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Abstract

N-terminal acetylation (N-Ac) is a highly abundant eukaryotic protein modification. Proteomics revealed a significant
increase in the occurrence of N-Ac from lower to higher eukaryotes, but evidence explaining the underlying molecular
mechanism(s) is currently lacking. We first analysed protein N-termini and their acetylation degrees, suggesting that
evolution of substrates is not a major cause for the evolutionary shift in N-Ac. Further, we investigated the presence of
putative N-terminal acetyltransferases (NATs) in higher eukaryotes. The purified recombinant human and Drosophila
homologues of a novel NAT candidate was subjected to in vitro peptide library acetylation assays. This provided evidence
for its NAT activity targeting Met-Lys- and other Met-starting protein N-termini, and the enzyme was termed Naa60p and its
activity NatF. Its in vivo activity was investigated by ectopically expressing human Naa60p in yeast followed by N-terminal
COFRADIC analyses. hNaa60p acetylated distinct Met-starting yeast protein N-termini and increased general acetylation
levels, thereby altering yeast in vivo acetylation patterns towards those of higher eukaryotes. Further, its activity in human
cells was verified by overexpression and knockdown of hNAA60 followed by N-terminal COFRADIC. NatF’s cellular impact
was demonstrated in Drosophila cells where NAA60 knockdown induced chromosomal segregation defects. In summary,
our study revealed a novel major protein modifier contributing to the evolution of N-Ac, redundancy among NATs, and an
essential regulator of normal chromosome segregation. With the characterization of NatF, the co-translational N-Ac
machinery appears complete since all the major substrate groups in eukaryotes are accounted for.
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Introduction

N-terminal acetylation (N-Ac) is a common modification of

proteins, but its general role has remained rather enigmatic. For

specific proteins, N-Ac is recognized as an important regulator

of function and localization [1–4]. Recently, it was suggested

that it may act as a general destabilization signal for some yeast

proteins, [5] while other reports imply that it might serve as a

stabilizer, for instance by blocking N-terminal ubiquitination

mediated degradation [6]. N-Ac in eukaryotes mainly occurs co-

translationally when 25–50 amino acids protrude from the

ribosome, by the action of ribosome associated N-terminal

acetyltransferases (NATs) [7–12]. N-Ac may occur on the

initiator Met (iMet) or on the first residue after iMet excision by

methionine aminopeptidases (MAPs) [13,14]. Three major NAT

complexes conserved from yeast to humans are thought to be

responsible for the majority of N-terminal acetylation events:

NatA, NatB and NatC [15]. Each complex is composed of

specific catalytic and auxiliary subunits. NatA, the first NAT

defined by Sternglanz and co-workers [16], potentially acety-

lates Ser-, Ala-, Thr-, Val-, Gly-, and Cys- N-termini after iMet-

cleavage [17–19]. NatB and NatC potentially acetylate Met- N-

termini when the second residue is either acidic or hydrophobic

respectively [19–21]. In yeast, NatD was described to acetylate

the Ser- N-termini of histones 2A and 4 in vitro and in vivo [22],

while no such activity has yet been presented for higher

eukaryotes. NatE is another NAT of which the in vitro activity

was described for the human hNaa50p towards some Met-Leu-

N-termini [23], but direct evidence of in vivo activity is still

lacking. Thus, each hitherto in vivo characterized NAT appears

to acetylate a distinct subset of substrates defined by the very

first N-terminal amino acids. Phenotypes induced by loss or
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reduction of NATs suggest that these enzymes, and thus

probably N-Ac, are implicated in a number of cellular processes.

In higher eukaryotes, depletion of NatA, NatB or NatC is

associated with cell cycle arrest or apoptosis [20,21,24–28] while

sister chromatid cohesion defects are observed upon NatE

depletion [29–31].

N-Ac occurs on more than 50% and 80% of cytosolic yeast and

human proteins, respectively [18]. The reason for the major

difference in occurrence of N-Ac between yeast and humans to

date is not known. Furthermore, the fact that specific subsets of

protein N-termini, like those initiated by Met-Lys-, are often

acetylated in humans and fruit fly while rarely being acetylated in

yeast, is also an unsolved issue [18,32]. Further, such substrates do

not match the predicted substrate specificity of any of the known

NATs. Potential explanations for this evolutionary shift from lower

to higher eukaryotes include: i) evolution towards more acetyla-

tion-prone N-termini in higher eukaryotes, ii) a shift in the

substrate specificity between species-specific NATs, iii) the

presence of novel, yet uncharacterized NATs in higher eukaryotes,

and iv) the presence of species-specific co-factors or chaperones

such as HYPK [33]. However, so far, no evidence for any of these

hypotheses was presented.

In the current investigation, we sought to elucidate the

mechanistic explanations for the evolutionary shift in N-terminal

acetylation from lower to higher eukaryotes. To this end we

investigated the potential evolution of acetylation prone N-termini,

but found this to be a trivial contributing factor. We further

explored the presence of novel NATs in higher eukaryotes as a

possible explanation. In silico analysis revealed the existence of an

uncharacterized human protein with a significant sequence

similarity to known catalytic NAT subunits. Indeed, multiple lines

of in vitro and in vivo evidence clearly demonstrate that this

candidate protein conserved among animals is a major NAT

displaying distinct substrate specificity, denoted Naa60p (NatF).

Our data collectively suggest that Naa60p contributes to the

increased occurrence of N-terminal acetylation in higher versus

lower eukaryotes, and additionally revealed a novel regulator of

chromosome segregation.

Results

Analyses of yeast and human N-termini reveal deviations
of the residue contact order but provide no evidence for
a significant evolution to more acetylation-prone
N-termini in higher eukaryotes

We first investigated whether an evolution towards more

acetylation-prone N-termini in higher eukaryotes could help

explain the higher acetylation levels observed. Upon comparing

the yeast, fruit fly and human proteomes, it is evident that the

general distribution of N-termini is largely unaltered between the

different classes, ‘NatA’, ‘NatB’, ‘NatC’ and ‘Other’ (Figure 1A).

