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INTRODUCTION

Toll-like receptors (TLRs) sense microbial products and
play an important role in innate immunity. Ten TLR paralogs
and up to 10 members of the interleukin-1 receptor (IL-1R)
family have been identified in humans. IL-1Rs are also innate
receptors important for the signaling of three cytokines, IL-1�,
IL-18, and IL-33, which are thought to contribute to host
defense in the early steps of the inflammatory response (17).
TLRs and members of the IL-1R family contain an intracellu-
lar domain known as the Toll–IL-1R domain (TIR) (30). TIR-
containing TLRs and IL-1Rs recruit the TIR-containing cyto-
solic adaptors MyD88, TRIF, TIRAP (also known as MAL),
TRAM, and SARM (31, 47). The canonical TIR pathway de-
pends on MyD88, which is used by all TLRs except for TLR3
and by at least three IL-1Rs: IL-1R, IL-18R, and IL-33R (Fig.
1). The alternative pathway is controlled by another key adap-
tor, TRIF, which is the only adaptor used by TLR3 and is also
used by TLR4 (which can also use MyD88). The remaining
three adaptors serve as coadaptors or negative regulators. The
sorting adaptor TIRAP recruits MyD88 to TLR2 and TLR4,
whereas TRAM recruits TRIF to TLR4. Finally, SARM ap-
pears to be a negative regulator of TRIF (5). The adaptors, in
turn, recruit cytosolic kinases, including the IL-1R-associated
kinase (IRAK) complex, which is recruited by MyD88 and
seems to be the most TIR-specific kinase used in these path-
ways (38, 61).

The classical pathway results in the activation of both nu-
clear factor �B (NF-�B) and mitogen-activated protein kinases

(MAPKs) via the IRAK complex (Fig. 1), which consists of two
active kinases (IRAK-1 and IRAK-4) and two noncatalytic
subunits (IRAK-2 and IRAK-3/M). NF-�B is a transcription
factor sequestered in the cytoplasm of resting cells through
association with the inhibitor of NF-�B (I�B) proteins. Upon
cell stimulation, I�Bs are phosphorylated at two conserved
critical amino-terminal serine residues by the I�B kinase (IKK)
complex, leading to their ubiquitination and subsequent deg-
radation. The IKK complex is composed of at least two related
catalytic subunits, IKK� and IKK�, and IKK�/NEMO (NF-�B
essential modulator) (Fig. 1). The degradation of I�Bs results
in the translocation of NF-�B dimers to the nucleus, where
they bind to DNA at cognate binding sites and regulate gene
transcription (59). The classical proinflammatory TLR signal-
ing pathway leads to the synthesis of inflammatory cytokines
and chemokines, such as IL-1�, -6, -8, and -12 and tumor
necrosis factor alpha (TNF-�). NF-�B dimers are also involved
in various other immunological pathways (e.g., tumor necrosis
factor receptor [TNF-R] superfamily member, T-cell receptor
[TCR], and B-cell receptor [BCR] pathways) and developmen-
tal pathways (e.g., pathways with ectodysplasin [EDA], RANK,
and VEGFR3, required for normal ectodermal, bone, and
lymphatic development, respectively) (Fig. 1).

Four Mendelian primary immunodeficiencies (PIDs) associ-
ated with impaired signaling of the TLR canonical pathway
have been reported, with mutations in MyD88, IRAK4, NEMO,
and IKBA (Fig. 1) (12, 18, 57, 70). Defects of NEMO and IKBA
also impair the alternative, TRIF-dependent pathway. The
dominant infectious phenotype of patients with any of these
four defects is the occurrence of pyogenic bacterial infections.
Alternatively, three other genetic defects, caused by mutations
in TLR3, UNC93B, and TRAF3, principally affect the alterna-
tive pathway (8, 55, 73). In addition, mutations in UNC93B and
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TRAF3 also impair the TLR7-9 pathway without any overt
clinical consequences. The dominant infectious phenotype of
patients with TLR3, UNC93B, or TRAF3 deficiency is herpes
simplex encephalitis. We summarize here the infectious dis-
eases seen in patients with mutations predominantly impairing
the canonical pathway (6). The infections striking patients with
mutations in the alternative pathway have been reviewed else-
where (55, 72). We also discuss the diagnostic and therapeutic
options for such patients in an attempt to propose tentative
guidelines for clinicians.

