test (see for example, Kanji et al. 1993) to com-
pare the abundance of genes in cDNA libraries in their
Digital Differential Display tool (DDD). Audic and Cla-
verie (1997) raised a number of valid criticisms of the
use of Fisher’s exact test for this type of data, and de-
veloped their own statistical test to compare the ex-
pression of a gene in two cDNA libraries. Their test also
allows for the construction of confidence intervals
about a gene expression level.

However, both Audic and Claverie’s test, and Fish-
er’s exact test, can only be used to compare gene ex-
pression between precisely two libraries. When com-
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paring more than two libraries, both groups use their
test repeatedly to compare all possible pairs of libraries.
In particular, Audic and Claverie performed multiple
comparisons between libraries to construct Table 3 in
their paper — a procedure that is statistically invalid.
CGAP’s DDD analysis provides a heuristic approxima-
tion to compensate for this procedure, by multiplying
the P-values by the number of comparisons made.
However, this is only a first order approximation,
which ignores the correlation between all of the P-
values derived. As a result, the P-values generated con-
sistently underestimate the true probabilities of the
events.

In addition to the problem of testing the same
gene in many libraries, these tests will typically also be
used repeatedly on many genes to identify those genes
that are most differentially expressed between the li-
braries. In such situations, some genes would have sig-
nificant P-values, even if the data were truly random.
Again, CGAP’s analysis multiplies the P-values by the
number of genes tested.

More recently, Greller and Tobin (1999) developed
a technique to compare the expression of a gene in
more than two libraries. However, their analysis only
identifies genes whose expression in a single library is
markedly different from their expression in the others.
It does not extend to more general patterns of differing
gene expressions.

In this work, a more general test is developed that
compares the abundance of a gene in any number of
cDNA libraries by use of a single statistical test. The
extent to which a gene is differentially expressed be-
tween the libraries is described by a log likelihood ratio
statistic that we derive; this statistic tends asymptoti-
cally to a �2 distribution.

Because the test is to be used repeatedly on many
thousands of genes, we deliberately do not ascribe a
P-value to the test statistic. Instead, two procedures are
described that can verify that the genes found with
high levels of the test statistic do not represent random
noise. The first procedure is to use a randomization
procedure that gives a quantitative measure of the de-
gree to which the genes associated with a particular
level of the statistic represent true differential expres-
sion. The second procedure is to use a theoretically
derived large deviations rate.

RESULTS
This section starts with an informal description of the
basis of the statistic used for comparing gene expres-
sions. A formal derivation is given in the Methods sec-
tion. Consider a gene expressed in a set of cDNA librar-
ies that have been constructed, using the same proto-
col, from a collection of tissues. The differences in
abundance of that gene between the libraries can arise
via two factors. First, it might be that the true fre-

quency of the gene is the same in all of the tissues. In
this case, the differences in gene transcript abundance
between the cDNA libraries are simply sampling errors,
arising by chance when the clones are selected. This is
referred to as the Null Hypothesis.

Alternatively, the differences in transcript abun-
dance may reflect genuine differences in the gene ex-
pressions in the different libraries. These differences
may be due to any biological or pharmaceutical
mechanism, for example, heterogeneities between tis-
sues, patients, pathologies, or drug treatments. This is
referred to as the Alternative Hypothesis.

In most cases, the differences in abundance will
arise through a combination of these factors. The aim
of the test we develop is to identify the extent to which
the differenc es in expression represent true heteroge-
neity as opposed to sampling variability. This is pos-
sible because the distribution of the sampling errors
can be quantified. The test works by considering each
of the two situations in turn, and, in each case, calcu-
lating the likelihood of seeing the observed data. The
two likelihoods are compared by subtracting the logs
of the likelihoods, generating a log likelihood ratio.
This ratio gives a measure of the extent to which the
differences in gene expression correspond to heteroge-
neity of the libraries as opposed to random sampling
variability.