However, when considering all different subgroups based on the

first two N-terminal amino acids, some significant alterations

(p,0.01) appeared. Besides the general difference of the amino

acid usage in yeast versus human N-termini in agreement with

recent observations [34], the occurrence of (Met-)Ala- N-termini

increased from 8% in yeast to 23% in humans, while Met-Glu- N-

termini increased from 5% to 10%. On the other hand, (Met-)Ser-

N-termini have decreased in occurrence from 23% in yeast to 11%

in humans (Figure 1B). Interestingly, for these major trends, the

occurrences in fruit-fly are intermediate between yeast and

humans, indicating that these might be characteristic of the

evolution to multicellular and more complex organisms. The next

question is thus whether these changes in N-terminal sequences

are causing a shift in N-Ac. In the current work, we performed

COFRADIC-based N-terminal acetylation analyses of yeast and

HeLa proteomes and present datasets covering 868 and 1,497

unique yeast and human N-termini, respectively (Tables S1 and

S2). An overview of the occurrence of N-Ac of the different classes

of assigned N-termini in the yeast (n = 648) and human (n = 1345)

control samples is presented in Table 1. When relating the

occurrence of N-Ac in yeast to the distribution of human N-

termini and vice versa (based on the first two amino acids of the

identified N-termini), we found no overall significant changes in N-

Ac levels (Table S3). Thus, alteration in usage of the first two N-

terminal amino acids, which are the major determinants for N-Ac,

is not a significant cause for the observed shift from lower to higher

eukaryotes.

Since it was shown that amino acid usage at protein N-termini

differs significantly from what is expected [34], and differences in

dipeptide composition have been used to predict protein

expression levels [35], thermostability [36] and subcellular

localization [37], we further characterized the residue contact

order at protein N-terminal parts by studying dipeptide frequen-

cies in the theoretical proteomes of Homo sapiens, Drosophila

melanogaster and Saccharomyces cerevisiae (UniProt/SwissProt entries

(version 2011-05)). Therefore, the occurrence of the 400 possible

dipeptides from the 20 amino acids in all proteins was estimated

for randomly selected human dipeptides and N-terminal (amino

acids 2–11) dipeptides by Monte-Carlo sampling. Further, a z-

score was applied to correct for differences in database size.

Contacting residues in a random, non-N-terminal set correlate

well with the expected theoretical contact order (data not shown).

In sharp contrast, the overall dipeptide composition deviates

significantly for database-annotated N-termini. A heatmap

visualization centered and scaled by species mean and standard

deviation for Homo sapiens, Drosophila melanogaster and Saccharomyces

cerevisiae is shown for the ten dipeptides with the highest and lowest

z-scores (union of n = 49) (Figure 1C). Overall, these data

strengthen the observation that N-terminal sequences not only

display altered patterns of amino acid frequencies but deviate

extensively in their residue contact order in a species-specific

Author Summary

Small chemical groups are commonly attached to proteins
in order to control their activity, localization, and stability.
An abundant protein modification is N-terminal acetyla-
tion, in which an N-terminal acetyltransferase (NAT)
catalyzes the transfer of an acetyl group to the very N-
terminal amino acid of the protein. When going from
lower to higher eukaryotes there is a significant increase in
the occurrence of N-terminal acetylation. We demonstrate
here that this is partly because higher eukaryotes uniquely
express NatF, an enzyme capable of acetylating a large
group of protein N-termini including those previously
found to display an increased N-acetylation potential in
higher eukaryotes. Thus, the current study has possibly
identified the last major component of the eukaryotic
machinery responsible for co-translational N-acetylation of
proteins. All eukaryotic proteins start with methionine,
which is co-translationally cleaved when the second amino
acid is small. Thereafter, NatA may acetylate these newly
exposed N-termini. Interestingly, NatF also has the
potential to act on these types of N-termini where the
methionine was not cleaved. At the cellular level, we
further found that NatF is essential for normal chromo-
some segregation during cell division.

An Evolutionary N-Acetylome Shift by NatF
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Figure 1. Overview of yeast, fruit fly, and human N-termini in NAT-classes and amino acid prevalence. A. Comparative analyses of the
distribution of all methionine-starting yeast (6561), fruit fly (3120) and human SwissProt entries (20238) (SwissProt version 2011-05) according to their
Nat-type. For simplicity, methionine processing was assumed to occur for (M)A-, (M)S-, (M)T-, (M)V-, (M)C-, (M)G- and (M)P- starting N-termini, while
the X-P- rule was used to assign unacetylated database entries [32]. B. Bar charts of the amino acid occurrence at position 2 of yeast, fruit fly and
human SwissProt protein entries. C. Heatmap of the ten highest and lowest ranking dipeptide z-scores across H. sapiens, D. melanogaster and S.
cerevisiae. Z-scores are scaled by species, with the highest and lowest ranking z-score colored with the same intensity in blue and red respectively.
The species (X-axis) and the dipeptides (Y-axis) were grouped by hierarchical clustering using the euclidian distance matrix of the z-scores.
doi:10.1371/journal.pgen.1002169.g001
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manner, which might additionally impose yet undetected con-

straints in determining N-Ac.

When considering each type of N-terminus, it is evident that

several of these are more acetylated in humans while some are

mainly unchanged, but none are less N-Ac. The major groups of

protein N-termini with an increase in N-Ac in humans as

compared to yeast include (Met-)Ala-, (Met-)Val-, and Met-Lys-

N-termini and thus represent major contributors to the overall

evolutionary shift (Table 1 and Table S3).

Another potential cause for the evolution towards the higher

level of N-Ac is a shift in the substrate specificity between species-

specific NATs. For NatA, which is responsible for N-Ac of two of

the important N-terminal types mentioned above, (Met-)Ala- and

(Met-)Val- this seemed not to be the case as both human NatA and

yeast NatA acetylated the very same subset of N-termini in yeast

[18]. For the final group, Met-Lys- N-termini, no information is

available since such N-termini have not been linked to any of the

NAT classes previously characterized.

