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Abstract
Monitoring populations of hosts as well as insect vectors is an important part of agricultural and
public health risk assessment. In applications where pathogen prevalence is likely low, it is
common to test pools of subjects for the presence of infection, rather than to test subjects
individually. This technique is known as pooled (group) testing. In this paper, we revisit the
problem of estimating the population prevalence p from pooled testing, but we consider
applications where inverse binomial sampling is used. Our work is unlike previous research in
pooled testing, which has largely assumed a binomial model. Inverse sampling is natural to
implement when there is a need to report estimates early on in the data collection process and has
been used in individual testing applications when disease incidence is low. We consider point and
interval estimation procedures for p in this new pooled testing setting, and we use example data
sets from the literature to describe and to illustrate our methods.
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1. INTRODUCTION
Pooled testing, also known as group testing, arises naturally as a means of data collection in
agricultural and other infectious disease applications; see, e.g., Swallow (1985), Block, Hill,
and McGee (1999), Tebbs and Bilder (2004), Hepworth (2005), Katholi and Unnasch
(2006), Peck (2006), and Biggerstaff (2008). The underlying premise is that individuals
(e.g., insect vectors, ear notch samples, seed kernels, urine/fecal specimens, etc.) are first
pooled together into groups (pools), and the groups are then tested for the presence of
infection. When the infection rate is low, there is overwhelming evidence that pooled testing
can confer substantial benefits when compared to testing subjects individually.

Statistical research in pooled testing has a rich history, dating back to Dorfman (1943).
Since this seminal work, pooled testing has been applied to problems in blood bank
screening, genetics, drug discovery, epidemiology, veterinary medicine, and other areas; see
Hughes-Oliver (2006) for a review. In the estimation problem, the primary goal is to
estimate p, the individual probability of infection. A large majority of research in the
estimation problem has presumed a binomial model. However, other models have been used
to achieve this goal, including the hypergeometric (Bhattacharyya, Karandinos, and DeFo-
liart 1979), the beta binomial (Turechek and Madden 2003), and, in the related application
of limiting dilution assay, the Poisson (see, e.g., Chick 1996). Bayesian and empirical
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Bayesian approaches have been proposed (see, e.g., Bilder and Tebbs 2005), and when
individual covariate information is available, regression models for pooled response have
been developed to produce covariate-adjusted estimates; see Vansteelandt, Goetghebeur, and
Verstraeten (2000), Xie (2001), Huang and Tebbs (2009), and Chen, Tebbs, and Bilder
(2009).

In this paper, we consider the problem of estimating disease prevalence from pooled
samples collected using inverse binomial sampling (Haldane 1945). Our interest in this
sampling model (applied to pooled testing) arises from Katholi and Unnasch (2006), who
suggested that inverse sampling may be more appropriate when there is a need to report
estimates early on in the data collection process. One can easily envision experimental
situations where this would be the case, particularly if the pathogen under investigation is
subject to constant surveillance and/or is very serious. Under the inverse sampling model,
unlike the standard binomial, the number of positive pools n is fixed in advance, and testing
is complete when the nth positive pool is observed. Because the binomial model presumes a
fixed number of pools to be observed, inverse sampling may be preferred if the occurrence
of one or a few positive pools triggers an immediate response; e.g., initiating appropriate
disease intervention efforts. In addition, in emergency situations such as natural disasters,
there would naturally be a need to quickly measure the amount of risk and to eliminate the
spread of infection (Foppa et al. 2007). We now discuss two situations where our methods
are potentially applicable.

1.1. West Nile Virus
West Nile Virus (WNV) is an arthropod-borne pathogen transmitted predominantly by
mosquito vectors and is the leading cause of arboviral encephalitis in the United States. In
2002, there were about 3,500 documented cases of WNV in humans, resulting in 200
fatalities in the US (Solomon et al. 2003). WNV detection becomes critical after natural
disasters, such as hurricanes and floods, due to a potential increase in the mosquito
population. For this and other viral diseases vectored by mosquitos, surveillance is an
important part of public health risk assessment and rapid detection is critical (Lanciotti and
Kerst 2001).