The statistic, denoted Rj for gene j, is derived in the
Methods section, and is given by the expression

Rj = �
i=1

m

xi,j log� xi,j

Nifj
�, (1)

where m is the number of cDNA libraries, xi,j is the
number of transcript copies of gene j in the ith library
and Ni is the total number of cDNA clones sequenced
in the ith library. fj is the frequency of gene transcript
copies of gene j in all of the libraries, given by the
formula

fj =
�
i=1

m

xi,j

�
i=1

m

Ni

(2)

In a library in which there are no observed copies of
the gene, that is, xi,j = 0, its contribution to Rj is zero.

The formula is only valid if at least 50 ESTs have
been sequenced from each library, and no single gene
contributes >20% of the ESTs in a library. However,
such libraries are unlikely to be encountered in real-life
examples.

Example Analysis
As an example, the analysis is performed on four pros-
tate cancer libraries from the Cancer Genome
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Anatomy Project database. The four libraries are de-
rived from the same patient. They have been con-
structed by use of the same protocol, from populations
of micro-dissected cells representing different levels of
pathology, varying from normal epithelium to inva-
sive prostatic tumor. Details of the libraries used are
shown in Table 1.

The top hits, with R > 8, are shown in Table 2. The
table shows the UniGene Hs cluster ID, a brief descrip-
tion of the protein, the value of the test statistic R and
the abundance of the gene in each of the four prostate
cancer libraries.

There are 21 genes with R > 8. The majority of
these clusters are annotated; four clusters are unclassi-
fied ESTs. Among the annotated clusters are a number
of genes whose products are associated with the pros-
tate, inflammation or proliferation.

Two genes belonging to the kallikreinin family,
kallikreinin 2 and prostate-specific antigen (PSA), are dif-
ferentially expressed in the micro-dissected tumor cell
types. Both are known markers for prostate cancer (Da-
her and Beaini 1998; Nelson et al. 1998). Interestingly,
these genes appear to be over-expressed in low-grade
prostatic intraepithelial neoplasia (PIN) compared with
normal, high-grade PIN and invasive tumor cells. This
finding is in accordance with in-situ hybridization
studies in which it was found that the level of PSA
expression in the prostate tumor mass is inversely pro-
portional to the tumor grade (Qiu et al. 1990). �-1-
antichymotrypsin, a protein known to bind PSA
(Borchert et al. 1999), shows a similar expression pat-
tern.

The analysis also identifies four genes up-regulated
only in invasive tumor cells. Among these genes, hu-
man 150-kD oxygen-related protein is involved in the
mechanisms that protect cells from hypoxia damage
(Ikeda et al. 1997), and may play a role in the devel-
opment of tumor metastasis.

The ribosomal genes S4, S15a, L31, and L37a are all
found to be differentially regulated between the four
tissue types. However, these genes do not behave con-

sistently. The genes for S4, L37, and L37a are under-
expressed in tumor tissue compared with the normal
or hyperplastic cells. This appears to be contrary to the
findings of Vaarala et al. (1998), who have found that
a number of ribosomal mRNAs, including L37, are
over-expressed in prostatic cancer cell lines and tumor
samples. We do not have any explanation for these
discrepancies.

Inflammatory genes, as well as a number of novel
genes, were also identified as differentially regulated
within the four cell types. One of the unannotated EST
clusters, Hs.172603, consists of ESTs almost entirely
derived from prostatic cDNA libraries. These results, far
from being conclusive, would need to be confirmed by
further experimental research.

Verification
In these analyses, many thousands of genes are sepa-
rately tested to identify those genes that are most dif-
ferentially expressed. Intrinsic to this type of analysis is
the problem that even with totally random data, it is
likely that some genes would achieve significant levels
of the test statistic R. This is the reason that we have
not associated P-values with the likelihood ratio statis-
tic, and only used it to rank the genes.

Therefore, two verifications of these results are
provided. The first is to generate random data sets con-
forming to the null hypothesis and identify the num-
ber of genes achieving each level of R, as described in
the Methods section. The second is to assess the results
in the context of the theoretical considerations of the
large deviations rate associated with the test statistic R.