Naa60p is a novel NAT displaying a unique substrate
specificity in vitro

In search of novel human NATs, we used the sequences of

known human NATs in NCBI BLAST queries (search set: Swiss-

Prot database restricted to human proteins). We identified one

Table 1. Overview of N-terminal acetylation of yeast and human proteins.*

hNat yNat

No. completely, %
completely and
partially, % No. completely, %

completely and
partially, %

NatA substrates

Ala- 495 91.6 95.3 52 25.0 48.1

Cys- 4 75.0 75.0 2 0.0 0.0

Gly- 10 0.0 0.0 12 0.0 8.3

Ser- 188 95.4 98.0 186 89.2 97.3

Thr- 39 75.9 89.7 36 19.4 55.6

Val- 39 3.2 19.3 31 0.0 9.7

NatB substrates

Met-Asp- 93 95.7 98.9 59 93.2 100.0

Met-Glu- 165 97.6 100.0 35 94.3 100.0

Met-Asn- 32 100.0 100.0 46 89.1 100.0

NatC substrates

Met-Ile 10 30.0 50.0 14 26.7 33.3

Met-Leu- 32 56.3 75.0 30 26.7 33.3

Met-Phe- 18 83.3 83.3 10 60.0 60.0

Other

Asp- 1 100.0 100.0

Ile- 1 0.0 0.0 1 0.0 0.0

Glu- 1 100.0 100.0

Pro- 68 0.0 0.0 25 0.0 0.0

Met-Ala 14 64.3 92.9 1 0.0 100.0

Met-Cys- 1 100.0 100.0

Met-Gly- 3 33.3 100.0 3 0.0 100.0

Met-Lys- 46 13.0 47.8 46 4.3 13.0

Met-Met- 12 83.3 100.0 6 16.7 83.3

Met-Pro- 6 0.0 0.0

Met-Gln- 16 81.3 93.8 13 30.8 84.6

Met-Ser- 9 88.9 88.9 14 7.1 64.3

Met-Thr- 18 83.3 94.4 7 0.0 28.6

Met-Val- 20 50.0 85.0 11 0.0 45.5

Met-Tyr- 4 75.0 100.0 8 25.0 62.5

Total 1345 79.1 85.2 648 52.5 67.9

Quantitative COFRADIC-based analysis of N-terminal acetylation in yeast (S. cerevisiae) and HeLa proteomes determined the acetylation status of 648 and 1345 unique
N-termini in the two species, respectively. Overall, 67.9% and 85.2% of the yeast and HeLa proteomes, respectively, are N-terminally acetylated (fully or partially). The
analysed proteins are categorized based on their N-terminal sequences (substrate classes).
*Only N-termini of which the degree of N-Ac could be univocally calculated/determined in the control yeast (648) and control human (1345) setups were used for the
overall calculation of N-Ac.
doi:10.1371/journal.pgen.1002169.t001
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protein with a significant similarity to several of the known NATs,

namely NAT15/Q9H7X0/Naa60p (Figure 2). NAT15/Naa60p is

highly conserved among animals (Figure 2B) and homologues are

also potentially present in plants (for instance At5g16800). In order

to assess whether NAT15 was an N-terminal acetyltransferase, the

NAT15 ORF was recombinantly expressed and purified from

Escherichia coli and applied to a newly developed in vitro proteome-

derived peptide library N-terminal acetylation assay [38]. In brief,

natural proteomes are used to generate Na-free peptide substrate

pools (libraries) by enrichment with strong cation exchange (SCX).

When such a peptide library is incubated with a NAT enzyme, the

newly Na-acetylated peptides are enriched by a second SCX

fractionation step, resulting in a positive selection of NAT-specific

peptide substrates. Subsequently, the NAT-oligopeptide substrates

are identified by LC-MS/MS, and the in vitro substrate specificity

profile of the NAT in question is analyzed using IceLogo [39], an

analytical tool that uses probability theory to visualize significant

conserved sequence patterns in multiple peptide sequence

alignments by comparing against a chosen background (reference)

sequence set. Using this proteome-derived peptide assay, NAT15

Na-acetylated numerous peptides in vitro and displayed a distinct

substrate specificity profile (Figure 3A). Thus, according to the

revised NAT-nomenclature system [15], we named this protein

Naa60p and its activity NatF. Remarkably, the preferred N-

termini included Met-Lys-, Met-Ala-, Met-Val-, and Met-Met-,

categories for which there are currently no known N-terminal

acetyltransferase(s). Of particular interest, recent data revealed

that several Met-Lys- N-termini were acetylated in humans and

fruit fly while no such N-Ac events of Met-Lys- N-termini were

found in yeast, pointing to the presence of (a) NAT(s) specific for

higher eukaryotes or an altered specificity profile of (a) higher

eukaryotic NAT(s) as compared to yeast NAT(s) [18,32]. To

expand these observations to higher eukaryotes in general, we

purified the predicted fruit fly homologue dNaa60p (CG18177)

and confirmed this protein to be a NAT with a nearly

indistinguishable specificity profile as compared to hNaa60p

(Figure 3B). As deduced from the in vitro specificity profile, besides

Met-; Leu- was also preferred at the first position, which, as we

described previously [38], is expected since both Met and Leu

share similar physiochemical characteristics [40,41]. However, for

co-translational Na-acetylation, Leu at the first position appears

physiologically irrelevant as it is not expected as the first amino

acid, since when it follows the initiator methionine, its size

precludes the removal of this initiator methionine by MAPs [14].

When only including Met residues at the first position, the

specificity profile remains largely unchanged (Figure 3C, 3D and

Figure S1). Given its in vitro specificity, we considered Naa60p a

qualified candidate for the Met-Lys- acetylation activities observed

in higher eukaryotes.

Naa60p is a NAT in vivo, and ectopic expression in yeast
shifts the global N-Ac patterns

In order to assess whether hNaa60p represents a NAT in vivo

and to address its potential role in the evolutionary N-Ac shift, we

generated a yeast strain expressing hNaa60p. We were not able to

observe any differences in growth rates or plating efficiencies

between yeast control strains and yeast strains expressing hNaa60p

(data not shown). Since yeast does not have an obvious homolog of

hNaa60p, ectopic expression was expected to reveal whether

hNaa60p endows yeast with a greater acetylating potential.

Indeed, when comparing N-terminal acetylation in the proteome

of control yeast (yeast control) to the yeast expressing hNaa60p

(yeast+NatF), significant alterations in the Na-acetylome were

observed (Figure 4). For example the Smr domain-containing

protein YPL199C and uncharacterized protein YGR130C, with

respectively Met-Lys- and Met-Leu- N-termini, were unacetylated

in control yeast while 82% and 48% acetylated in the strain

expressing hNaa60p/NatF (Figure 5). In total, for 464 of the 544

(or 85%) unique N-termini identified in both proteomes, the N-

acetylation status could univocally be determined. Of these, 72 N-

termini were more acetylated in the hNaa60p expressing strain,

while none were less acetylated, indicating that at least 16% of the

identified yeast proteome was acetylated by hNaa60p (Figure 4

and Table S4). 44 of the 72 hNaa60p acetylated N-termini were

completely unacetylated in control yeast, while 28 were partially

acetylated. For the latter group, hNaa60p increased the degree of

acetylation with at least 10%. It should be noted that this may

represent an underestimation of hNaa60p’s capacity since fully

acetylated N-termini (53%) in the control strain may also represent

targets, which would be masked by redundancy with the yeast

NAT-machinery. The hNaa60p yeast substrates identified in vivo

were in agreement with the in vitro determined substrate

specificities. The most common in vivo substrate classes were

Met-Lys- (n = 14), Met-Ser- (n = 9), Met-Val- (n = 8), Met-Leu-

(n = 8), Met-Gln- (n = 6), Met-Ile- (n = 5), Met-Tyr- (n = 5), and

Met-Thr- (n = 5) (Table 2).

