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Abstract
Nickel-catalysed reductive coupling reactions of alkynes have emerged as powerful synthetic tools
for the selective preparation of functionalized alkenes. One of the greatest challenges associated
with these transformations is control of regioselectivity. Recent work from our laboratory has
provided an improved understanding of several of the factors governing regioselectivity in these
reactions, and related studies have revealed that the reaction mechanism can differ substantially
depending on the ligand employed. A discussion of stereoselective transformations and novel
applications of nickel catalysis in coupling reactions of alkynes is also included.

Introduction
1.1 Addition reactions of alkynes

Alkynes are very useful functional groups in synthetic chemistry. They are stable to many
common nucleophiles and electrophiles and generally resistant to mild acids, bases, and
oxidants. Thus, the selective functionalization of alkynes via hydromet alation has proven to
be a versatile tool in organic 1 synthesis. However, many of the common hydrometalations
of alkynes require stoichiometric use of a metal reagent, and there has been growing interest
in reactions of alkynes that are catalysed by a transition metal.2 Nickel has been associated
with the catalytic reactions of alkynes s ince the seminal work of Reppe and Wilke3 and has
since been shown to catalyse many such alkyne functionalization transformations4,5

including the addition of alkynes to enones (eq 1).6,7 The appearance in recent years of
several excellent reviews on nickel-catalysed transformations reflects the growing interest in
nickel catalysis.8 This account will focus on advances since 2004 in the area of nickel-
catalysed carbon-carbon bond-forming reactions of alkynes, with an emphasis on
improvements made to control selectivity, increase reactivity, and expand the substrate
scope of certain alkyne addition reactions.

1.2 Nickel-catalysed reductive and alkylative coupling reactions of alkynes to form allylic
alcohols

Allylic alcohols are a found in a variety of natural products (Figure 1).9 While numerous
methods for the synthesis of allylic alcohols have been reported,10 routes that offer
improved convergence and functional group compatibility continue to attract significant
interest. For example, coupling reactions of alkynes and aldehydes that employ a
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stoichiometric reducing agent and a catalytic nickel source allow for single-step generation
of this versatile functional group array.

1.2a) Intramolecular nickel-catalysed reductive and alkylative cyclization of α,ω-alkynals
In 1997, Montgomery and coworkers reported the first example of a nickel-catalysed
reductive cyclization of an alkynal. In this transformation, diethylzinc served as the
stoichiometric reducing agent, while the catalyst was composed of bis(1,5-
cyclooctadiene)nickel(0) (Ni(cod)2) and tributylphosphine (eq 2).11 The authors observed
that, in the absence of a catalytic phosphine additive, the alkylative cyclization product (i.e.,
transfer of Et instead of H from diethylzinc) is observed (eq 3).11 These cyclization
strategies have been further developed and found several applications in total synthesis.12

1.2b) Intermolecular nickel-catalysed reductive and alkylative coupling of alkynes
The first report of an intermolecular nickel-catalysed coupling reaction of alkynes and
aldehydes also employed diethylzinc as the stoichiometric reducing agent, and afforded the
alkylative coupling product (i.e., transfer of Et from diethylzinc) (eq 4).11 To achieve
intermolecular reductive coupling, our group examined a variety of reducing agents and
catalytic ligand additives, eventually determining that use of triethylborane in the presence
of catalytic Ni(cod)2 and tributylphosphine provided the E-trisubstituted allylic alcohol with
excellent yield and selectivity (eq 5).13,14 We later found that a similar transformation was
also possible using epoxides as coupling partners, which afforded homoallylic alcohol
products (eq 6).15,16 An intermolecular, nickel-catalysed three-component coupling of
alkynes, imines, and organoborane reagents (either boronic acids or trialkylboranes) was
also developed (eq 7).17 These reactions all proceed with exclusive syn-addition across the
alkyne, and often in excellent regioselectivity, making them attractive candidates for use in
total synthesis. As such, nickel-catalysed coupling reactions of alkynes have been used in
both fragment coupling reactions and macrocyclizations by ourselves18 and others.19