INBORN ERRORS OF THE TIR PATHWAY: IRAK-4 AND
MyD88 DEFICIENCIES

Molecular Basis and Immunological Features

Autosomal recessive IRAK-4 deficiency was first discovered
in 2003 (57). Up to 49 patients have since been identified, from
32 kindreds in 14 countries on 4 continents: the Americas
(Canada, El Salvador, and the United States), Asia (Israel,
Japan, Saudi Arabia, and Turkey), Australia, and Europe

(France, Hungary, Portugal, Slovenia, Spain, and the United
Kingdom) (2, 4, 10, 13, 15, 16, 21, 27, 32, 34–36, 41, 43, 58, 66,
68, 69, 71; our unpublished data). Autosomal recessive MyD88
deficiency was first discovered in 2008 (70). Up to 22 patients
have since been identified, from seven kindreds in six countries
in the Americas (United States), Asia (Turkey), and Europe
(France, Portugal, Serbia, and Spain) (11, 58). MyD88- and
IRAK4-deficient patients have homozygous or compound
heterozygous mutations in the IRAK4 or MYD88 gene, while
heterozygous carriers are asymptomatic. IRAK-4 is a serine-
threonine kinase acting downstream from TLRs and IL-1Rs
(TIRs) (Fig. 1). MyD88 is a cytosolic adapter molecule con-
necting TLRs and IL-1Rs to the IRAK complex (Fig. 1). The
MyD88- and IRAK-4-dependent TIR pathway leads to the
production of proinflammatory cytokines. All human TLRs
other than TLR3 use both MyD88 and IRAK-4 (64, 65). Blood
leukocytes derived from MyD88- and IRAK4-deficient pa-
tients display a lack of IL-6 production by whole blood or a
lack of CD62 ligand (CD62L) shedding from granulocytes fol-
lowing activation with most of the TLR and IL-1R agonists

FIG. 1. TIR and NF-�B signaling pathways. Immune receptor signaling pathways leading to NF-�B activation can be grouped into four
categories on the basis of the surface receptors involved: members of the TIR superfamily (IL-1Rs/TLRs), antigen receptors (TCR and BCR),
members of the TNF-R superfamily (TNF-Rs), and RANK, VEGFR3, and EDAR. The two proteins of the TIR signaling pathway (MyD88 and
IRAK-4) and the two proteins of the NF-�B signaling pathway (NEMO and I�B�) responsible for primary immunodeficiencies are shown.
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tested, with the exception of agonists of TLR3, which uses a
MyD88- and IRAK-4-independent pathway (69, 70, 73).
MyD88 and IRAK-4 deficiencies are phenocopies in terms of
their immunological phenotype (70). There seems to be no
overt defect of leukocyte development in IRAK-4- and
MyD88-deficient patients; antigen-specific T- and B-cell re-
sponses seem to be normal, as shown in routine immunological
workups, with two notable exceptions (35, 70). First, the gly-
can-specific immunoglobulin G (IgG) and IgM antibody re-
sponses to pneumococcal and AB glycans (allohemagglutinins
of the ABO system) are impaired in up to one-third of patients
explored (58). Second, serum IgE and IgG4 concentrations are
high in up to two-thirds and one-third, respectively, of patients
tested (58). Nevertheless, none of the MyD88- and IRAK-4-
deficient patients described thus far suffer from allergic
asthma, and chronic eczematous skin disease has been re-
ported for only one patient. Both IRAK-4 and MyD88 defi-
ciencies confer a predisposition to severe bacterial infection,
with impairment of the abilities to increase plasma C-reactive
protein (CRP) concentrations and to mount fever at the be-
ginning of infection; however, pus formation is observed at the
various sites of infection (58). Only small amounts of IL-6 are
produced by IRAK-4- and MyD88-deficient cells upon activa-
tion with IL-1 and TLR agonists, and CRP is an IL-6-inducible
molecule. Likewise, small amounts of IL-8 are produced in
response to the same agonists, yet pus is formed in the patients,
although IL-8 is a major chemoattractant of granulocytes. This
suggests that IL-8 is produced in response to other stimuli in
vivo, that factors other than IL-8 recruit granulocytes locally,
or both. Finally, delayed separation of the umbilical cord is
observed in 20% of IRAK-4-deficient patients (58). The un-
derlying mechanisms are unclear.