1.2. Foot and Mouth Disease
Foot and mouth disease (FMD) has been described as one of the most economically
important diseases (Callahan et al. 2002) because of the devastating effects an outbreak can
have on the meat and milk industry. It has also been suggested that FMD could be used as a
biological weapon (Zilinskas 1997; Koda 2002). FMD is extremely contagious, and
although vaccinations do exist, it is common to slaughter all animals on or near infected
premises if the outbreak is severe. In 2001, an outbreak occurred in Essex County, England,
which led to the slaughter of six million animals, mostly cattle, sheep, and pigs (Bush et al.
2005). After this disaster, there was major incentive to develop assays to screen for FMD
rapidly and reliably (Reid et al. 2002). Early detection of infection could limit the severity of
an outbreak, and countermeasures could be taken to prevent further infection.

1.3. Assumptions and Related Work
We assume that individual statuses are independent and identically distributed Bernoulli
random variables with mean p and that tests are performed on pools of individuals until the
nth positive pool is found. Also, we assume that the testing process is perfect (i.e., pools are
not misclassified). This may be reasonable for applications in arbovirus surveillance and
FMD detection with assays based on nucleic acid technology (NAT). Investigators have
shown empirically that NATs are extremely sensitive and specific (Lanciotti and Kerst
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2001; Reid et al. 2002; Callahan et al. 2002). For imperfect testing, one could modify our
methods in a manner similar to that of Tu, Litvak, and Pagano (1995) in the binomial model.

Katholi (2006) considered the negative binomial model for pooled testing estimation but
examined the maximum likelihood estimator (MLE) only in the equal pool size case. In our
survey of the arbovirus literature, for example, we found that pools are often of unequal size.
We thus relax this assumption and treat equal pool sizes (which gives rise to the negative
binomial model) as a special case. When equal sized pools are used, we also present
alternative estimators that are shown to be far superior to the MLE. We examine interval
estimation for p, and we use a WNV data example from the literature to illustrate the
potential use of our methods.

2. POINT ESTIMATION
2.1. Maximum Likelihood

Suppose that Y = y pools are tested until the first positive is observed; i.e., n = 1. For j = 1, 2,
…, y, we let sj denote the fixed pool size for the j th pool. The probability that pool j is
positive is 1 − (1 − p)sj so that the log-likelihood is

A closed-form expression for the MLE exists and is given by

(2.1)

where . When the pool sizes are equal, i.e., when sj = s for all j, Y follows a
geometric distribution with success probability θ = 1 − (1 − p)s, and (2.1) reduces to

Now suppose that testing continues until the nth positive pool is found, where n > 1. In this
case, we can envision the observed data as Y1, Y2, …, Yn, where Yi plays the role of Y above.
For i = 1, 2, …, n and for j = 1, 2, …, yi, let sij denote the size for the j th pool in the
sequence of pools tested to obtain the ith observation Yi so that siyi denotes the size of the ith
positive pool. The log-likelihood is

where y = (y1, y2, …, yn), and the score function, obtained through differentiation, is
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(2.2)

The MLE for p, p̂, is the solution to S(p|y) = 0 and must be obtained iteratively, except when
pools are of equal size, say s, in which case the MLE reduces to

(2.3)

where . In the equal pool size case, T follows a negative binomial distribution
with waiting parameter n and success probability θ = 1 − (1 − p)s; i.e., T ~ nib(n, θ). The
estimator in (2.3) is the only (non-Bayesian) estimator considered by Katholi (2006). In the
equal pool size case, Jensen’s Inequality can be used to show that E(p̂) > p; i.e., p̂ is
positively biased. However, p̂ enjoys the usual large sample properties of MLEs,
specifically, consistency and asymptotic normality.

We have performed simulation studies to assess the point estimate properties of p̂ using
equal and unequal pool sizes for small n. Because of limitations on space, we do not present
the results. However, it suffices to mention that the MLE p̂ is severely biased upwards,
especially if n is small. For example, when n = 5, p = 0.10, and sij are sampled from a
discrete uniform distribution from 5 to 15,  (5, 15), the positive bias in p̂ is
approximately 0.10 and the mean squared error (MSE) is approximately 0.08! Our
simulations suggest that the bias and MSE do converge to 0 as n → ∞, as expected, but at a
very slow rate, much too slow for the MLE to be used in application. This motivates us to
find improved small sample estimators.