2 Regioselectivity in nickel-catalysed reductive coupling reactions
Several classes of alkynes have previously been shown to afford excellent regioselectivity in
nickel-catalyzed coupling reactions, including aryl-substituted alkynes (Ar–C≡C–alkyl),
alkynyl silanes (R–C≡C–SiR3), and terminal alkynes (R–C≡C–H) (Table 1).14,18,20

However, alkynes substituted with two sterically and electronically similar groups, such as
dialkyl alkynes (i.e., alkyl–C≡C–alkyl’) typically afford poor regioselectivity (Table 1, entry
4).

2.1 1,3-Enynes
To address this deficiency and based on a hypothesis that the high regioselectivity observed
with aryl-substituted alkynes is likely due to an electronic differentiation between the
alkyland the aryl- substituents, we considered the possibility that another conjugating group
would provide similar regiocontrol (Figure 2). Of possible choices for such groups, a simple
olefin seemed most intriguing as it might then be possible to convert this directing group
into the corresponding saturated alkyl chain after the nickel-catalysed reductive coupling via
site-selective hydrogenation.

We found that coupling reactions of 1,3-enynes are highly regioselective when
trialkylphosphines are used as ligands (Scheme 1).21 A variety of substitution patterns on the
enyne are tolerated and both aldehydes and terminal epoxides can be employed as coupling
partners. As terminal epoxides are readily available in highly enantiomerically-enriched
form,22 this method represents a convenient synthesis of enantiomerically-enriched
homoallylic dienes.
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We initially hypothesized that the high regioselectivity observed with 1,3-enynes was
simply due to an electronic distinction between the two alkyne substituents; however,
several results dispute this assertion. First, complete regioselectivity was observed in a
reaction of 1-phenyl-3-butenyne, suggesting that a vinyl group is a significantly more potent
directing group than a phenyl ring (Scheme 2). Second, coupling reactions of 5,5-dimethyl-
hexenyne not only proceed efficiently, but in excellent regioselectivity to favour C-C bond
formation at the more hindered alkyne carbon. The latter result is in stark contrast to other
tert-alkyl-substituted alkynes, which either do not react at all under these conditions, or
favour exclusive formation of the opposite, less-hindered regioisomer. Thus, the alkene
substituent appears to strongly direct regioselectivity and also significantly increase
reactivity. We believe that this unique effect is a result of the ability of the olefin to form a
favourable bonding interaction with the nickel in a high-energy intermediate such as 1,
which serves to lower the energy of the transition state and thus influence regioselectivity.23

A site-selective, rhodium-catalysed reduction of the less substituted olefin in the dienyl
alcohols products obtained provides access to alkyl-substituted allylic and homoallylic
alcohols not otherwise accessible in a regioselective fashion using nickel-catalysed reductive
coupling chemistry (eq 8).

2.2 1,6-Enynes
In order to determine whether the directing effect of the olefin observed with 1,3-enynes
could be extended to non-conjugated systems, a series of enynes was synthesized and
evaluated in nickel-catalysed reductive couplings with isobutyraldehyde (Table 2).24

Remarkably, in the absence of a phosphine additive, a marked difference in reactivity and
selectivity was observed when the alkyne and alkene were separated by three methylene
units (entry 4, Table 2). As it is very unlikely that enyne 4 is significantly different in a
steric or electronic sense to alkynes 2, 3, or 5, it seems that direct involvement of the olefin
in the reaction occurs uniquely in the case of the 1,6-enyne.

Considering that almost all other nickel-catalysed reductive coupling reactions previously
reported required the addition of an external ligand,25 the coupling reaction of 1,6-enynes
and aldehydes proved remarkably general (Table 3). The presence of an olefin tether was
sufficient to overcome an inherent steric preference for the B regioisomer (entry 4, Table
3).26 Heteroatoms were also well tolerated and augment the versatility of this directed
transformation (entries 6-8, Table 3).