Among those acetylated by hNaa60p were proteins with Met-

Lys- starting N-termini, which are of particular interest because

these are acetylated in humans by an unknown NAT, while only

rarely acetylated in yeast [18]. When considering the yeast control

dataset, only 13% of the Met-Lys- N-termini are fully or partially

acetylated, while the corresponding number for the yeast+NatF

strain increases to 48%. In striking resemblance, 40% to 70% of

Met-Lys- N-termini are N-terminally acetylated in human cell

lines as respectively demonstrated previously [18] and in the

current dataset (Table 1). Met-Leu-, Met-Ile-, and Met-Phe-

starting N-termini, a class of N-termini considered NatC

substrates, are other types of N-termini frequently found to be

acetylated by hNaa60p. Finally, many substrate N-termini without

a proper NAT-classification (including initiator Met-retaining N-

termini of which the iMet is only partially removed) were

acetylated: Met-Ser-, Met-Val-, Met-Thr- and Met-Met-, and

Met-Gln-. Thus, hNaa60p acetylates both N-free besides partially

acetylated protein N-termini in yeast, some without any known

corresponding yeast NAT, as well as N-termini for which there is a

putative NAT (NatC). This indicates that Naa60p may mediate a

significant part of the shift in N-terminal acetylation from lower to

higher eukaryotes. Furthermore, in contrast to the current

opinion, this also strongly suggests redundancy in the Na-

acetylation system, meaning that different NATs may have

(partially) overlapping substrates. The effect of hNaa60p on

overall N-terminal acetylation in yeast is shown in Figure 5C.

Overall, the expression of hNaa60p increased the fraction of Na-

acetylated yeast proteins from 68% to 78%, in particular affecting

the groups ‘yNatC’ and ‘Other’ (Figure 4 and Figure 5).

Overexpression or knockdown of hNAA60 affects
N-terminal acetylation in HeLa cells

Overexpression or knockdown of hNAA60 in HeLa cells was

found to increase or decrease, respectively, the N-terminal

acetylation of proteins matching the above defined in vitro and in

vivo substrate specificity of hNaa60p (Table S5). Examples include

the proteins STIP1 homology and U-box containing protein1

(1MKGKEEKEGGAR12) and mediator of RNA polymerase II

transcription subunit 25 (1MVPGSEGPAR10) where the Na-

acetylation status is shifted as a consequence of hNAA60

overexpression (from 18% to 32% acetylation) or knockdown

(from 26% to 17% acetylation), respectively (Figure 6). These data

An Evolutionary N-Acetylome Shift by NatF
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strongly point to the fact that hNaa60p in human cells can act on

the classes of N-termini deduced from the in vitro and in vivo yeast

analyses described above (Table 2). Obviously, overexpression

analysis will be limited by the redundancy among NATs and by

the fact that naturally hNaa60p-acetylated N-termini may be fully

acetylated and as such do not appear as substrates for the

overexpressed hNaa60p. Furthermore and in line with previous

knockdown analyses of NatA in HeLa cells, the semi-effective

nature of siRNA-mediated knockdown as well as the long time

period needed for a clear effect on N-terminal acetylations to

occur, make such analyses indicative rather that providing the full

picture of acetylation events mediated via a specific NAT and as

shown previously, primarily affects the least efficiently acetylated

N-termini [18]. Thus, the real number of Naa60p substrates in

human cells is likely to be significantly higher as compared to the

substrates identified in these particular analyses.

Finally, two of the acetylated N-termini of the predicted NatF

class picked up from the HeLa dataset (Table S2) were tested by a

direct in vitro approach. Synthetic peptides derived from the Met-

Lys- and Met-Ala- N-termini of Septin 9 and Protein phosphatase

6, respectively, were subjected to an in vitro acetylation assay with

purified hNaa60p followed by an HPLC-based analysis of

acetylated and unacetylated peptides. In agreement with the

human and yeast in vivo data and in vitro substrate profiles obtained

above, hNaa60p acetylated both these peptides, as well as

representatives of NatC and NatE class substrates (Figure 7).

Thus, we confirmed the N-terminal acetylation of human

substrates as well as the potential redundancy with NatC and

NatE enzyme classes (Table 2).

dNaa60p is required for chromosome segregation during
anaphase

In order to assess the cellular function of dNaa60p, its

expression was knocked down in Drosophila Dmel2 cells by RNAi.

Similarly to dNAA50-depleted cells [30,31] (data not shown),

dNAA60-depleted cells showed chromosomal segregation defects

Figure 3. Heatmap visualization reflecting the in vitro substrate specificity of hNaa60p and dNaa60p. A. Heatmap of the 248 unique
hNaa60p-specific oligopeptide substrates (353 substrate peptides in total). B. Heatmap of the 251 unique dNaa60p-specific oligopeptide substrates
(345 substrate peptides in total). C. Heatmap of the subset of 112 unique hNaa60p-specific methionine-starting oligopeptide substrates. D. Heatmap
of the subset of 126 unique dNaa60p-specific methionine-starting oligopeptide substrates. Data was normalized against the natural positional amino
acid composition of SwissProt (version 57.8) [iterative rounds (n = 100) of randomly selected sequences (n = 100) were taken as to correct for the
statistical variations (SD = standard deviation) intrinsically present at each position in the experimental datasets ranging from amino acid 1 to 6]. The
significance threshold was set at 0.01. Red color shades are negatively correlated with the occurrence in Naa60p peptide-substrates as compared to
random sequences in SwissProt, while green shades are positively correlated.
doi:10.1371/journal.pgen.1002169.g003