2.2. Alternative Estimators Using Equal Sized Pools
In the binomial model, the MLE for p is also positively biased (see, e.g., Swallow 1985).
This has prompted a large literature on ways to reduce the bias; see Hepworth and Watson
(2009) for an excellent review. In the negative binomial model, however, the number of
pools observed is not fixed; rather, the number of observed positive pools is fixed. From a
practical point of view, this complicates things significantly. For example, depending on the
level of infection (and the pool size), thousands of pools may be needed to observe, say, n =
2 or 3 positives. In other words, in situations where inverse binomial pooled testing might be
used, n may not be large enough for asymptotic considerations to apply. This makes Taylor
series expansions, commonly used in the binomial problem to reduce bias (Burrows 1987),
somewhat vacuous. This notwithstanding, our desire to reduce the bias in p̂ has led us to
examine four alternative estimators when equal group sizes are used. Each estimator is
motivated by the work of Colón, Patil, and Taillie (2001), who examined alternative pooled
testing estimators in the binomial case.

Because p̂= 1 − {1 − (n/T)}1/s is positively biased, one way to reduce the bias is to shrink
the fraction of positive pools n/T towards 0. We define the “shrinkage” estimator by
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where 0 < α ≤ 1. Instead of using a multiplicative constant, one can also shrink n/T by
adding a positive constant to T in the denominator. We define the “shift” estimator by

where β ≥ 1. Using n + 1 in the numerator of p̂β is motivated by a Bayesian approach
described in the Ph.D. dissertation of N. Pritchard. Briefly, an estimator similar to p̂β arises
from using a beta(1, ξ) prior on p and a squared-error loss function on θ = 1 − (1 − p)s, the
probability of observing a positive pool. By combining the attributes of the shrinkage and
shift estimators, we also investigated a “combined” estimator

where 0 < αC ≤ 1 and βC ≥ 1. Choosing α, β, αC, and βC has yet to be discussed. Finally, we
also examined the jackknife estimator

where p̂(i) is the MLE of p when Yi is omitted. When n = 1, p̂J simplifies to the MLE.

2.3. Comparisons
We compare the four alternative estimators and the MLE in the equal pool size case.
Because T ~ nib(n, θ), where θ = 1 − (1 − p)s, the exact bias and MSE of a generic estimator
p̃ can be expressed as an infinite sum. Because these sums do not reduce to anything
tractable, we tried to approximate the bias and MSE using asymptotic expansions similarly
to Colón, Patil, and Taillie (2001) in the binomial case. Unfortunately, this approach was not
successful for the reasons mentioned in Section 2.2. We therefore approximate the bias and
MSE of an estimator p̃ by

and

respectively, where pr(T ≤ t*) ≥ 1 − ν for ν small. We take ν = 0.000001 throughout, making
these approximations very close to the true values of bias and MSE.
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To use the alternative estimators, one must specify the additional values of α, β, αC, and βC.
For p̂α, we define

the value of α that minimizes MSE(p̂α) for fixed n, s, and p, and we call this the “optimal”
choice of α. Optimal values β* and ( ) are defined similarly for p̂β and p̂C, respectively.
Of course, by this definition, optimal selection is not possible in application since each
depends on the unknown p. We discuss this momentarily.

Figures 1 and 2 display the absolute bias and MSE of the five estimators, respectively, when
n = 5 for pool sizes s = 5, 10, 30, and 50. For p̂α, p̂β, and p̂C, optimal choices of α, β, αC, and
βC are used. We use absolute bias in Figure 1 for cosmetic reasons only; otherwise, it is
difficult to display the results. It should suffice to note that the MLE p̂ is the only estimator
that is always positively biased, the jackknife estimator p̂J is negatively biased for small p,
and p̂α, p̂β, and p̂C are always negatively biased. For the settings in Figs. 1 and 2,  and

 for most values of p, making it difficult to distinguish p̂β from p̂C. Overall, the
adjusted estimators p̂α, p̂β, and p̂C are clearly better choices, and the latter two are favored
slightly. The jackknife estimator is not shown in Figure 2, because its absolute bias, shown
in Figure 1, renders it impractical for use.

A concern arises with using the alternative estimators p̂α, p̂β, and p̂C because their optimal
versions are not known. In practice, we recommend choosing the additional parameters α, β,
αC, and βC to minimize MSE using an upper bound for p, say, p0 > p. This is the same
recommendation given by Swallow (1985) when choosing pool sizes in the binomial case
and is not unrealistic in the applications we consider. We now illustrate with two examples.