Clinical Manifestations

Despite having a broad and profound immunological phe-
notype, patients with IRAK-4 and MyD88 deficiencies present
narrow susceptibility ranges for invasive (meningitis, sepsis,
arthritis, osteomyelitis, and abscesses) pyogenic bacterial in-
fections and have normal resistance to common fungi, para-
sites, viruses, and many bacteria. In one study, meningitis oc-
curred in 63% of IRAK-4-deficient patients, sepsis in 37%,
arthritis in 29%, osteomyelitis in 14%, and deep inner organ/
tissue abscesses in 29% (Table 1) (58; unpublished data). Men-
ingitis occurred in 45% of MyD88-deficient patients, sepsis in
50%, arthritis in 14%, osteomyelitis in 9%, and deep inner
organ/tissue abscesses in 14% (Table 1). Only five IRAK-4-
deficient patients have never developed invasive bacterial in-
fection, including four patients diagnosed at birth (siblings of
previously diagnosed patients with IRAK-4 deficiency) who
have remained asymptomatic on prophylactic treatment (58).
Only two MyD88-deficient patients have never developed in-
vasive bacterial infection (11). For both IRAK-4 and MyD88
deficiencies, most of the invasive bacterial infections observed
are caused by Streptococcus pneumoniae, Staphylococcus au-
reus, and Pseudomonas aeruginosa. In IRAK-4-deficient pa-
tients, S. pneumoniae was involved in 54% of documented
invasive episodes, whereas S. aureus and P. aeruginosa were
found in 14% and 19% of such episodes, respectively (Table
2). Other Gram-positive and Gram-negative bacteria also

cause invasive disease in IRAK-4-deficient patients (Table 2).
In MyD88-deficient patients, S. pneumoniae was involved in
41% of documented invasive episodes, whereas S. aureus and
P. aeruginosa were found in 20% and 16% of such episodes,
respectively (Table 2). Other Gram-positive and Gram-nega-
tive bacteria also cause invasive disease in MyD88-deficient
patients (Table 2). The first bacterial infection occurred before
the age of 2 years in 90% of IRAK-4- and MyD88-deficient
patients. Twenty-seven patients (38%) died of invasive bacte-
rial infections (37% of IRAK-4- and 41% of MyD88-deficient
patients), all before the age of 8 years and most before the age
of 2 years (11, 58). Eighteen of these patients died of invasive
pneumococcal disease. However, both PIDs improved with
age, and patients with IRAK-4 and MyD88 deficiencies pre-
sented no further invasive bacterial infections after their teens
(58).

Patients with IRAK-4 and MyD88 deficiencies also present
noninvasive pyogenic bacterial infections, mostly affecting the
skin and upper respiratory tract sites, where necrotizing infec-
tions are particularly common. Recurrent, localized skin infec-
tions (furunculosis, folliculitis, cellulitis, omphalitis, and orbital
cellulitis or endophthalmitis) have been found in 35% of pa-
tients, lymphadenitis in 27% of patients, and ear, nose, and
throat (ENT) infections (otitis, sinusitis, tonsillar abscesses,
necrotizing epiglotitis, pharyngitis, and palate infection) in
28% of patients (Table 1) (58; unpublished data). Intriguingly,
only 17% of patients have had pneumonia, and none have
developed chronic bronchopulmonary disease. The principal
bacterial species isolated during noninvasive infections were
S. aureus, in 43% of episodes in IRAK-4-deficient patients and
53% of episodes in MyD88-deficient patients; P. aeruginosa, in
22% of episodes in IRAK-4-deficient patients and 13% of
episodes in MyD88-deficient patients; and S. pneumoniae, in
16% of episodes in IRAK-4-deficient patients and 20% of
episodes in MyD88-deficient patients (Table 2). Other Gram-
positive and Gram-negative bacteria have also caused nonin-
vasive disease in IRAK-4-deficient patients, whereas only a few
other Gram-negative bacteria have been shown to cause non-
invasive disease in MyD88-deficient patients (Table 2). Infec-
tions caused by agents other than pyogenic bacteria did not
include severe mycobacterial, viral, parasitic, and fungal dis-
eases. Only one IRAK-4-deficient patient developed otitis and
pneumonia caused by Mycobacterium avium. All IRAK-4-de-