When conducted in the presence of an organophosphine additive (PCyp3), the
regioselectivity of the transformation showed a complete reversal, favouring regioisomer B
(Scheme 3). The switch in regioselectivity upon the addition of a catalytic amount of an
additive is highly unusual amoung tethered olefin-directed metal-mediated reactions.27 The
effect of the ligand additive seemed dependant upon the size of the phosphine, as smaller
phosphines such as PBu3 provided a mixture of regioisomers.20

We hypothesize that this pronounced ligand effect could be explained by considering a
planar, 3-coordinate nickel complex28 that undergoes stereospecific ligand substitution with
retention of stereochemistry (Scheme 4). 29,30 The olefin tether must bind ‘cis’ to carbon b
to give 19. A series of stereospecific ligand substitutions then conserve this initial bias, thus
controlling regioselectivity even if the C–C bond is formed when the olefin is not
coordinated to the nickel.31

In the absence of a phosphine, the olefin remains bound to the nickel and the aldehyde
displaces a weakly bound ligand L to afford complex 20. A phosphine ligand (e.g., PCyp3)
binds strongly to the nickel center to give 21. The olefin tether is displaced preferentially by
the aldehyde to afford 22, which undergoes C–C bond formation to give regioisomer B.
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Phosphines with smaller cone angles (e.g., PBu3) likely form 2:1 complexes with nickel, and
thus will displace both L and the olefin. In this case, the aldehyde must displace either of
two identical phosphine ligands, and a mixture of regioisomers results (24 and 25).

By incorporating a chiral stereocenter into the tether, we sought to probe the likelihood that
the olefin remained bound, and hence imparted greater diastereoinduction, in the type I
pathway, but not the type II and type III pathways (Table 4).32 In the absence of a phosphine
ligand, a single regioisomer was observed (as expected), and in excellent diastereoselectivity
(95:5) (entry 1). This result is consistent with the olefin being bound to the nickel center
during the C-C bond forming step. In the presence of PCyp3, the opposite regioisomer is
formed (>95:5) as approximately a 1:1 mixture of diastereomers (entry 2), suggesting that in
this case the reaction proceeds through selective formation of complex 22. With PBu3, a
mixture of regioisomers is observed, each of which is a mixture of diastereomers (entry 3), a
result that is consistent with formation of a mixture of complexes 24 and 25. The
observation of stereochemical induction in the presence of a chiral phosphine ligand (entries
4 and 5) offers further support for the proposal that the phosphine is bound in the type III
and, by extrapolation, the type II pathways.

All of these results are best explained via stereospecific ligand substitution on a
trisubstituted planar nickel complex. Therefore, for nickel-catalysed reductive coupling
reactions of alkynes and aldehydes using triethylborane as the reducing agent and
organophosphine ligands we propose that the reaction proceeds through complex 22.

2.3 Effect of N-heterocyclic carbene ligands
N-Heterocyclic carbenes (NHC's) are sterically hindered, electron-rich ligands that have
proven useful in a wide variety of metal-catalysed transformations (Figure 3).33 Recent
applications in nickel-catalysed reductive coupling reactions have further illustrated the
influence of the ligand on both reaction mechanism and regioselectivity.34,35 Montgomery
examined the macrocyclization of 28 and found that when R1 is phenyl, both phosphine and
NHC ligands afford product 30; however, when R1 is methyl, different regioselectivities
were observed (Scheme 5).33 Use of triethylborane as the reducing agent and PMe3 as the
ligand favoured formation of endocyclic product 29 (9:2 ratio), whereas a combination of
IPr and triethylsilane led to predominant formation of the exocyclic double bond (5:1). The
use of a larger phosphine (PBu3) resulted in a reduced preference (3:1) for the endocyclic
product and, similarly, a smaller NHC ligand (IMes) resulted in a 1:1 mixture of 29b:30b. A
study which compared the ratio of crossover products for the two sets of conditions revealed
an inherent difference in their mechanisms (Table 5).34 Very little crossover was observed
when using the NHC ligand (entries 2/3:1/4, >96:4), suggesting that addition of hydride and
silane occur simultaneously. However, in the presence of PBu3 significant amounts of
crossover products are formed, indicating that, in this case, the hydride and silane are added
in separate steps (entries 2/3:1/4, 57:43). This same study revealed that, when NHC's are
employed as ligands, it is possible to use trialkylsilanes as reducing agents in intermolecular,
nickel-catalysed reductive coupling of alkynes and aldehydes (Table 6).34,36 This method
generates silyl-protected allylic alcohols in excellent yield and regioselectivity when aryl-
substituted alkynes (Ar–C≡C–R), terminal alkynes (R–C≡C–H), and 1,3-enynes are used
(Table 6, entries 1-4).