Example 1—Data from two separate studies, Rutledge et al. (2003) and Godsey et al.
(2005), suggest that an upper bound for the prevalence of WNV is around 0.01, and both
studies use pool sizes rarely greater than 50 mosquitos. For illustration, we take n = 5, s = 50
and p0 = 0.01, which provide α* = 0.7050, β* = 5.6868, , and . Figure 3
displays the absolute bias (top left) and MSE (top right) with a vertical line at p0 = 0.01 in
each. Two important points are to be made. First, the adjusted estimators p̂α, p̂β, and p̂C,
each based on the upper bound of p0 = 0.01, outperform the MLE p̂ when p < p0. Second,
the bias and MSE of the adjusted estimators are much smaller for values of p < p0 than the
bias and MSE when p > p0, supporting our recommendation to choose the adjusted
estimators using an upper bound for p. However, the upper bound should be chosen
carefully; for p > 0.01, the absolute biases of p̂α, p̂β, and p̂C increase until they eventually
become larger than that of the MLE (not displayed in Figure 1). That is, choosing p0 < p
could lead to adjusted estimators that are worse than the MLE.

Example 2—Data from the 2001 outbreak of FMD in England suggest that the individual
prevalence does not exceed 0.10 (Anderson 2002). While it has been envisioned using
polymerase chain reaction assays on pools of blood or serum in FMD settings (Reid et al.
2002), pooling has not been empirically evaluated. For verisimilitude, we thus take n = 5, s
= 30 and p0 = 0.10. These choices give α* = 0.9603, β* = 1.2495, , and .
Figure 3 displays the absolute bias (bottom left) and MSE (bottom right) with a vertical line
at p0 = 0.10 in each. The same discoveries are revealed; namely, the adjusted estimators are
much better than the MLE when p < p0 and choosing p0 carefully is important to avoid
estimators with high bias and MSE.

Pritchard and Tebbs Page 6

J Agric Biol Environ Stat. Author manuscript; available in PMC 2011 July 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We have evaluated the performance of the MLE p̂, the jackknife estimator p̂J, and the
alternative estimators using many other settings for n, s, and p; more extensive results are
available from the authors. We have consistently observed that p̂β and p̂C are the best
choices and have nearly the same bias and MSE, except when the pool size s or the waiting
parameter n is very large. In these cases, p̂C provides the largest reduction in bias and the
smallest MSE when an upper bound for p is correctly specified. As a special case, when n =
1, it is worth mentioning that the MLE is abhorrently bad and that the adjusted estimators p̂β
and p̂C offer substantial improvements.

3. INTERVAL ESTIMATION
In this section, we derive (large sample) Wald, score, and likelihood ratio confidence
intervals for p when inverse pooled testing is used. An exact interval is also presented for the
equal pool size case. We focus on two-sided intervals herein; one-sided intervals are formed
by making appropriate modifications.

3.1. Likelihood-Based Intervals
When n is large, the MLE p̂ is approximately normal with mean p and variance equal to I
(p)−1, where I (p) = Ep {−∂2l(p|y)/∂p2} is the Fisher information. When pools of equal size s
are used, l(p|y) simplifies considerably (see Section 2.1) and it can be shown that

Applying the Weak Law of Large Numbers, continuity of convergence, and Slutsky’s

Theorem, we have , as n → ∞, so that

is an approximate 100(1 − γ) percent Wald confidence interval for p. The symbol zγ/2
denotes the upper γ/2 quantile from the (0, 1) distribution. When pools are of unequal size,

the distribution of  is not negative binomial and I (p) is not tractable. In this case,
we instead calculate the observed information (Efron and Hinkley 1978) given by

(3.1)

and use p̂ ± zγ/2 J (p̂)−1/2 instead.

The score interval for p arises from the fact that the score function in (2.2), when viewed as
random, is approximately normal with zero mean and variance I (p) when n is large. Thus,
when pools are of equal size, the solutions to
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delimit an approximate 100(1 − γ) percent confidence interval. When pools are of unequal
size, we replace I (p) with J (p) in (3.1). The likelihood ratio (LR) interval is based on the
fact that 2 {l(p̂|y) − l(p|y)} is distributed approximately as a central  random variable
when n is large. Thus, the solutions to

form an approximate 100(1 − γ) percent confidence interval for p, where  is the upper γ
quantile of the  distribution.