Figure 2. Amino acid sequence alignments of hNaa60p and other NATs. A. Amino acid sequence alignment of NAT15/hNaa60p and known
human NATs. Only amino acid 200–362 of hNaa30p was included in the alignment. The consensus Acetyl Coenzyme A (AcCoA) binding motif
RxxGxG/A, where x can be any amino acid, is indicated. T-Coffee (http://www.ebi.ac.uk/Tools/t-coffee/index.html) was used to make the alignment.
Purple background indicates acidic residues, red indicates basic residues, orange indicates glycine, yellow indicates proline, blue indicates
hydrophobic residues, green indicates polar residues, and turquoise indicates histidine and tyrosine. B. Amino acid sequence alignment of Naa60p
from Drosophila melanogaster (Dm), Danio rerio (Dr), Mus musculus (Mm), Rattus norvegicus (Rn) and Homo sapiens (Hs). The consensus Acetyl
Coenzyme A (AcCoA) binding motif RxxGxG/A, where x can be any amino acid, is indicated. Colour codes are used as in A.
doi:10.1371/journal.pgen.1002169.g002
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during anaphase (Figure 8A–C, 8F, 8G, 8J, 8K). However, while

dNAA50-depleted cells exhibit abnormal metaphases with an

obvious mitotic arrest, control and dNAA60-depleted cells

exhibited normal metaphases, with all chromosomes perfectly

aligned within the spindle equator and without any mitotic arrest

(Figure 8D, 8E, 8H, 8I and Figure S2). In contrast, during

anaphase we consistently observed chromosome segregation

defects in dNAA60-depleted cells, which included lagging chro-

mosomes (Figure 8K, highlighted by asterisk) and chromosomal

bridges (Figure 8B, 8G, highlighted by asterisk; quantification of

abnormal anaphases is shown in Figure 8C). Chromosome lagging

and bridging in dNAA60-depleted cells may be explained by

kinetochore abnormalities; however we failed to detect any

obvious defect in the localization of the Centromere identifier

protein (Cid) during metaphase or anaphase (Figure 8D–G). We

also failed to detect any obvious cohesion defect since the distance

between kinetochores during metaphase was normal according to

Cid localization (Figure 8D, 8E). Chromosome lagging could also

be explained by centrosome/mitotic spindle defects. Yet, we did

not detect any obvious defect in the localization of Centrosomin

(Cnn), and the mitotic spindle was bipolar and correctly attached

to chromosomes and centrosomes (Figure 8D–G). Furthermore,

dNAA60-depleted cells showed no obvious defects in the actin and

microtubule cytoskeleton in both mitotic and interphase cells

(Figure 8H–M). Since dNAA60-depleted cells were otherwise

normal, our data suggest that dNaa60p is required for chromo-

some segregation during anaphase. Naa60p-dependent N-terminal

acetylation of one or more substrates is therefore likely to be

required for chromosome segregation in vivo.

Discussion

The basic co-translational machinery performing N-Ac in

eukaryotes was believed to be fully identified and mostly

characterized, with five NATs, NatA-NatE, each of which

composed of specific subunits and acetylating its own subset of

substrates [15]. However, the significant shift in occurrence of N-

Ac from lower to higher eukaryotes, clearly points to the fact that

species-specific factors are major determinants for N-Ac. Indeed,

in the current study we revealed that higher eukaryotes express

NatF/Naa60p, a unique NAT responsible for N-Ac of a large

subset of eukaryotic proteins. These N-termini include Met-Lys-,

Met-Met-, Met-Val- and Met-Ser- to which so far no NAT has

been assigned. Also N-termini like Met-Leu- and Met-Ile-,

previously believed to be solely NatC substrates, may be acetylated

by NatF. Thus, the previous clear-cut classification between Nat

substrate classes based on the N-terminal sequences should be re-

evaluated when in vivo datasets are considered. The current

Figure 4. NatF N-terminally acetylates yeast substrates in vivo. Scatterplot displaying the correlation of the degrees of Na-acetylation when
comparing a control (X-axis) and a human NatF (hNaa60p)-expressing (Y-axis) yeast N-terminome dataset. The correlation was calculated with the R
statistical package to be R2 = 0.937. The N-termini displaying a significant variation in the degree of Na-acetylation (see Materials and Methods) are
highlighted in orange. The frequency histograms of the number of matching data points are also shown.
doi:10.1371/journal.pgen.1002169.g004
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knowledge on the NATs of higher eukaryotes and their

corresponding substrates is presented in Figure 9.

In contrast to the N-termini acetylated by NatF, for the

increased N-Ac of the processed (Met-)Ala- and (Met-)Val- N-

termini there is presently no explanation. The intrinsic enzymatic

properties of human and yeast NatA appeared to be very similar

when expressed in yeast [18]. Co-determining factors that should

be elaborated upon concerning the NatA substrates are interaction

partners specific for NatA of higher eukaryotes, like HYPK which

was demonstrated to modulate N-terminal acetylation [33].

Notwithstanding the generally lower expression levels, the

existence of higher eukaryotic paralogues of Naa15p and Naa10p,

being Naa16p and Naa11p respectively [42,43], might addition-

ally account for modulators of the observed Na-acetylome.

However, information regarding their potential proteome-wide

contribution to N-Ac is currently lacking.

We found that evolution of N-Ac prone N-termini most likely

contributes only to a very small degree to the overall evolutionary

shift in the occurrence of N-Ac. Furthermore, there might be a

shift in the substrate specificity between species-specific NATs, for

instance for the NatB, NatC and NatE activities, requiring further

experimental validation. However viewing their strict evolutionary

conservation, this may be rather unlikely.

The current data are more comprehensive as compared to

previous analyses [18], and overall the 648 unique yeast and 1345

unique human N-termini identified were analysed for their

acetylation status (Table 1, Tables S1 and S2). 68% of the yeast

N-termini and 85% of the human N-termini are partially or fully N-

terminally acetylated. Previously, we determined that 57% of yeast

proteins and 84% of human proteins were N-terminally acetylated,

thus implicating some shift in the N-Ac of the yeast N-termini

between experiments. We believe the current dataset likely holds a

more representative picture since more N-termini were sampled

and since yeast was grown under slightly different deprivating

(SILAC) conditions in the previous setup. Nevertheless, still a

significant difference between yeast (68%) and humans (85%) can be

observed and as demonstrated, this difference is significantly

diminished in yeast expressing NatF (78%) (Figure 4 and Figure 5).

The current study provides to the best of our knowledge, the

first evidence shedding light on the molecular basis of the

evolutionary shift in the Na-acetylome from lower to higher

eukaryotes. With the presence of NatF, higher eukaryotes are

Table 2. Types of N-termini acetylated by NatF using different methods.