The results of the randomization are detailed in
Table 3. As the log likelihood ratio decreases, becoming
more significant, the proportion of true positives
among the real data increases.

For the threshold selected for Table 2, R > 8, the
mean number of false positives is 0.4, compared with
21 real genes found at this threshold. This corresponds
to a true positive rate of ∼98%. Therefore, according to
this analysis, it is likely that all of the 21 genes listed in

Table 1. Details of the Four cDNA Prostate Libraries Used as Example Data for the Analysis

Library
ID

Tissue
ID Type

Number of ESTs
sequenced

Number of
UniGene clusters

Pr1 46.1 Normal epithelium 5689 1441
Pr2 46.2 PIN low grade 5688 1692
Pr3 46.3 Invasive prostatic tumor 5173 1396
Pr4 46.4 PIN high grade 649 276

Note. The four libraries used for the example analysis are all from the Cancer Genome Anatomy Project database (http://
www.ncbi.nlm.nih.gov/ncicgap/). They have all been prepared from the same patient, using microdissection and plasmid cloning
techniques (Krizman et al. 1996). Each library represents a different level of prostate pathology ranging from normal epithelium,
prostatic intraepithelial neoplasia (PIN) to invasive prostatic tumor. Note that library Pr4 had fewer clones sequenced than the other
libraries.

Comparison of Gene Expression in CDNA Libraries
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Table 2 are genuine results. As the threshold value of R
is decreased, both the number and the proportion of
false positives increases. For example, of the 74 genes
with R > 6, there may be 6 false positives. Only 90% of
these genes are likely to be true positives and corre-
spond to genuine biological effect.

It is important to note that the results of these

simulations are entirely data dependent. With differ-
ent data, simulations would need to be repeated, and
the numbers and thresholds derived would be differ-
ent.

The second verification uses the theory of large
deviations described in the Methods section. If the data
were truly random, then the number of genes achiev-

Table 3. Results of the Data Randomization

R

Number of genes from
CGAP libraries log

likelihood at least R

Mean number of genes
from randomized libraries

LogLik at least R Believability

13 3 0.003 99.9%
12 4 0.005 99.9%
11 5 0.009 99.8%
10 10 0.03 99.7%
9 14 0.1 99.0%
8 21 0.4 98.2%
7 36 1.1 97.0%
6 74 6.3 91.5%
5 120 16 86.3%
4 275 49 82.2%
3 997 421 57.8%
2 1840 1347 26.8%
1 9947 5294 46.8%

Note. This table shows the results of the randomization procedure to test the believability of the genes for a given log likelihood ratio.
The number of genes from the CGAP data set with log likelihood at least the value given in the first column is shown in the second
column. The third column is the same, but averaged over 1000 runs of randomized data. The final column is a heuristic measure of
believability, which is one minus the ratio of the number of genes from the randomized data to the number of genes from the CGAP
data with at most the given log likelihood; this heuristic is only valid when the number of genes from the real data set is much greater
than the number of genes from the randomized data. The 21 genes with log likelihood ratio at least 8 are listed in Table 2.

Table 2. Top Hits with R > 8

UniGene Description R Pr1 Pr2 Pr3 Pr4

Hs.6179 mRNA for cDNA DKFZp586K2322 27.57 4 2 4 13
Hs.171995 Prostate Specific Antigen 24.12 69 138 54 2
Hs.183752 Prostatic Secretory Protein 24.01 55 11 50 0
Hs.173554 Ubiquinol-Cytochrome C Reductase 12.18 11 0 0 0
Hs.194329 ESTs 11.07 10 0 0 0
Hs.200539 ESTs 10.96 0 12 1 0
Hs.184014 Ribosomal Protein L31 10.93 27 6 24 0
Hs.234726 �1 Antichymotrypsin 10.91 0 13 2 0
Hs.5417 150KD Oxygen-Regulated Protein 10.82 0 0 9 0
Hs.75344 Ribosomal Protein S4 10.44 16 10 0 1
Hs.193434 ESTs 9.79 0 0 0 3
Hs.112259 T-cell Receptor � Cluster 9.78 1 0 10 0
Hs.184109 Ribosomal Protein L37a 9.50 7 31 10 2
Hs.236561 Interferon � Inducible Protein 9.49 5 1 2 5
Hs.55296 HLA-B Associated Transcript 8.95 3 0 0 3
Hs.183826 ESTs 8.41 0 0 7 0
Hs.172603 ESTs 8.41 0 0 7 0
Hs.169241 SRF Accessory Protein 1A 8.41 0 0 7 0
Hs.5662 Guanine Binding Protein 8.33 2 8 3 5
Hs.2953 Ribosomal Protein S15a 8.29 4 2 15 0
Hs.181350 Glandular Kallikrein 2 Precursor 8.15 18 33 10 0

