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Abstract

We analyze transport through conical channels due to the difference in particle concentration on
the two sides of the membrane. Because of the detailed balance, fluxes of non-interacting particles
through the same channel, inserted into the membrane in two opposite orientations, are equal. We
show that this flux symmetry is broken by particle-particle interactions, so that one of the
orientations can be much more efficient for transport under the same external conditions. The
results are obtained analytically using 1-D diffusion model and confirmed by 3-D Brownian
dynamics simulations.

Water-filled pores of biological channels usually have complex geometry that only rarely
can be approximated by a cylinder. For example, high-resolution crystallography of bacterial
porins and other large channels demonstrates that their pores can be envisaged as tunnels
whose cross-sections change significantly along the channel axis. For some of them,
variation in cross-section area exceeds an order of magnitude [1,2]. This leads to the so-
called entropic wells and barriers [3-9] in theoretical description of transport through such
structures. In addition to biological channels, entropic effects are also important for
understanding transport in nano-fluidic devices [10] and synthetic nanopores [11-13]. As
the above mentioned theoretical studies deal with single particles, their results are limited to
transport of non-interacting particles. Here we consider the effect of particle-particle
interaction on transport through membrane channels of varying cross-section. Note that the
effects of inter-particle interactions have been studied in the context of diffusion through
narrow pores where the solute and solvent molecules move as a single file. However, the
theory of single-file transport does not address the entropic effect analyzed below.

Consider two membranes separating empty and particle-containing reservoirs connected by
the single channels shown in Fig. 1. The channel on the right is a truncated cone facing
particle-containing reservoir with its wider opening; the channel on the left is identical to its
right counterpart but has the opposite orientation. Which channel orientation is more
efficient in facilitating transport of particles driven by the same concentration difference
between the two reservoirs?

The channel on the left has larger entry area, but to translocate a particle has to climb up the
entropy barrier. At the same time, although the channel on the right has smaller entry area,
translocating particles slide down the entropy hill. In spite of these distinctions, both
channels are equally efficient in transporting non-interacting particles. If not, then for a
given orientation of the channel there would be a net flux between the reservoirs at
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equilibrium when the particle concentrations in the reservoirs are equal. This violates the
condition of detailed balance. In this Letter we show that particle-particle interaction breaks
the symmetry of the fluxes driven by the difference in the particle concentrations on the two
sides of the membrane. We demonstrate that, contrary to one’s intuition, configuration B is
more efficient for transport of strongly repelling particles. This is shown analytically in the
framework of a one-dimensional diffusion model of particle dynamics in the channel and
supported by three-dimensional Brownian dynamics simulations.

We use the Smoluchowski equation to describe the particle motion in the channel, i.e., we
assume that the Green function G = G (X, t|Xg) — the probability density of finding the
particle at point x at time t on condition that it was at xg at t = 0 and has not escaped from the
channel during time t — satisfies

G 0 ) 3 U(x) i U(x)
i {D(./,(,x)exp( KT ) P [exp( T )G]} 0

Here U (x) is the potential of mean force acting on the particle in the channel, D, (X) is a
position-dependent particle diffusion coefficient in the channel, and kg and T have their
usual meanings of the Boltzmann constant and absolute temperature. The propagator
satisfies the initial condition, G (x, 0[xp) = d(x — Xg), and the radiation boundary conditions
[14,15] at the channel ends located at x = x | and x = X R,
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The rate constants x | and « g entering into the boundary conditions are related to the rate
constants k&R which characterize the rate of the particle entrance into the channel from the

on

left and right reservoirs. The relations are
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where A (X) is the channel cross section area at a given value of the coordinate x. For a

conical channel of radius r (x) this area is A (x) = z r? (x) and the rate constants - are
given by the Hill formula [16]

k(ofl) =4Dyr(x,), I=L,R, @

where Dy, is the particle diffusion coefficient in the bulk solutions in the reservoirs.