In vitro peptide library assay
specificity of recombinant hNaa60p
(Figure 3 and Figure S1)

In vivo yeast substrates of
ectopically expressed hNaa60p#

(Figure 4, Figure 5, and Table S4)

HeLa substrates affected by
knockdown or overexpression of
hNaa60p#

(Figure 6 and Table S5)

In vitro assay using synthetic
peptides to verify selected
substrates of recombinant hNaa60p
(Figure 7)

Met-Lys- Met-Lys- Met-Lys- positive

Met-Ala- Met-Ala- Met-Ala- positive

Met-Val- Met-Val- Met-Val- n.d.

Met-Met- Met-Met- Met-Met- n.d.

Met-Ser- Met-Ser- n.d.

Met-Leu- Met-Leu- positive

Met-Gln- Met-Gln- n.d.

Met-Ile- n.d.

Met-Tyr- n.d.

Met-Thr- n.d.

Met-Phe- n.d.

Met-Gly- n.d.

Ser-(Glu-) negative

Ala-(Gly-) Ala-(Ala-) n.d.

Thr-(Asp-) n.d.

NatF/hNaa60p was shown to acetylate several types of N-terminal sequences by the different in vitro and in vivo methods applied in this study. This overview displays
which N-termini are acetylated by NatF using the different methods. Met-Lys-, Met-Ala-, Met-Val- and Met-Met- are among the N-terminal sequences that appear to
represent the preferred NatF substrates.
Underlined N-termini were most commonly represented (n.4).
#Underlined N-termini have at least two independent hits. N.d., not determined.
doi:10.1371/journal.pgen.1002169.t002

Figure 5. NatF expression shifts the overall status of the yeast N-terminal acetylome. A. A yeast strain expressing hNaa60p/NatF
‘Yeast+NatF’ was generated (see Materials and Methods), and processed by SDS-PAGE and Western blotting along with the control strain ‘Yeast ctr.’
containing an empty control plasmid. Anti-hNaa60p verified expression of hNaa60p in the Yeast+NatF strain (an unspecific band served as loading
control). B. MS-spectra from the MK- starting N-terminal peptide (doubly charged precursor) of the Smr domain-containing protein YPL199C
(1MKGTGGVVVGTQNPVR16) reveals two distinguishable isotopic envelopes in the hNaa60p expressing yeast strain [i.e. the acetylated (Ac) and 2C13

and trideutero-acetylated forms (2C13AcD3), right upper panel] indicative for the fact that this N-terminus is 82% in vivo Na-acetylated while being Na-
free in the control sample (left upper panel). The lower panels show MS-spectra of the ML-starting N-terminal peptide (doubly charged precursor) of
the uncharacterized protein YGR130C (1MLFNINR7) in the control sample (0% Na-acetylated, left lower panel) or hNAA60 sample (48% acetylated,
right lower panel). C. Nat-category specific distribution of experimentally identified yeast N-termini in the yeast control or hNaa60p-expressing yeast
strain. Only those N-termini of which the N-Ac status could univocally be assigned (n = 464) were considered.
doi:10.1371/journal.pgen.1002169.g005
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enforced in their capacity to acetylate Met-Lys-, Met-Leu- and other

Met- starting N-termini, thus explaining in part the increased

occurrence of N-Ac. This additional NAT may have evolved to meet

the increased demands of more complex proteomes with a higher

level of regulation. In light of the recent suggestion that N-Ac

generates degrons and thus acts as a destabilizer [5], these issues will

be of particular importance. Our results suggested that dNaa60

activity is likely to be specifically required for chromosome segregation

during anaphase, as cells depleted for dNaa60 showed normal

alignment of chromosomes during metaphase plates and progressed

normally through mitosis, without any obvious cell cycle arrest

(Figure 8 and Figure S2). With an increasing support for N-Ac in

controlling protein stability, function and subcellular localization, it is

very likely that Naa60p will emerge as a key regulator for several

proteins. Future investigations will aim at elucidating these specific

Naa60p substrates.

Figure 6. Knockdown and overexpression of hNaa60p affects N-terminal acetylation in HeLa cells. A. HeLa cells cultivated in 13C6
15N4 L-

arginine were transfected with control vector and cells cultivated in 12C6 L-arginine were transfected with phNAA60-V5. After 48 hours of transfection
the cells were harvested, lysed and subjected to COFRADIC and MS and MS/MS- analysis. MS spectra of the peptide 1MKGKEEKEGGAR12, originating
from the STIP1 homology and U-box containing protein1 is shown. The protein is more acetylated when hNaa60p is overexpressed (32% Na-
acetylated) as compared to the control (18% Na-acetylated). Aliquots were processed by SDS-PAGE and Western blotting using anti-V5 and anti-b-
tubulin antibodies. B. Control cells cultivated in 12C6 L-arginine were transfected with 50 nM siNon-targeting control, and cells cultivated in 13C6

15N4

L-arginine were transfected with 50 nM sihNAA60 pool. After 84 hours of transfection the cells were harvested and subjected to COFRADIC and MS
analysis. MS spectra of the peptide 1MVPGSEGPAR10, originating from the protein Mediator of RNA polymerase II transcription subunit 25 is shown.
The peptide was partially acetylated in both control (26% Na-acetylated) and knockdown setup (17% Na-acetylated), however the peptide was less
Na-acetylated when the levels of hNaa60p was reduced. Aliquots were processed for SDS-PAGE and Western blotting using anti-hNaa60p and anti-
actin antibodies.
doi:10.1371/journal.pgen.1002169.g006
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Materials and Methods

N-terminal dipeptide frequency analysis for H. sapiens,
D. melanogaster, and S. cerevisiae

The random dipeptide frequencies (n = 400) were estimated by

Monte Carlo sampling of one randomly selected decapeptide per

protein in the databases of; Homo sapiens, Drosophila melanogaster and

Saccharomyces cerevisiae (UniProt/SwissProt entries (version 2011-

05)). After 100 sampling rounds, the mean and standard deviation

for each dipeptide were estimated. Thereafter, the N-terminal

dipeptide frequency of all decapeptides from position 2 to 11 were

calculated, and the obtained frequencies compared with the

random frequencies. The corresponding species-specific z-score,

reflecting the amino acid dipetide frequency differences between

the protein N-terminal and overall protein sequence were

calculated as follows:

AA freq (N-term)-AA freq (random)

AA stdev (random)
~AA z-score

Searching for novel human NATs
Sequences of the known human catalytic NAT units/subunits,

hNaa10p (P41227), hNaa11p (Q9BSU3), hNaa20p (P61599),

hNaa30p (Q147X3) and hNaa50p (Q9GZZ1), were used in the

search of novel human NATs by making use of NCBI BLAST

(blastp) queries (search set: ‘Swiss-Prot protein sequences’

restricted to organism: ‘Homo sapiens’ and otherwise the

predefined parameters). Besides the known human NATs, there

was in particular one significant hit, the uncharacterized NAT15

(Q9H7X0), which held sequence similarity to all query NATs

with E-values between 361026 and 0.24. NAT15 is an

automatically annotated name due to the presence of a N-

acetyltransferase domain (pfam00583) in the protein sequence.