3 Stereoselective nickel-catalysed reductive coupling reactions
Despite the success of nickel-catalysed coupling reactions of alkynes and aldehydes, until
recently very few techniques existed for controlling the configuration of the allylic alcohol
stereocenter generated during the reaction. There were only two, excluding our own work,
examples of stereoselective intermolecular reductive coupling reactions of alkynes with

Moslin et al. Page 4

Chem Commun (Camb). Author manuscript; available in PMC 2011 July 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



carbonyls in the 2004 review on nickel-catalysed reductive coupling reactions by
Montgomery.12b In the past few years, many methods for the control of stereochemistry in
intermolecular nickel-catalysed coupling reactions have been developed.

3.1 Enantioselective reactions
In 2003, we reported the first examples of catalytic, enantioselective reductive couplings of
alkynes and aldehydes, using two distinct classes of chiral organophosphines as ligands
(Figure 4). Superior results for alkynes containing one aromatic substituent (aryl–C≡C–
alkyl) were achieved using neomenthyldiphenylphosphine ((+)-NMDPP) as a chiral ligand
(Scheme 6).37 Alkynes substituted with two distinct alkyl groups (alkyl–C≡C–alkyl’)
afforded reductive coupling products with modest enantioselectivities when P-chiral
ferrocenyl phosphines 45/46 were employed.38

A ligand-controlled, stereoselective nickel-catalysed reductive coupling was used in the
synthesis of terpestacin Scheme 7).39 Fragments 33 and 34 were coupled to give the E-
trisubstituted allylic alcohols 36 and 37 with good regioselectivity. The configuration of the
allylic alcohol stereocenter was controlled by the configuration of the chiral phosphine. In
comparison, the use of tributylphosphine gave a 1:1 mixture of 36:37 allowing for the
synthesis of both terpestacin and epi-C11-terpestacin. It was originally believed that epi-
C11-terpestacin was its own natural product, siccanol. However, when we obtained a sample
of synthetic epi-C11-terpestacin it was determined that its spectra did not match that of
isolated siccanol but rather that of terpestacin itself.40 Macrocyclization via an
intramolecular allylation, followed by methylation and α-oxidation led to the completed
synthesis of terpestacin and epi-C11-terpestacin.

The P-chiral ferrocenyl phosphines developed in our laboratory have found use as ligands in
several other asymmetric nickel-catalysed coupling reactions of alkynes. 1,3-Enynes
underwent reductive coupling with a series of aromatic aldehydes in modest
enantioselectivities in the presence of a ferrocenyl phosphine 32 (Scheme 8).41 Although
higher enantiomeric excesses are available in the coupling of aryl-alkynes and aliphatic
aldehydes (Scheme 9), the enantiomerically enriched dienols afforded via 1,3-enyne
couplings offer significant flexibility for further modification.

The enhanced reactivity of 1,3-enynes observed in nickel-catalyzed reductive coupling
reactions also allowed for the use of ketones as electrophiles. Such couplings promoted by
32 afforded 1,3-dienes with an adjacent quaternary carbinol stereocenter in excellent
regioselectivity and up to 70% ee (Scheme 9).42 Site-selective reduction of the less-hindered
olefin provides access to enantiomerically enriched tertiary allylic alcohols, and ozonolysis
affords α-hydroxy ketones.