3.2. An Exact Interval
When equal pool sizes s are used, T ~ nib(n, θ), where θ = 1 − (1 − p)s. Using the
relationship between the negative binomial distribution and the incomplete beta function,
Lui (1995) derived an exact interval for θ. The lower and upper confidence limits are θL =

B1 − γ/2,n,t−n+1 and θU = Bγ/2,n,t−n, respectively, where  and Bγ,a,b denotes the upper
γ quantile of the two-parameter beta(a, b) distribution. Thus, an exact 100(1 − γ) percent
confidence interval for p can be obtained by suitably transforming the endpoints of the θ
interval; i.e., pL = 1 − (1 − B1− γ/2,n,t−n+1)1/s and pU =1 − (1 − Bγ/2,n,t−n)1/s. To the best of
our knowledge, exact intervals for p are not available when pool sizes are unequal. This is in
stark contrast to the binomial case, as demonstrated by Hepworth (1996).

3.3. Discussion
There are a myriad of other large sample approaches one could use for interval estimation.
We did examine variance stabilized and suitably transformed logit-type intervals, used by
Tebbs and Bilder (2004) and Hepworth (2005), respectively, in the binomial problem. Both,
surprisingly, were not better than the Wald interval. When unequal pool sizes are used,
Hepworth (2005) showed that the LR interval outperformed the standard score interval,
while, in the equal pool size case, Tebbs and Bilder (2004) showed that the score interval
was preferred in terms of coverage probability.

The lower limit of the Wald and score intervals can be negative when n is small and/or when
p̂ is close to 0; on the other hand, LR endpoints cannot be negative. All large sample
intervals have complications when p̂ = 1; i.e., every pool tests positive. In this case, I (p̂) is
undefined and the Wald interval cannot be computed; additionally, when equal sized pools
are used, the score function is zero, and the upper limit for the LR interval cannot be
computed. Observing p̂ = 1 would not be likely in practice, unless n is small and/or the pool
size is inappropriately large. However, when it does occur, we set the Wald interval equal to
the uninformative (0, 1) and make similar adjustments for the score and LR intervals.
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3.4. Comparisons
We first consider the equal pool size case. For each of the confidence intervals (Wald, score,
LR, and exact), the true coverage probability, for a given prevalence p, waiting parameter n,
and pool size s, can be approximated in the same manner as the bias and MSE were in
Section 2.3. Specifically, the exact coverage probability is approximated by

where (p̂) = 1 if the interval contains p, (p̂) = 0 otherwise, and t* satisfies pr(T ≤ t*) ≥ 1 −
ν, where we take ν = 0.000001. The exact mean length is approximated by using the same
expression as C(p, n, s), except that D(p̂) replaces (p̂), where D(p̂) represents the length of
the interval for a particular realization of p̂.

Figure 4 displays the exact coverage probabilities for the four intervals when γ = 0.05, s = 20
(common pool size), n = 1, 5, and 100, and values of p ranging from 0.00005 to 0.10 by
increments of 0.00005. The distinct jagged pattern in the plots is due to the discrete nature of
the negative binomial distribution. For example, if n = 1, t = 5, and s = 20, (p̂) for the Wald
interval switches from 1 to 0 when p becomes greater than 0.0327, which, in turn,
corresponds to a drop in the coverage probability function. When n = 1, we find it unusual
that the Wald and score intervals are somewhat centered around the nominal level, although
the variability increases as the prevalence does. The LR interval is generally conservative as
long as the prevalence is not small. The same general patterns hold for the n = 5 case, and
our depiction when n = 100 is visual evidence that the asymptotic properties are taking hold.

To accompany Figure 4, we also calculated the exact mean length for the four intervals with
equal pool sizes (results available from the authors). The exact interval, not surprisingly,
possesses the greatest length, but it is generally not too much larger than the large sample
intervals. The latter intervals, in turn, are comparable, with the Wald interval being slightly
shorter on average. We also constructed plots of the distal and mesial non-coverage
probabilities corresponding to Figure 4; these plots are available from the authors. Distal
(mesial) non-coverage measures the probability content for all values of y in the support
producing intervals that miss p on the left (right) side. Some would argue that a desirable
interval possesses symmetry in the non-coverage tails; i.e., that the distal and mesial non-
coverage probabilities are approximately γ/2 (Newcombe 1998). Not surprisingly, for n = 1
and n = 5, mesial non-coverage almost exceeds distal non-coverage. In addition, for small n,
it should be noted that the Wald and score lower endpoints are often negative when p is
close to zero. In this situation, suitable adjustment may be warranted (e.g., use an exact
interval, construct a one-sided Wald interval, etc.). When n = 100, the large sample
intervals’ non-coverage is nearly perfectly symmetrical.