When using hNaa30p and hNaa50p as query sequences, NAT15

scored even better than some of the known human NATs

(hNaa20p and hNaa10p/hNaa11p/hNaa20p, respectively).

When using hNaa30p as query sequence, some other human

proteins scored equally well as NAT15: NAT8 (Q9UHE5),

NAT8B (Q9UHF3), NAT8L (Q8N9F0) and ATAC2/CRP2BP

(Q9H8E8) with E-values ranging from 761025 to 0.034.

However, all these candidates were biochemically characterized

as members of the GNAT family (pfam00583) with functions

distinct from protein N-terminal acetylation. NAT8 is a cysteinyl-

S-conjugate N-acetyltransferase catalyzing the last step of

mercapturic acid formation while NAT8B is a likely pseudogene

of NAT8 [44]. NAT8L catalyses the synthesis of N-acetylaspar-

tate [45] and ATAC2 catalyses lysine acetylation on histone H4

[46]. Thus, NAT15 was the only uncharacterized protein with a

significant similarity to the known human NATs (Figure 2) and

was therefore further pursued.

Figure 7. NAT-activity of recombinant hNaa60p towards synthetic N-terminal oligopeptides. MBP-hNaa60p was incubated with the
indicated oligopeptide substrates (200 mM) and acetyl-Coenzyme A (300 mM) in acetylation buffer for 35 minutes at 37uC. Peptide acetylation was
determined by RP-HPLC peptide separation. The NATs responsible for acetylating the different peptides are shown. Question marks indicate that no
NAT has yet been identified to acetylate these peptides. *SYSM represents the ACTH N-terminus which is an artificial in vitro substrate of NatA. The
four first amino acids in the oligopeptides are indicated, for further details see Materials and Methods.
doi:10.1371/journal.pgen.1002169.g007
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Construction of plasmids
Plasmid encoding V5-tagged NAT15/hNaa60p (Gene ID:

79903) used for mammalian expression was constructed from

human HEK293 cDNA by use of Transcriptor Reverse

Transcriptase (Roche). The PCR product containing the CDS

plus four 59 nucleotides (gaga) was inserted into the TOPO TA

vector pcDNA 3.1/V5-His TOPO Invitrogen) according to the

instruction manual. An E. coli expression vector encoding MBP-

His-tagged hNaa60p was constructed by subcloning hNAA60 from

phNAA60-V5 to the pETM-41 vector using the Acc65I and NcoI

Figure 8. dNaa60p is required for chromosome segregation during anaphase. Control dsRNA treated cells (A,D,F,H,J and L). dNAA60 dsRNA
treated cells (B,E,G,I,K and M). dNAA60-depleted cells exhibited chromosome segregation defects during anaphase (A–C). These defects included
lagging chromosomes (K, highlighted by asterisk) and chromosome bridges (B and G, highlighted by asterisk). Quantification of chromosome
segregation defects in dNAA60-depleted cells (n = 278) and control cells (n = 179) (***p,0,001 Student’s test) (C). Histone 3 phosphorylated on Serine
10 (red), a-tubulin (green) and DNA (blue). dNAA60-depleted cells showed no significant defects in the localization of both Cnn and Cid proteins (D–
G). Both control and dNAA60-depleted cells exhibited bypolar spindles with correct alignment of chromosomes at the metaphase plate (D,E).
Anaphase cells with chromosome segregation defects in dNAA60-depleted cells showed no obvious defects in Cnn and Cid localization (F,G). a-
tubulin (red), Cid (green) and Cnn (blue). Control and dNAA60-depleted cells exhibit proper chromosome alignment during metaphase with no
detectable defects in the actin and microtubule cytoskeleton (H,I). dNAA60-depleted cells undergoing anaphase with chromosome segregation
defects also showed a normal actin and microtubule cytoskeleton (J,K; details show histone 3 phosphorylated on serine 10 staining). dNAA60-
depleted cells in interphase show no detectable defects regarding the actin and microtuble cytoskeleton (L–M). Actin (red), a-Tubulin (green) and
Histone 3 phosphorylated on Serine 10 (blue).
doi:10.1371/journal.pgen.1002169.g008
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Figure 9. The major pathways of protein N-terminal processing in higher eukaryotes. N-termini of which the iMet is followed by one of
the small amino acids, Ser-, Ala-, Thr-, Val-, Gly-, Cys-, and Pro- often undergo iMet cleavage performed by a methionine aminopeptidase (MAP). These
N-termini, with the exception of Pro-, are often further acetylated by NatA, or in the case of Histone H2A and H4, by NatD (Hole K. et al., unpublished).
However, this group of N-termini may also be acetylated by NatF. Met-Asp-, Met-Glu- and Met-Asn- are acetylated by NatB. Actins are further
processed in one or more steps by unidentified Actin aminopeptidases (Act AP). The acidic actin N-termini are then acetylated by at NAT, presumably
NatA [38]. Hydrophobic Met-Leu-, Met-Ile- and Met-Phe- are acetylated by NatC, but also by NatF as well as by NatE in vitro, suggesting potential
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sites. pETM-41-dNAA60, encoding the predicted fruit fly Naa60p

was made by subcloning the CG18177 CDS from pOT2-

CG18177 (clone LD27619 from the Drosophila Genomics

Resource Centre, Indiana University) to pETM-41. pETM-41

was generously provided by G. Stier, EMBL, Heidelberg. A yeast

expression vector, pBEVY-U-hNAA60 encoding untagged

hNaa60p was constructed by subcloning hNAA60 from

phNAA60-V5 to the pBEVY-U vector [47] using the BamHI and

SalI sites.