Enantioselective alkylative coupling reactions of alkynes and imines have been achieved
using 32 to afford allylic amines in up to 89% ee (Scheme 10).43 The use of a removable
(trialkylsilyloxy)ethyl protecting group allows for facile generation of primary allylic
amines, which can then be recrystallized to optical purity as their maleic acid salts.

3.2 Diastereoselective reactions
We recently reported the diastereoselective addition of aryl-alkynes (Ar–C≡C–alkyl) to α-
hydroxy aldehydes (Scheme 11).44,45 High anti-selectivity is obtained regardless of
protecting group on the α-hydroxy substituent. This is in sharp contrast to the syn-product
typically observed when nucleophiles are added to aldehydes that possess an α-hydroxy
group capable of coordination.46
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In a related report by Montgomery, high anti-selectivity (>98:2 for R1 = n-pentyl or CH2Bn)
was again observed (Scheme 12).47 In this case, a variety of silyl-substituted alkynes were
employed (R3Si–C≡C–R), including terminal and non-aromatic variants, and it was
demonstrated that global deprotection of all three silyl groups was possible using TBAF.
With respect to the aldehyde, the reaction was most effective when the R1 substituent was
unbranched; this was complimentary to our own work in which improved
diastereoselectivities were obtained when R1 was 3°.

The modes of diastereoinduction in these systems are unknown. Although the results are
consistent with a Felkin model in the absence of chelation, the mechanistic considerations
involved in this system are significantly more complex than a classical metalated
nucleophile. That being said, the observation that identical senses of induction are obtained
both in the absence and presence of a possible chelating group suggests that the α-alkoxy
group does not interact with nickel during the C-C bond-forming step.

Diastereoselectivity can also be influenced by substitution on the alkyne, as was observed in
our work on the reductive coupling of 1,6-enynes and aldehydes. Very high levels of
diastereomeric induction could be obtained by placing a chiral centre within the enyne
tether, even when the substituent was quite small (Scheme 13). Although the scope of the
diastereoselective nickel-catalysed reductive coupling reactions of 1,6-enynes and aldehydes
have not been fully explored, the high selectivities observed would suggest it as a viable
strategy for the stereoselective formation of allylic alcohols.

By using the allylic alcohols formed in stereoselective nickel-catalysed reductive
macrocyclizations as masked α-hydroxy ketones, we have completed the total syntheses of
amphidinolides T1 and T4 (Scheme 14).48 In both natural products, the macrocyclization
proceeds with excellent regioselectivity and diastereoselectivity. The regioselectivity is
likely controlled by the phenyl substituent, while the diastereoselectivity may be a function
of the cyclization since intermolecular variants were not as highly diastereoselective.
Protection of the allylic alcohol followed by ozonolysis, selective methylenation and HF
deprotection afforded the respective amphidinolides.

Conclusions
This review discusses recent developments in the area of nickel-catalysed coupling reactions
of alkynes.49,50 In the nickel-catalysed reductive coupling of alkynes and aldehydes,
significant advances have been made in improving substrate scope, controlling
regioselectivity, and understanding operative reaction mechanisms. Development of novel
ligand systems has allowed for additional control of regio-, diastereo-, and
enantioselectivities. The use of both imines and weakly electrophilic ketones as coupling
partners has been realized, and good to excellent enantioselectivities can be achieved in
many cases.

It is clear that numerous challenges in the field remain, including, for example, better control
of regioselectivity in couplings involving alkynes containing two distinct alkyl substituents
(alkyl–C≡C–alkyl’). However, as understanding of these catalytic systems increases,
enhancements in selectivity and generality may be obtained, thus supplementing the
versatility of these selective transformations.
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Fig. 1.
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Fig. 2.
1,3-Enynes as equivalents of aryl alkynes.
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Scheme 1.
1,3-Enynes as highly regioselective substrates in nickel-catalysed reductive coupling
reactions.