Note. This table lists the 21 genes for which R > 8. The first column is the UniGene Hs cluster ID. The second coluymn is a description
of the gene product. The third column gives the likelihood statistic R. The next four columns show the number of ESTs in each of the
four libraries that belong to the Unigene cluster. The total number of clones sequenced in each of the libraries are 5689, 5688, 5173,
and 659.
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ing levels of the statistic R should fall exponentially as
a function of R. If there are more genes than predicted
by this exponential decline, then this would be an in-
dication that these genes represent true effect. In Fig-
ure 1, the number of genes at each level of the test
statistic R is plotted as a function of R. It can be seen
that there are two distinct regions of behavior. For 1 �

R � 9, the number of genes decreases exponentially.
The gradient in this region is �0.9, with standard error
0.7. This is not significantly different from the theo-
retically derived value of �1 for random data. Thus,
according to this analysis, the number of genes achiev-
ing values of R in this region is not distinguishable
from the number that would be expected when com-
paring a large number of genes. However, for R > 9, the
number of genes is much above the exponential curve.
This indicates that for R > 9, the number of genes ob-
served is much greater than would be expected from
random data. Therefore, we can be confident that
these genes represent true variation, and are not false
positive results.

DISCUSSION
This work has described a likelihood ratio method for
comparing the abundance of a gene in any number of
cDNA libraries. The statistic can be used to identify
those genes whose expression most varies across a set
of cDNA libraries. The analysis method was tested on
example prostate library data. It identified a number of
genes that appear to be biologically relevant, as well as
a number of unannotated EST clusters. That many of
the top hits are known to be important in the prostate
and associated pathology provides confidence that the
analysis produces meaningful results. It also gives con-
fidence that the unannotated EST clusters identified by
the test warrant further investigation.

Because this method is used for comparing expres-
sion data for large numbers of genes, it is essential to
quantify the number of false positives associated with
an analysis. A method was described for randomizing
the data, which assesses the extent to which results can
be believed. The randomization was used to demon-
strate that ∼98% of the genes identified from the ex-
ample libraries, at the threshold level chosen, are likely
to constitute genuine biological effect. The results were
further verified by considering the large deviations rate
for the test statistic. The number of highly differen-
tially expressed genes was shown to be much greater
than predicted by this rate.

In a sense, Figure 1 is incomplete in that it does
not include those genes that are expressed, but which
have not been sampled in any of the libraries. As a gene
becomes more differentially expressed, we expect to
find more copies of the gene in the tissue, and thus
have a higher chance of capturing it in one of the li-
braries. Consequently, the smaller the value of R, the
more genes are missing from the analysis. Examining
Figure 1, we see that this effect when 0 < R < 1 and the
histogram drops below the linear fit. The intercept of
the linear regression could be used as an estimate of the
total number of genes that are expressed in the tissue.
However, this would only be true if the libraries were
prepared from identical tissue; in our case, the estimate
would be invalid.

Both cDNA sequencing and hybridization-array-
based methods are now being increasingly used to
quantify gene expressions in tissues and cell lines, and
to make comparisons between healthy, pathological,
and drug-treated states. The study of gene expression
alone, however, does not give the complete picture of
cellular activity. Studies comparing gene expression
with protein abundance (Anderson and Seilhamer
1997; Gygi et al. 1999) have shown little correlation
between the two. There are several reasons why this
might be the case, including differences in transla-
tional control and RNA and protein turnover rates
(Hargrove and Schmidt 1989; Rivett 1990). Thus, this
type of analysis can only give an indication of genes
whose products may be of biological or pharmaceutical
relevance. Any results of this type of analysis would
have to be confirmed by further research.