For unequal pool sizes, we used simulation to compare the large sample intervals for γ =
0.05 using different n and p. The results in Table 1 are based on 10,000 Monte Carlo data
sets so that the margin of error (assuming a 99 percent confidence level) is 0.006. Pool sizes
were generated from a discrete uniform distribution from 20 to 50, 10 to 30, and 5 to 15, for
p = 0.001, p = 0.01, and p = 0.1, respectively. Perhaps most interesting is that, in terms of
coverage probability, the large sample intervals are all quite good for small n, even when n =
1. The LR interval is notably conservative when n = 1, but this behavior diminishes for
larger n. When n = 20, the estimated coverages for all procedures are all mostly within the
margin of Monte Carlo error. The performance of the intervals is, of course, dependent on
the pool size, and inappropriately large pool sizes can lead to very bad results. For example,
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when n = 5 and p = 0.1, using 50 ≤ sij ≤ 100 produced an average coverage probability of
greater than 0.99 for all three methods. This is likely due to the fact that p̂ = 1 with high
probability when the pool size is large (this occurs in 99.5 percent of the simulated
confidence intervals for the setting just described). However, using pool sizes smaller than
those seen in Table 1 does not greatly alter the procedures’ coverage properties.

4. APPLICATION TO WNV PREVALENCE ESTIMATION
Rutledge et al. (2003) describe a public health study involving WNV surveillance.
Immediately following a 2001 outbreak in Jefferson County, Florida, researchers set out to
estimate the WNV prevalence in the mosquito population. Pools of mosquitos, formed from
11,948 individuals captured, were tested for the presence of WNV using reverse-
transcription polymerase chain reaction assays, which resulted in 14 WNV positive pools.
Variable pool sizes were used in the study, but nearly all of the pool sizes were less than 50.
The study described by the authors was the first documented field study of WNV vectored
by the North American mosquito, Culex nigripalpus Theobald, which is also believed to
vector the St. Louis and eastern equine encephalitis viruses. WNV had been detected in
Florida in early 2001; later that year, 12 human cases of WNV meningoencephalitis had
been confirmed.

Inverse sampling was not used by Rutledge et al. (2003), but we use this investigation as a
basis to illustrate our methodology. The authors only presented the complete results from the
pools that tested positive; based on these data, the estimated prevalence was reported to be
approximately 0.005 (likely an upper bound because some negative pools were ignored). We
henceforth assume that 0.005 is the true value of p and simulate data sets for waiting
parameters n = 1, 5, 10, and 20, using equal and unequal pool sizes. In the unequal pool size
case, the authors reported using various sizes ranging mostly from 15 to 50 mosquitos. We
thus use 15 ≤ sij ≤ 50 when considering those methods based on unequal pool sizes; we use
s = 50 in the equal pool size case.

Table 2 provides the averaged point estimates (with estimated standard errors in
parentheses), based on 10,000 Monte Carlo data sets. For equal pool sizes, we present
results for the MLE and the three adjusted estimators p̂α, p̂β, and p̂C using p0 = 0.01 as an
upper bound. The jackknife estimator is not reported because of its poor performance. The
MLE from using unequal pool sizes is also reported; pool sizes sij were simulated from a 

(15, 50) distribution, endpoints consistent with Rutledge et al. (2003). The results from
Table 2 reaffirm our discovery that the adjusted estimators in the equal pool size case are
preferred, especially when n is small. For n = 1, the MLE is exorbitantly biased in both the
equal and unequal pool size cases. For larger n, all (averaged) estimates are generally on
target, with standard errors generally being larger for unequal pool sizes.