TABLE 1. Percentages of IRAK-4- and MyD88-deficient patients
with bacterial infections at various sitesa

Infection

% of patients with infection

All patients
(n � 71)

IRAK-4-deficient
patients (n � 49)

MyD88-deficient
patients (n � 22)

Meningitis 58 63 45
Sepsis 41 37 50
Arthritis 24 29 14
Osteomyelitis 13 14 9
Abscess 24 29 14
Lymphadenitis 27 29 23
Skin infection 35 45 14
Pneumonia 17 18 14
ENT infection 28 35 14

a Based on data from references 11 and 58 and unpublished data.
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ficient and MyD88-deficient patients have presented noninva-
sive bacterial infections, with more than half of these patients
suffering from their first noninvasive bacterial infection before
the age of 2 years and with all patients continuing to suffer
from skin infections, sinusitis, or pneumonia, including those
who have reached adulthood (58; unpublished data).

Treatment of IRAK-4 and MyD88 Deficiencies

Patients with IRAK-4 and MyD88 deficiencies should be
immunized with S. pneumoniae conjugated and nonconjugated
vaccines, Haemophilus influenzae conjugated vaccine, and Neis-
seria meningitidis conjugated and nonconjugated vaccines. A
preventive treatment including antibiotic prophylaxis with cot-
rimoxazole plus penicillin V (in the absence of allergy to one of
these antibiotics) should be administered throughout the life of
the patient. Regarding the severity of bacterial infection during
childhood and the defect of antibody production found in
some IRAK-4-deficient patients, we also recommend empirical
intravenous or subcutaneous IgG injections until the patient is
at least 10 years old. This prophylaxis seems to decrease the
incidence of invasive bacterial infections (58). The most im-
portant advice for the families and physicians of IRAK-4-
deficient and MyD88-deficient patients is to initiate empirical
parenteral antibiotic treatment against S. pneumoniae, S. au-
reus, and P. aeruginosa as soon as an infection is suspected or
if the patient develops a moderate fever, without taking in-
flammatory parameters into account, because patients may die
from rapid invasive bacterial infection despite appropriate pro-
phylaxis. Secondary adaptation of antibiotic treatment should
be done once the causal bacterium has been documented.

Outcomes of IRAK-4 and MyD88 Deficiencies

Both IRAK-4 and MyD88 deficiencies confer a predisposi-
tion to invasive bacterial infections, mostly caused by S. pneu-

moniae, S. aureus, and P. aeruginosa. These two deficiencies
also confer a predisposition to noninvasive bacterial infection,
with severe skin infections, mostly caused by S. aureus, and
severe forms of ENT infections caused by P. aeruginosa fre-
quently observed. Clinical status and outcome improve with
age, and prophylactic treatment seems to be beneficial in these
patients. The dramatic improvement with age may be ac-
counted for by the development of adaptive antigen-specific T-
and B-lymphocyte responses. Thus, in both IRAK-4 and
MyD88 deficiencies, S. pneumoniae, S. aureus, and P. aerugi-
nosa are by far the most commonly isolated pathogens causing
invasive infection, and S. aureus is by far the most commonly
isolated pathogen causing noninvasive infection. Of course,
with only 71 patients from 15 countries, we cannot draw firm
and definitive conclusions regarding the range and severity of
infectious diseases in such patients. Indeed, similar patients
exposed to other microorganisms may develop an as yet un-
known infectious phenotype. For example, two patients with
shigellosis and two others with late-onset group B streptococ-
cal disease have been identified. Nevertheless, we think that
the phenotype described is sufficiently robust that the discovery
of new infections would have no major effect on the phenotypic
description of these disorders.