METHODS

Derivation of the Test Statistic
Consider the expression of gene j in all of the cDNA libraries.
Denote the number of clones sampled for each library i as Ni,
and the observed number of copies of the gene as xi,j. Let m be
the number of cDNA libraries. We will compare two hypoth-
eses relating to the frequency of this gene using a likelihood
ratio. Under the null hypothesis, the gene is not differentially
expressed, so the frequency of the gene is the same in all
libraries. Under the alternative hypothesis, the gene is differ-

Figure 1 The number of genes for a given value of the test
statistic R is plotted as a function of R. It can be seen that the data
falls into two regions. For 1 � R � 9, the number of genes
decreases exponentially with R. The solid line is the regression in
this interval. The slope is �0.9 with standard error 0.07, and is
therefore not significantly different from �1 at 5% significance.
This is in accordance with the large deviations calculation de-
scribed in the Methods section. When R > 9, the number of genes
is above this exponential curve, and is much greater than pre-
dicted by the large deviations calculation.

Comparison of Gene Expression in CDNA Libraries

Genome Research 2059
www.genome.org



entially expressed, so the frequency of the gene in each of the
libraries is different.

In both cases, as long as the abundance of the gene is
small relative to the total mRNA content of the cell (20% is
the usual heuristic, Hays 1994), the distribution of the gene,
denoted Xi,j, will be well approximated by a Poisson distribu-
tion, with

P�Xi,j = x� =
e−��x

x!
, (3)

� will be determined below and will have a different value for
the two hypotheses. The same Poisson approximation is also
made by Audic and Claverie (1997).

The null hypothesis is that the frequency of the gene is
the same in each library. For a gene with transcript frequency
f, the number of transcripts in library i is approximately dis-
tributed as a Poisson variable with parameter fNi. Therefore,
the likelihood of the observed data, under the null hypoth-
esis, is given by

L0 = �
i=1

m e−fNi�fNi�
xi,j

xi,j!
. (4)

The maximum likelihood estimate of the common gene fre-
quency is the solution to the equation

dL0

df
= 0. (5)

The solution, fj, is given by

fj =
�
i=1

m

xi,j

�
i=1

m

Ni

. (6)

This is just the proportion of the mRNA for the gene of inter-
est among all mRNA transcripts in all of the libraries. Observe
that this is also the general solution that maximizes the like-
lihood of the entire data set under the null hypothesis. Thus,
the maximum estimate of the likelihood of the observed data
under the null hypothesis, Lj

0, is given by

Lj
0 = �

i=1

m e−fjNi�fjNi�
xi,j

xi,j!
. (7)

Under the alternative hypothesis, the frequency of gene tran-
scripts in each library is different. The maximum likelihood
estimate of gene frequency in each library i is xi,j/Ni. There-
fore, the gene abundance in library i is approximately distrib-
uted as a Poisson variable with parameter xi,j. (When xi,j = 0,
the Poisson distribution is well defined, with the event x = 0
having probability 1, and events x > 0 having probability 0).
Note that for the Poisson approximation to hold, each library
must have at least 50 ESTs sequenced (Hays 1994). Thus, the
maximum estimate of the likelihood of the observed data
under the alternative hypothesis is given by

Lj
1 = �

i=1

m e−xi,jxi,j
xi,j

xi,j!
(8)

The null hypothesis is compared with the alternative hypoth-
esis by taking the log of the ratio of the two likelihoods, that
is, log (L1

j /L0
j ). This gives the test statistic Rj

Rj = �
i=1

m

xi,j log� xi,j

Nifj
�. (9)

Application of Method to CGAP Data
For each sequence in the CGAP libraries, we identified the
Unigene cluster to which the sequence has been allocated;
this was acheived by searching for the accession number of
the EST in the Unigene database (Hs Build 96; Boguski and
Schuler 1995; http://www.ncbi.nlm.nih.gov/ncicgap/). The
number of ESTs from each library that belong to each Unigene
cluster were used as the input into the statistical test. The test
was applied to each gene in turn. The genes were then ordered
according to their value of the test statistic R.

