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A mechanism of the Au-catalyzed cycloisomerization of propargylpyridines has been investigated.
Both DFT computational and experimental results strongly support generation of a Au-carbene via
a cyclization/proton transfer sequence over the previously proposed path involving a Au-
vinylidene intermediate. For the B-Si-substituted Au-carbene (G = SiR3), a 1,2-Si migration was
shown to be kinetically favored over a 1,2-H shift. This study highlights importance of alternative
pathways that could explain reactivities commonly attributed to an alkyne-vinylidene
isomerization in Au-catalysis.

Catalytic transformations featuring metal-vinylidene intermediates are powerful C-C and C-
heteroatom bond forming strategies in organic synthesis.! In one of the commonly accepted
scenarios, metal-vinylidenes can be generated from terminal alkynes upon the alkyne—
vinylidene isomerization, involving an initial coordination of the metal to a triple bond of
the alkyne followed by a direct [1,2]-H shift.1 Besides hydrogen, other groups, such as
SiR3,2 SnR3,3 SR,4 SeR,% and 1,5 have been shown to undergo the 1,2-migration during this
process. Traditionally, generation of metal-vinylidenes from alkynes is well-precedent for
W-, Mo-, Ru-, Rh-, Ir-, Co-, Mn-, and Re complexes,! however, has recently been evidenced
to play a key role in Pt-7 and Au-catalyzed® transformations. Along this line, we recently
reported the Au-catalyzed cycloisomerization of propargylpyridines 1 into indolizines,
featuring the 1,2-shifts of H and Si-, Sn-, and Ge-containing groups via a putative Au-
vinylidene intermediate i (eq 1).82 Besides, based on the DFT-computational and labeling
experiments, formation of Pt-vinylidene species was established by Yamamoto in the
synthesis of indenes (eq 2).”2 Furthermore, Fiirstner observed a 1,2-halogen shift in the
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phenanthrene synthesis, proceeding through the Au-vinylidene (eq 3),8¢ intermediacy of
which was later validated by the DFT calculations.8d Nonetheless, evidence was
accumulated in support of alternative pathways in Au-,8¢9 Pt-,2d.10 and even “classical”
W-11 and Ru-catalyzed!2 processes that could account for the reactivities commonly
attributed to the alkyne—metal-vinylidene isomerization. This prompted us to investigate the
validity of the proposed Au-vinylidene species i in the Au-catalyzed cycloisomerization of 1
(eq 1). Herein, we report our theoretical and experimental results on the mechanism of this
transformation. Our studies indicate
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that the observed 1,2-H- and 1,2-Si shifts are, indeed, outcomes of a sequence of elementary
steps alternative to the formation of the Au-vinylidene.

To shed light on a mechanism of the above-mentioned cycloisomerization, DFT
calculations!3 have been performed first. Considering the fact that a basic pyridine moiety of
a substrate may play a significant role in possible H-migration steps during the
cycloisomerization of 1, we decided to simulate such base with a simple three water
molecule cluster.1* Employment of pyridine or the substrate molecules as proton shuttles in
place of the water cluster in DFT calculations did not affect the overall energetic profile of
the reaction.® The computed energy surface for the AuBr-catalyzed!® cycloisomerization of
propargylpyridine 1' possessing terminal alkyne moiety is provided in Figure 1. According
to it, coordination of AuBr to the alkyne moiety of 1’ gives the n-complex 2’ with the free
energy decreased by 15.7 kcal/mol in toluene solution. A subsequent alkyne-vinylidene
isomerization of 2’ should occur via the transition state TS’. However, the corresponding
vinylidene structure i could not be located, probably, due to its instability. Instead, the 1,2-H
migration via TS’ leads to a cyclic intermediate ii directly, and this process has high 16.4
kcal/mol activation free energy barrier. In contrast, according to an alternative mechanism, a
highly exergonic direct 5-endo-dig cyclization of 2’ into 3’ via TS1’ needs only 5.1 kcal/mol
activation barrier. Next, coordination of the water cluster to the H-atom in 3’ endergonic by
11.4 kcal/mol (4') is followed by a proton abstraction via TS2' with 6.2 kcal/mol activation
free energy to give the Au-indolizine species 5. A facile B-protonation of the vinyl-Au
moiety in 5’ via 6" and TS3' leads to 7’ and requires 4.2 kcal/mol free energy. An exergonic
decoordination of the water cluster from 7' furnishes the Au-carbene 8'. The formal 1,3-H
shift from 3’ through 5’ to give 8’ via a stepwise H-abstraction—donation is a reversible
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process. An alternative a-protonation of the vinyl-Au moiety in 5’ via TS4’ (6.5 kcal/mol
activation energy) gives indolizine 9'. Overall, formation of the product 9’ from 3' and 8' via
a water-assisted formal 1,2-H shift needs 17.6 and 27.7 kcal/mol free energy, respectively.
Barriers for the direct 1,2-H shift to the Au-center in 3’ or 8’ are as high as 23.9 and 34.6
kcal/mol, respectively.1’