INBORN ERRORS OF NF-�B-MEDIATED IMMUNITY:
NEMO AND I�B� DEFICIENCIES

Molecular Basis and Immunological Features

X-linked recessive anhidrotic ectodermal dysplasia with
immunodeficiency (XR-EDA-ID) caused by hypomorphic
IKBKG/NEMO mutations impairing NF-�B activation was first
described in 2000 (74) and 2001 (18). NEMO is a regulatory
subunit of the IKK complex (59). Up to 100 male patients with
hypomorphic mutations of NEMO have been reported, and
about 43 different mutations leading to impaired NF-�B acti-

TABLE 2. Documented bacterial infections in IRAK-4- and MyD88-deficient patientsa

Infection organism

% of patients with invasive infection
(n � 71 patients)

% of patients with noninvasive infection
(n � 71 patients)

IRAK-4-deficient patients
(105 infections)

MyD88-deficient patients
(44 infections)

IRAK-4-deficient patients
(63 infections)

MyD88-deficient patients
(15 infections)

S. aureus 14 20 43 53
S. pneumoniae 54 41 16 20
Other Streptococcus spp. (A and B groups) 6 11 8
P. aeruginosa 19 16 22 13

Other Gram-negative bacteria 7 11 10 13
Shigella sonnei 2
Neisseria meningitidis 2
Haemophilus influenzae 2 2
Salmonella enterica serovar Enteritidis 7
Klebsiella pneumoniae 7
Escherichia coli 5 7
Serratia marcescens 2
Moraxella catarrhalis 2 2
Clostridium septicum 1
Citrobacter freundii 2

Mycobacterium avium 1

a Based on data from references 11 and 58 and unpublished data.
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vation have been identified (1, 9, 14, 18, 20, 22, 24–26, 28, 33,
34, 37, 40, 45, 46, 48–53, 60, 62, 63, 74; unpublished data).
Patients with this deficiency have been identified in 14 coun-
tries on 4 continents: Africa (South Africa), North America
(Canada and the United States), Asia (Japan and Turkey), and
Europe (Belgium, France, Germany, Italy, Poland, Nether-
lands, Norway, Switzerland, and the United Kingdom). In
2003, an autosomal dominant form of EDA-ID (AD-EDA-ID)
was identified, caused by a hypermorphic heterozygous muta-
tion of NFKBIA/IKBA, impairing the phosphorylation and deg-
radation of I�B� and resulting in the partial retention of
NF-�B dimers in the cytoplasm (Fig. 1) (12). Five patients with
three different hypermorphic mutations of IKBA were subse-
quently identified in 2003 (12, 19, 29, 39, 42). The patients
originated from three countries on two continents: North
America (United States) and Europe (Italy and the Nether-
lands). NF-�B dimers are involved in several pathways, includ-
ing those triggered by the many members of the TNF-R, IL-
1R, TCR, BCR, and TLR families. I�B� deficiency involves a
severe impairment of TCR signaling (12). For NEMO defi-
ciency, the degree of impairment of the various pathways de-
pends on the mutation, with anything from one to all of these
pathways being affected (59). NEMO-deficient patients gener-
ally display a lack of IL-10 production in response to activation
with TNF-� in whole-blood assays (25, 59). Most patients bear-
ing NEMO mutations have an impaired antibody response, in
particular that to glycans, including pneumococcal capsules
(59). I�B�-deficient patients have hypogammaglobulinemia
with no production of specific antibodies; some of them also
have low proportions of memory CD4 and CD8 T cells and no
TCR�/� T cells and display severe impairment of T-cell pro-
liferation in response to anti-CD3. All I�B�-deficient patients
without mosaicism and about 90% of the NEMO-deficient
patients described to date have EDA, with sparse hair, abnor-
mal teeth (conical teeth, tooth agenesis), and hypohidrosis (a
lack of sweating) (25, 59). These features result from defective
signaling via the ectodysplasin receptor (EDA-R) signaling
pathway. One I�B�-deficient patient with complex mosaicism
does not display features of EDA (29). In some NEMO-defi-
cient patients, associated osteopetrosis and/or lymphedema
has been described in addition to EDA (18, 25). About 10% of
NEMO-deficient patients have no developmental phenotype
(25, 45, 60).