Verification
For the first verification, the number of false positives is as-
sessed by generating random data sets satisfying the null hy-
pothesis, and performing the analysis on these data. This is
used to provide a quantitative measure of the extent to which
the results of the original analysis can be believed. For each
gene, the common gene transcript frequency, fj (eqaution 2) is
calculated. Then, for each library, a random gene abundance
is generated from a Poisson distribution whose parameter is
equal to the expected number of gene transcripts for that
library(equal to Nifj for library i).

One-thousand random data sets were generated in this
way. The analysis was performed on each data set. For each
level of the log likelihood test statistic R, the mean number of
genes across the 1000 analyses with at most that log likeli-
hood was calculated. This was compared with the number of
genes from the true data set with at most the same level of R.
For each log likelihood threshold, the proportion of the genes
from the true data set likely not to be false positives was cal-
culated.

Theoretical Considerations of the Test Statistic
When the null hypothesis is correct, there are a number of
theoretical considerations that can be made about the test
statistic. Under the null hypothesis, the true frequency of
each gene j, in every library, is fj, as given in equation 6.

Firstly, under Wilke’s theorem (De Groot 1986), as all of
the Ni → �, the distribution of 2Rj for each Rj tends to a �2

distribution with m – 1 degrees of freedom.
Secondly, for each library, the probabilities of the ob-

served gene frequencies, {xij/Ni � 1 � j � k} deviating from the
actual frequencies {fj � 1 j � k} can be determined. These are
denoted Pi. When Ni is large, the theory of large deviations
(Ellis 1985) estimates that Pi decays exponentially, so that

Ni

lim
→�

1
Ni

log Pi = −Ii. (10)

Ii is the large deviations rate function for a multinomial dis-
tribution and is given by

Ii = �
j

xi,j

Ni
log

xi,j�Ni

fj
. (11)

This function is also know as the Kullback-Leibler distance
between the two frequencies and measures the relative en-
tropy between them. Because there are m (independent) li-
braries, the joint probability of observing {xi,j: 1 � i � m, 1 �

j � k} is �iPi, which is proportional to

Stekel et al.

2060 Genome Research
www.genome.org



exp�−�
i=1

m

Ni Ii� = exp�−�
j=1

k

Rj� (12)

Equation 12 gives the duality under which we may think of
the probability of observing the expression of gene j in each of
the libraries as proportional to e�Rj.

There is an alternative way to view Rj as an appropriate
test statistic. Consider the distribution of the number of mR-
NAs for gene j, in all libraries, {xi,j: 1 � i � m}, conditioned on
the total number of mRNAs for gene j seen in all of the librar-
ies. We denote this total as xj = 	ixi,j. If each of the xi,j are
drawn from Poisson random variables, then, according to the
divisibility property of the Poisson distribution, the variables
{xi,j|xj: 1 � i � m} are drawn from a multinomial distribution,
with xj events, and m outcomes, with probabilities N1/
N, . . . , Nm/N. N is the total number of observed mRNAs in all
of the libraries, equal to 	i Ni. When xj is large, the large
deviations rate function for the multinomial distribution
(equation 11) can be used directly to deduce that the prob-
ability of observing {xi,j: 1 � i � m |xj} is proportional to

exp�−xj �
i

xi,j

xj
log�xi,j�xj

Ni�N�� = e−Rj. (13)

Therefore, with k genes, the expected number of genes for
which the test statistic R is approximately r will decrease ex-
ponentially as a function of r, with gradient �1. Thus, a loga-
rithmic plot of the number of genes with R approximately r, as
a function of r, can be used to determine the extent to which
the number of observed genes with a given value of R is
greater than one would expect by random chance.
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