To validate the above computational results, D-labeling studies have been performed. The
results are outlined in Scheme 1. We find them in a complete agreement with the results of
the DFT calculations. Accordingly, a reversible formation of the Au-carbene 8’ explains the
distribution of a D-label between the C2 and the C3 positions in indolizine 2a-d upon the
cycloisomerization of a terminally labeled 1a (Scheme 1, A). The scrambling of the D-label
was observed for both AuBr3!8 and AuCl catalysts. A partial loss of the D-label at both the
C2 and C3in 2a-d (18-22% out of 70) was observed when reaction was performed in
anhydrous toluene. The loss of the D-label becomes even more severe with the employment
of H,O-saturated toluene solvent (Scheme 1, A). These observations fully support the
involvement of a stepwise water- or base-assisted H-abstraction—donation process
established by the DFT calculations. Furthermore, the DFT-predicted reversible formation
of the Au-carbene 8' suggests that an analogous distribution and loss of the D-label should
be observed in the Au-catalyzed cycloisomerization of the isotopomer 1b. Indeed, these
predictions have been confirmed experimentally (Scheme 1, B). Furthermore, almost equal
incorporation of the D-label at C2 and C3 positions was achieved upon the
cycloisomerization of the H-isotopomer 1c in DoO-saturated toluene media (Scheme 1, C),
which is expected according to the DFT calculations. Based on these results, the originally
proposed reaction pathway featuring the alkyne-vinylidene isomerization is considered to be
less likely.19.20

Having established a mechanism for terminal alkynes (eq 1, G = H), DFT calculations have
been performed for the AuBr-catalyzed cycloisomerization of the silyl-substituted
propargylpyridine 1" (Figure 2). The computed potential energy surfaces are analogous to
that for 1’ (Figure 1). Thus, a coordination of AuBr to the alkyne moiety of 1" leads to the
n-complex 2. Formation of the Au-vinylidene iii upon the alkyne-vinylidene isomerization
of 2" with a 1,2-Si shift is possible, however, it requires 12.9 kcal/mol activation free energy
(TS”). Instead, following the alternative mechanism, 2" undergoes a more facile irreversible
5-endo-dig cyclization via TS1” that has only 5.6 kcal/mol activation barrier. Coordination
of the water cluster (4") followed by the water-assisted proton abstraction (TS2") furnishes
the Au-indolizine species 5”. The B-protonation of the vinyl-Au moiety in 5 through the
intermediate 6” and the corresponding TS3" affords the Au-carbene 7" reversibly, requiring
a total of 6.2 kcal/mol free energy for two steps. An alternative a-protonation of 5" leading
to indolizine 9" has 2.0 kcal/mol higher in energy transition state TS4" (—14.6 versus —16.6
kcal/mol for TS3") and, thus, is less favorable. Decoordination of the water cluster from 7"
gives the Au-carbene 8" exergonically. A subsequent direct 1,2-Si shift?! (TS5", 16.4 kcal/
mol activation free energy) produces indolizine 10", which is in a complete agreement with
the experimentally observed formation of the C2-silyl-substituted products. A direct 1,2-H
shift in 8" via TS6” is kinetically not feasible owing to its very high over 30 kcal/mol
barrier.

Supporting the above DFT-predictions, a notable loss (Scheme 1, D) and incorporation
(Scheme 1, E) of the D-label were observed in the Au(l)- and Au(l11)-catalyzed
cycloisomerizations of the silyl-substituted alkynes 1d and 1e, analogously to that for the
terminal alkynes la-c.

In summary, the mechanism of the Au-catalyzed cycloisomerization of propargylpyridines
into indolizines was investigated using DFT computational and experimental studies.?? It

Org Lett. Author manuscript; available in PMC 2011 December 3.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Xiaetal.

Page 4

was found that this transformation occurs via a sequence of steps consisting of (a) formation
of the vinyl-Au species upon irreversible 5-endo-dig cyclization, (b) B-protonation of the
vinyl-Au, and (c) the [1,2]-Si- or a base-assisted stepwise 1,2-H migration to the generated
Au-carbene center. This route constitutes a feasible, yet hard to envision alternative to the
originally proposed alkyne-vinylidene isomerization path. In the case of the Si-substituted
alkynes, the cycloisomerization proceeds via a formation of the 3-Si-Au-carbene
intermediate, wherein the 1,2-Si migration is kinetically favored over the 1,2-H shift.
Finally, the present study highlights an importance of the alternative mechanistic pathways
that could mimic reactivities typically explained by the intermediacy of metal-vinylidenes.
In addition, this work provides a better understanding of the existing reactions of alkynes
activated by Au-complexes and may guide design of new transformations in the future.
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Potential Energy Surfaces for the AuBr-Catalyzed Cycloisomerization of Silyl-Substituted

Pyridylalkynes 1".
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