Using the same simulated data, we computed 10,000 confidence intervals for p using the
likelihood-based and exact methods from Section 3 and have reported in Table 3 the average
confidence limits (lower and upper). The Wald and score intervals are the only ones that can
return negative lower limits; when n = 1, 77, and 100 percent of Wald and score lower
limits, respectively, were negative. The averaged upper and lower limits are not symmetrical
about the average value of p̂, because we assign noninformative intervals when p̂ = 1 (e.g.,
about 15 percent of the data sets produced p̂ = 1 when n = 1). When this realization is not
likely, we found that all interval procedures produce roughly the same averaged endpoints.
Furthermore, using the actual (binomial) data reported in the article, a 95 percent logit
transformed confidence interval, suggested by Hepworth (2005), was found to be (0.003,
0.009). Most of the averaged intervals in Table 3, excluding the n = 1 case, are consistent
with this estimate.
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5. DISCUSSION
We have presented a new way of viewing the usual pooled testing prevalence estimation
problem, considering situations that employ inverse binomial sampling. As we have
discussed, this type of data collection procedure might be reasonable when sampling and
testing occurs sequentially and when positive results instigate the need for immediate
analysis. The usual binomial model requires that a fixed number of pools be used. This
requirement seems to be incongruous with those applications where it is potentially critical
to have timely intervention. To disseminate our work, we have written user-friendly R
programs to calculate all point and interval estimates in this paper; these are located at the
R-Forge website http://r-forge.r-project.org/ under the name invbingroup.

It is important to note that the methods proposed herein may not be appropriate when there
is a delay between the acquisition of individuals, such as mosquitos, and the actual testing of
them in pools. In some research investigations, it is not uncommon for individual specimens
to be stored for long periods of time before testing begins. On the other hand, an anonymous
reviewer has described how mosquito testing for WNV and for other ar-boviruses occurs
almost weekly in nearly every state. In addition, continuous monitoring for pathogens in
livestock, such as bovine viral disease, is now a requirement to maintain healthy herds (Peck
2006). In these and related situations, our methods are applicable and may be more natural
to implement because of the sequential nature of the data collection process.

Within an inverse sampling context, we have investigated point and interval estimation for
p, the probability of individual infection. Future research could involve finding improved
techniques in each area. For example, in the point estimation problem, Hepworth and
Watson (2009) describe an iterative correction strategy to nearly remove the bias in the
binomial pooled testing MLE; it may be possible to implement similar corrections in the
inverse binomial problem. There may also be benefits to considering other confidence
interval procedures, such as the skew-corrected score interval (Hepworth 2005) or an
interval based on the mid-p correction (Hepworth 2004). The development of multiple
population methods, similar to those of McCann and Tebbs (2007), Tebbs and McCann
(2007), and Biggerstaff (2008) in the binomial case, would also be worthwhile extensions.

Especially when n is small, so that action is desirable early on in the data collection process,
one would naturally conjecture that the development of Bayesian estimators might be a
useful pursuit. Bayesian techniques could also prove to be useful in applications where there
are no observed positive pools. A manuscript is currently in progress that examines these
questions. We are also working on developing regression methodology, similar to that
proposed by Xie (2001) in the binomial case, that can be used to incorporate covariate
information on individual subjects. For example, in testing for FMD, the prevalence may be
affected by animal gender, species, type of farm, and the distance from an infected premises.
Early results suggest that regression estimators possess good statistical properties when the
waiting parameter n is large and the prevalence is moderate.
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Figure 1.
Absolute bias for p̂ (—), p̂α (···), p̂β (—●—), p̂C (—■—), and p̂J (–·–) for different pool sizes
s when n = 5. Optimal values of α, β, αC, and βC are used. B(p̂β) and B(p̂C) are
indistinguishable.
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Figure 2.
MSE for p̂ (—), p̂α (···), p̂β (—●—), and p̂C (—■—) for different pool sizes s when n = 5.
Optimal values of α, β, αC, and βC are used. MSE(p̂β) and MSE(p̂C) are indistinguishable.
The jackknife estimator is not depicted.
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Figure 3.
Absolute bias and MSE of p̂ (—), p̂α (···), p̂β (—●—), and p̂C (—■—). Top: n = 5, s = 50,
and optimal values of α, β, αC, and βC are based on the upper bound p0 = 0.01. Bottom: n =
5, s = 30, and optimal values of α, β, αC, and βC are based on the upper bound p0 = 0.10. In
both cases, p̂β and p̂C are indistinguishable.
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Figure 4.
Exact coverage probability for 95 percent Wald, score, LR, and exact confidence intervals
when s = 20. Top four: n = 1; Middle four: n = 5; Bottom four: n = 100. Within each block
of four, the intervals are arranged as Wald (upper left), score (upper right), LR (lower left),
and exact (lower right).
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