Moslin et al. Page 12

Chem Commun (Camb). Author manuscript; available in PMC 2011 July 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 2.
Highly regioselective Ni-catalysed reductive coupling reactions of 1,3-enynes and aldehydes
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Scheme 3.
Additive effects on regioselectivity.
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Scheme 4.
Origin of regioselectivity in nickel-catalysed coupling reactions of 1,6-enynes and
aldehydes. See eq 6, table 6.
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Fig. 3.
Representative NHC ligands.
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Scheme 5.
Nickel-catalyzed reductive cyclizations.
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Fig. 4.
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Scheme 6.
Asymmetric induction
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Scheme 7.
Ligand control in the total synthesis of terpestacin
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Scheme 8.
Asymmetric induction with Ni-catalysed reductive coupling reactions of 1,3-enynes and
aldehydes
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Scheme 9.
Asymmetric induction with Ni-catalysed reductive coupling reactions of 1,3-enynes with
ketones
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Scheme 10.
Asymmetric induction in the Ni-catalysed alkylative coupling of alkynes and imines.

Moslin et al. Page 23

Chem Commun (Camb). Author manuscript; available in PMC 2011 July 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 11.
Diastereoselective reductive coupling reactions of aryl-alkynes
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Scheme 12.
Diastereoselective reductive coupling reactions of silyl-alkynes
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Scheme 13.
Diastereoselective phosphine-free nickel-catalysed coupling reaction.
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Scheme 14.
Diastereoselective nickel-catalysed reductive cyclization.
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Table 1

Nickel-catalysed reductive coupling of alkynes and aldehydes

entry R1 R2
A:Ba

1 Ph Me 92:8

2 n-hex H 96:4

3 n-Bu SiMe3 >98:2

4 n-hex Et 50:50

a
Determined by 1H NMR.
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Table 2

Directing effects of tethered alkenesa

entry alkyne n yield (%) regioselectivity (A : B)b

1 1 0 <5 n.d.

2 2 1 <5 n.d.

3 3 2 <5 n.d.

4 4 3 53 >95 : 5

5 5 4 <5 n.d.

6 n-pentyl–C≡C-n-hexyl n.a. 28 50 : 50

a
Ni(cod)2 (10 mol %), Et3B (200 mol %) in EtOAc (0.5 mL), 15 h at room temperature.

b
Determined by 1H NMR and/or GC.
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Table 3

Catalytic reductive coupling reactions directed by a remote alkenea

enyne aldehyde product yield

1 69%

2 4 58%

3 4 60%

4 64%

5 62%

6 60%

7 62%
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enyne aldehyde product yield

8 68%

a
See eq 9, Table 2 for representative reaction. R1 = (CH2)3CH=CH2. R2 = CH2CH=CH2. Regioselectivity > 95:5 in all cases, determined by 1H

NMR and/or GC.
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Table 4

Coupling reactions of a chiral 1,6-enyne

entry reaction conditionsa A : Bb dr A (S:R)c dr Bc

1 I >95:5 95:5 --

2 II <5:95 -- 45:55

3 III 55:45 50:50 45:55

4 IV 48:52 30:70 28:72

5 V 55:45 66:34 68:32

a
I: Ni(cod)2 (10 mol %), Et3B (200 mol %). II: Reaction conditions I + PCyp3 (20 mol %). III: Reaction conditions I + PBu3 (20 mol %). IV:

Reaction conditions I + (R)-FcP(o ̱-i-Pr)Ph (20 mol %). V: Reaction conditions I + (S)-FcP(o ̱-i-Pr)Ph (20 mol %)

b
Based on isolated yields.

c
Determined by 1H NMR.
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Table 5

Ligand dependence in the observation of crossover products

relative %

entry R X from IPr from PBu3

1a Et H <2 25

2 Et D 55 34

3 Pr H 41 23

4a Pr D <2 18

a
Crossover product.
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Table 6

Nickel-catalysed intermolecular reductive coupling reactions

entry R1 R2 R3 yield (regioselectivity)

1 Ph CH3 Ph 84% (>98:2)

2 C6H13 CH3 Ph 82% (>98:2)

3 Ph H C6H13 71% (>98:2)

4 Ph Ph C(CH3)=CH2 84% (>98:2)
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