We assume that the particles strongly repel each other. When analyzing the effect of inter-
particle repulsion on channel-facilitated transport, one has to deal with the many-body
problem. This is true for both intra-channel dynamics of the particles and their entrance into
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the channel from the reservoirs. Unfortunately, the many-body problem is too complicated
to be solved analytically. Therefore, here we consider a toy model, in which we assume that
(i) the inter-particle repulsion is described by the requirement that the channel cannot be
occupied by more than one particle and (ii) the effect of the repulsion on the entrance is
neglected. This allows us to find analytical solutions for the fluxes J 5 and J g, Egs. (12) and
(13), in the two orientations of the channel shown in Fig. 1. Thus, the price we have to pay
for the analytical solution is to accept the two simplifying assumptions mentioned above.

We consider the case of no specific interactions between the particles and the channel walls.
As a consequence, the potential of mean force, U (X), is purely entropic. It arises naturally
when reducing the three-dimensional diffusion problem to an effective one-dimensional
problem to account for the deviations of the channel geometry from that of a cylinder [3].
For single point particles the entropy potential can be written in terms of the channel cross
sectional area, A(x), and its minimum value, Anin, as

A(x)

U(x)=—k,Tln
min (5)

so that the one-dimensional equilibrium concentration of non-interacting particles is
proportional to the channel cross section area,

c(x) < exp(=U(x)/k,T) o< A(x). (6)

The potential U (x) vanishes at x = xg for the channel orientation shown in Fig. 1A, and at x
= x_ for the opposite orientation of the channel shown in Fig. 1B. For all other values of x
the potential is negative.

As follows from Eq. (5), in order to translocate, particles entering the channel through the
wide opening have to climb up the entropy barrier, while particles entering through the
narrow opening slide down the entropy hill. This, however, is not enough to answer the
question which channel orientation is more efficient in transporting the particles between the
two reservoirs, because one also has to account for the differences in the on-rates: the wide
opening receives more particles per unit time than the narrow one. Therefore, a detailed
analysis of the problem is required.

Non-cylindrical geometry of the channel also manifests itself in the position dependence of
the effective diffusion coefficient [3-5, 17]. The expression for Dy, (x) was first derived by
Zwanzig [3] assuming that the channel radius r (x) is a slowly varying function of x, |dr (x)/
dx| « 1. Later, based on heuristic arguments, Zwanzig’s result was generalized by Reguera
and Rubi [4] to read

D cyl

\1+dr(x)/dx)? -

where D¢y is the particle diffusion constant in a cylindrical channel. Detailed analysis of this
question was performed in a series of papers by Kalinay and Percus (see Ref. 5 and
references therein). Recently we carried out a numerical study of diffusion of single particles

D p(x)=
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in conical channels [17] with the goal to test the applicability of different approximate
expressions for Dgy, (x). We found that the approximate formula in Eq. (7) works reasonably
well when the growth rate of the channel radius, 2 = dr (x)/dx, is not too large, specifically, |
A] £ 1. Note that for the conical channels shown in Fig. 1 the growth rate of the channel
radius, 4, is a constant, and, therefore, the diffusion coefficient in Egs. (1) and (2) is

independent of x and given by D,/ V1+42.

Eventually Eq. (1) reduces to the conventional Fick-Jacobs equation [18] with the
renormalized diffusion coefficient

B_G_ Deyi i A( )ﬁ i
or Vit 2 0x Yox A(x) ®)

and the boundary conditions in Eq. (2) take the form
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To find the fluxes J o (1) and J g (1) we use general relations derived in Ref. 15, which, for
conical channels shown in Fig. 1 lead to
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where V¢, is the channel volume. Carrying out the integrations and assuming that D¢y =Dy,
= D we arrive at

4ra(a +|A|L)Dc
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and
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with function f (1) defined as f(1)=V,,+2L?(a+AL/3) V1+2, where L and a are the channel
length and the radius of its small opening, respectively. The results in Egs. (12) and (13) are
exact in the sense that no additional assumptions were made on the way to these
expressions.

One can see that Jg (1) > J a (1) except for the cases when either L, or 4, or ¢ tend to zero.
The cases of L = 0 and 1 = 0 correspond to symmetric systems, in which Jg = J 5. When the
system is asymmetric, L >0 and 4 # 0, but the particle concentration is small, ¢ — 0, the
particle-particle interaction can be neglected (channel occupancy tends to zero), and
therefore the flux symmetry is restored, Jg (1) = J a (4).