Clinical Manifestations

The broad and profound immunological phenotypes of pa-
tients with I�B� and NEMO deficiencies are responsible for
their broad susceptibility to infections with invasive pyogenic
bacteria (meningitis, sepsis, arthritis, osteomyelitis, and ab-
scesses), environmental mycobacteria, and, to a lesser extent,
parasites, viruses, and fungi. All five I�B�-deficient patients
have developed recurrent bacterial infections, with pneumonia
in five cases, sepsis or meningitis in three cases, and arthritis in
one case (Table 3) (19, 29, 39, 42). They are also prone to
opportunistic infections, with three of them having had
pulmonary pneumocystosis and chronic mucocutaneous candidi-
asis (Table 4). Finally, four of these patients have presented re-
current diarrhea and/or colitis. One-third of NEMO-deficient
patients have had sepsis, one-third have had deep tissue ab-
scesses, one-third have had recurrent pneumonia with bron-
chiectasis, 18% have had meningitis or encephalitis, 24% have
had gut infection, 16% have had osteomyelitis, and 22% have
had ENT infections (Table 3) (18, 25, 59; unpublished data).
Pyogenic bacterial infection was identified in about 90% of
NEMO-deficient patients, and the bacteria involved included
S. pneumoniae, H. influenzae, and S. aureus. Mycobacterial
infection was found in about 40% of NEMO-deficient patients
(cellulitis, osteomyelitis, lymphadenitis, pneumonia, and dis-
seminated infections) and was caused by M. avium or Myco-
bacterium kansasii (18, 25; unpublished data). Serious viral
infection occurred in 19% of NEMO-deficient patients (herpes
simplex virus encephalitis, severe adenoviral gastroenteritis, or
severe cytomegalovirus infection) (Table 4). Finally, the op-
portunistic infections pneumocystosis and chronic candidiasis
occurred in fewer than 10% of patients (25; unpublished data).
In summary, the spectrum of infectious diseases is broad in

TABLE 3. Percentages of I�B�- and NEMO-deficient patients with
infections at various sitesa

Infection

% of patients with infection

I�B�-deficient
patients (n � 5)

NEMO-deficient
patients (n � 67)

Meningitis/encephalitis 20 18
Sepsis 40 31
Arthritis/osteomyelitis 20 16
Abscess 20 28
Gut infection/diarrhea 80 24
Pneumonia 80 34
ENT infection 20 22

a Based on data from references 12, 19, 29, 39, and 42 (I�B�) and on reference
25 and unpublished data (NEMO).

TABLE 4. Documented infections in I�B�- and
NEMO-deficient patients

Infection organism

% of patients with infection (no. of
infected patients/total no. of patients)a

I�B�-deficient
patients (n � 5)

NEMO-deficient
patients (n � 67)

Bacteria 100 88
S. aureus 20 �10
S. pneumoniae �10
Streptococcus (A group) 20
P. aeruginosa 20 �10
Haemophilus influenzae �10
Salmonella enterica serovar

Typhimurium
20

Klebsiella pneumoniae 20
Serratia marcescens 20
Environmental mycobacteria 39

Fungi 80
Candida albicans 100 10
Pneumocystis jirovecii 60 7

Severe viral infection (herpes
simplex virus,
cytomegalovirus, or
adenovirus)

19

a Based on data from references 12, 19, 29, 39, and 42 (I�B�) and on reference
25 and unpublished data (NEMO).
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NEMO-deficient and I�B�-deficient patients, as most patients
present multiple infections (3). Almost all patients have pre-
sented infections caused by pyogenic bacteria, with only some
patients suffering from mycobacterial, fungal, and/or viral dis-
eases.

Treatment and Outcomes of I�B� and NEMO Deficiencies

A preventive treatment including antibiotic prophylaxis with
cotrimoxazole and/or penicillin V should be proposed (in the
absence of allergy) and intravenous or subcutaneous IgG sub-
stitution should be carried out for patients with I�B� and
NEMO deficiencies presenting an impairment of B-cell immu-
nity. Patients with I�B� and NEMO deficiencies with func-
tional B-cell immunity should be immunized with S. pneu-
moniae conjugated and nonconjugated vaccines, H. influenzae
conjugated vaccine, and N. meningitidis conjugated and non-
conjugated vaccines. Important advice for the families and
physicians of I�B�- and NEMO-deficient patients is to ini-
tiate empirical parenteral antibiotic treatment against S.
pneumoniae, S. aureus, P. aeruginosa, and H. influenzae as soon
as infection is suspected or the patient develops a moderate
fever, without taking inflammatory parameters into account,
because patients may die from rapid invasive bacterial infec-
tion despite appropriate prophylaxis. Secondary adaptation of
antibiotic treatment should be done once the causal bacterium
has been documented. Hematopoietic stem cell transplanta-
tion (HSCT) has been reported for two patients with severe
I�B� deficiency causing combined immunodeficiency (19, 23).
One of these patients is alive and well, with no treatment, 8
years after haploidentical HSCT, whereas the other patient
died of bacterial sepsis during the period of aplasia (19, 23).
Seven NEMO-deficient patients with severe clinical and im-
munological phenotypes have undergone transplantation, with
various conditioning regimens (ranging from myeloablative to
reduced-intensity conditioning) and with a related matched
donor or an unrelated partially matched donor (20, 23, 44, 54,
56, 67; unpublished data). Two patients died after HSCT, one
from veno-occlusive disease and the other from parainfluen-
zavirus type III infection (20, 23). Five NEMO-deficient pa-
tients presented engraftment and correction of their immuno-
deficiency, but the preexisting colitis was not cured in two of
these patients (23, 54, 56, 67; unpublished data). HSCT can
correct these PIDs, but some inflammatory signs may persist
and the EDA phenotype remains unmodified. This difficult
procedure should be proposed only for selected patients who
have severe immunodeficiency and for whom a donor of the
best possible match is available. A large international clinical
survey of NEMO-deficient patients is under way and should
increase our understanding of the clinical and immunological
outcomes for these patients. This study may facilitate the de-
velopment of treatment guidelines for this heterogenous ge-
netic disorder (C. Picard and J. S. Orange, unpublished data).

CONCLUSIONS

The clinical and biological phenotypes of IRAK-4, MyD88,
NEMO, and I�B� deficiencies are listed in Table 5. IRAK-4
and MyD88 deficiencies define a novel group of PIDs charac-
terized by a selective and profound defect of the TIR canonical

signaling pathway (3). Patients with these two deficiencies are
highly susceptible to invasive bacterial infections caused by S.
pneumoniae and, to a lesser extent, S. aureus and to noninva-
sive bacterial infections largely restricted to the skin (S. aureus)
and the upper respiratory tract (P. aeruginosa). Infections typ-
ically run an acute course and may be difficult to diagnose due
to the inflammatory signs being weak or occurring late. The
sites of infection also provide us with unique information about
the anatomic role of the TIR pathway in host defense (6, 7).

Hypomorphic NEMO deficiency is associated with suscepti-
bility to various bacteria, including mycobacteria, and occa-
sionally to other microbes, such as fungi and viruses. A wide
range of infectious phenotypes is observed for patients with
NEMO deficiency, reflecting the diversity of NEMO geno-
types. I�B� deficiency has been identified in only five patients
and has been associated with multiple bacterial and fungal
infections. Delays in the development of inflammatory signs
are also observed in patients with NEMO and I�B� deficien-
cies, who have a broader susceptibility to infections, including
those caused by pyogenic bacteria (3). Thus, the bacterial dis-
eases seen in NEMO-deficient patients are probably due in
part to the impact of NEMO mutations on the TIR signaling
pathway. Conversely, the infections seen in NEMO- and I�B�-
deficient patients but not in IRAK-4-deficient and MyD88-
deficient patients probably reflect the impairment of other
signaling pathways.

ACKNOWLEDGMENTS

We thank all of the members of the Laboratory of Human Genetics
of Infectious Diseases for helpful discussions, especially Jacinta Busta-
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