The /4 -dependence of the fluxes, Egs. (12) and (13), for channels of different length is
illustrated in Fig. 2. In this figure we also compare our analytical predictions based on the
one-dimensional diffusion model, Egs. (1) and (2), with the results of three-dimensional
Brownian dynamics simulations. The results are given for the three channel lengths (L = 25,
50, and 100) and normalized to the fluxes through the corresponding cylindrical channels of
radius a. It can be seen that the difference between the two orientations of the channel may
lead to significant flux asymmetry. The strength of the effect depends on the geometric
parameters, |A| and the channel length, namely, the larger || and/or the longer the channel,
the stronger the effect.

This can be understood if one takes into account the fact that the main parameter
characterizing the effect of inter-particle interaction on transport is the average channel
occupancy. For a singly occupied channel the occupancy is given by the probability of
finding a particle in the channel. When this probability is small, the system should exhibit
symmetric behavior independently of its structural asymmetry. At fixed concentration of the
particles the probability of finding a particle in the channel grows with the channel length.
At ¢ =2.5 - 107° the occupancy of the relatively short channel of length L = 25 is low, and
the fluxes in Fig. 2 are nearly symmetric in 2 within the whole range of its variation. The
channel occupancy is much higher in the longest channel (L = 100). As a result, the particle-
particle interaction breaks the flux symmetry, and the orientation shown in Fig. 1B proves to
be more than 10-fold more efficient for the transport than the orientation in Fig. 1A at 2 =+1.

It is also interesting to note that for small deviations of the channel shape from a cylinder, |A|
«1, the fluxes are almost symmetric in 4. Both fluxes first grow with |1|. However, as || is
getting larger, the role played by entropic effects becomes more and more important. Indeed,
for the longest channel at 2 = —1 the effect of climbing the entropy barrier is so strong that
the flux through this channel is well below the flux through its cylindrical counterpart of
radius a. This happens in spite of the fact that the radius of the channel opening facing the
particle-containing reservoir, a + L, is much larger than a.

Thus, comparison with the numerical results shows that the one-dimensional diffusion
model of particle dynamics in the channel provides an accurate description of channel-
facilitated transport in the presence of entropy potentials which are due to the deviation of
the channel pore geometry from that of a cylinder. In Fig. 2 small deviations of the
simulation results from the analytical predictions at |1| > 0.5 are due to the limitations of the
approximation given by Eq. (9), which were studied recently in Ref. 17. Importantly, our
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analysis is based only on given geometric parameters of the channel, a, L, and 4, and does
not use any adjustable parameters.

In summary, earlier studies of entropic effects in transport [3—9] were focused on transport
of single particles. Here, for the first time, we analyze how particle-particle interaction
affects the transport in the presence of entropy potentials. We demonstrate that mutual
repulsion of the particles breaks the flux symmetry inherent in transport of non-interacting
particles. Finally, we note that the flux asymmetry discussed here should be distinguished
from the asymmetry that underlies current rectification in charged synthetic conical
nanopores [13, 19] or asymmetric diffusion through these structures [20]. While the subject
of the present study is a purely entropic effect due to the asymmetry in the channel geometry
(Fig. 1), the current rectification is due to the asymmetry in the volume charge density [13],
and is a purely energetic effect. The asymmetric diffusion [20] is not of the entropic origin
either. Rather, it is related to the salt concentration effect on the thickness of the electric
double layer within the nanopore [20]. This, in turn, changes the effective aperture of the
narrow opening of the channel and, therefore, controls transport in a concentration-
dependent manner.
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Figure 1.

Which one of these two identical but oppositely oriented channels is more efficient in
transporting particles? The particles strongly repel each other, so that the channel can not be
occupied by more than one particle at a time. In both cases the transport is driven by the
same difference in particle concentrations on the two sides of the membrane.
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Figure 2.

Fluxes J 5 (1), 4 <0, and Jg (4), 4 >0, through the conical channels of different lengths as
functions of A = dr (x)/dx normalized to the fluxes at 1 = 0. Solid lines are theoretical
predictions while symbols represent results of Brownian dynamics simulations. The channel
lengths are L = 25 (triangles), 50 (squares), and 100 (circles). Other parameters are: a = 5,
D¢y =Dp=D=0.02,¢c=25" 107°. The fluxes are asymmetric and their asymmetry at fixed
A grows with the channel length.
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