E. coli protein expression and purification
The plasmid pETM-41-hNAA60 or pETM-41-dNAA60 was

transformed into E. coli BL21 StarTM (DE3) cells (Invitrogen) by

heat shock. A 200 ml cell culture was grown in LB (Luria Bertani)

medium to an OD600 nm of 0.6 at 37uC and subsequently

transferred to 20uC. After 30 min of incubation, protein

expression was induced by IPTG (1 mM). After 17 h of

incubation, the cultures were harvested by centrifugation and

the pellets stored at 220uC. E. coli pellets containing recombinant

proteins were thawed at 4uC and the cells lysed by sonication in

lysis buffer (1 mM DTT, 50 mM Tris-HCl (pH 7.5 or 8.3 for

MBP-dNAA60p and MBP-hNAA60p, respectively), 300 mM

NaCl, 1 tablet EDTA-free protease Inhibitor cocktail per 50 ml

(Roche)). Following centrifugation, the cell extracts were applied

on a metal affinity FPLC column (HisTrap HP, GE Healthcare,

Uppsala, Sweden). MBP-hNaa60p and MBP-dNaa60p were

eluted with 300 mM Imidazole in 50 mM Tris (pH 7.5 or 8.3

for MBP-dNAA60 or MBP-hNAA60, respectively), 300 mM NaCl

and 1 mM DTT. Fractions containing recombinant protein were

pooled and further purified using size exclusion chromatography

(SuperdexTM 75, GE Healthcare) until apparent purity as analysed

by Coomassie stained SDS-PAGE gels. The protein concentra-

tions were determined by OD280 nm measurements.

In vitro peptide library-based NAT assay using hNaa60p
and dNaa60p

Preparation of proteome derived peptide libraries. Proteome-

derived peptide libraries were generated from human K-562 cells.

Cells were repeatedly (36) washed in D-PBS and then re-

suspended at 76106 cells per ml in lysis buffer (50 mM sodium

phosphate buffer pH 7.5, 100 mM NaCl, 1% CHAPS and

0.5 mM EDTA) in the presence of protease inhibitors (Complete

protease inhibitor cocktail tablet (Roche Diagnostics, Mannheim,

Germany)). After lysis for 10 min on ice, the lysate was cleared by

centrifugation for 10 min at 16,0006 g and solid guanidinum

hydrochloride was added to the supernatant to a final concentra-

tion of 4 M. The protein samples were reduced and S-alkylated,

followed by tri-deuteroacetylation of primary amines and digestion

with trypsin as described previously [48,49]. The resulting peptide

mixtures were vacuum dried. The dried peptides were re-dissolved

in 500 ml 50% acetonitrile. The sample was acidified to pH 3.0

using a stock solution of 1% TFA in 50% acetonitrile and further

diluted with 10 mM sodium phosphate in 50% acetonitrile to a

final volume of 1 ml. This peptide mixture was then loaded onto

an AccuBONDII SCX SPE cartridge (Agilent Technologies,

Waldbronn, Germany) and SCX separation (SCX fractionation 1)

of Na-blocked N-terminal peptides (and C-terminal peptides) from

Na-free peptides was performed as described previously [48,50].

The flow-through containing the Na-blocked N-terminal peptides

and C-terminal peptides was discarded and the SCX-bound

fraction (containing the Na-free peptides) was collected by elution

with 4 ml of 400 mM NaCl and 10 mM sodium phosphate in

40% of acetonitrile (pH 3.0). Eluted peptides were vacuum dried

and re-dissolved in 1 ml of HPLC solvent A (10 mM ammonium

acetate in 2% acetonitrile, pH 5.5). C18 solid-phase extraction

(SPE desalting step) of the Na-free peptides was performed by

loading the peptide mixture onto a AccuBONDII ODS-C18 SPE

cartridge (1 ml tube, 100 mg, Agilent Technologies). This

cartridge has a binding capacity of 1 mg of peptides and thus

for each mg of material, a separate cartridge was used. Prior to

sample loading, the cartridges were washed with 2 ml of 50%

acetonitrile and then washed with 5 ml of HPLC solvent A.

Sample loading was followed by washing the C18 cartridge with

5 ml of 2% acetonitrile. Peptides were eluted with 3 ml of 70%

acetonitrile and subsequently vacuum dried.

In vitro peptide library-based NAT assay. 100 nmol of the

desalted Na-free peptide pool was reconstituted in acetylation

buffer (50 mM Tris-HCl (pH 8.5), 1 mM DTT, 800 mM EDTA,

10% glycerol) together with equimolar amounts of a stable isotope

encoded variant of acetyl-CoA, 13C2-acetyl CoA, (99% 13C2-acetyl

CoA, ISOTEC-Sigma (lithium salt)) and 1 nmol of enzyme (i.e.

recombinant hNaa60p or dNaa60p) was added to a final reaction

volume of 1 ml. The reaction was allowed to proceed for 1 h at

37uC and stopped by addition of acetic acid to a 5% final

concentration. SPE was then performed as described above.

NAT oligopeptide-substrate recovery and RP-HPLC based

separation. Peptides starting with pyroglutamate were unblocked

prior to the second SCX fractionation step. Here, 25 ml of

pGAPase (25 U/ml) (TAGZyme kit, Qiagen, Hilden, Germany)

was activated for 10 min at 37uC by addition of 1 ml of 50 mM

EDTA (pH 8.0), 1 ml of 800 mM NaCl, and 11 ml of freshly

prepared 50 mM cysteamine-HCl. 25 ml of Qcyclase (50 U/ml,

TAGZyme) was then added to the pGAPase solution. The dried

peptides were re-dissolved in 212 ml of buffer containing 16 mM

NaCl, 0.5 mM EDTA, 3 mM cysteamine, and 50 mM aprotinin.

The activated pGAPase and Q-cyclase mixture was added to the

peptide sample and the mixture (275 ml total volume) was

incubated for 60 min at 37uC. 275 ml acetonitrile was then added

and the sample was acidified to pH 3 using a 1% TFA stock

solution in 50% acetonitrile. The sample was further diluted with

10 mM sodium phosphate in 50% acetonitrile to a final volume of

1 ml. SCX enrichment of Na-blocked N-terminal peptides was

performed as described [48] (SCX fractionation 2). The SCX

fraction containing the newly blocked N-terminal peptides was

vacuum dried and re-dissolved in 100 ml of HPLC solvent A. To

prevent oxidation of methionine between the primary and

secondary RP-HPLC separations (and thus unwanted segregation

of methionyl peptides [51], methionines were uniformly oxidized

to sulfoxides prior to the primary RP-HPLC run by adding 2 ml of

30% (w/v) H2O2 (final concentration of 0.06%) for 30 min at

30uC. This peptide mixture was injected onto a RP-column

(Zorbax 300SB-C18 Narrowbore, 2.1 mm (internal diame-

ter)6150 mm length, 5 mm particles, Agilent Technologies) and

the RP-HPLC separation was performed as described previously

[48]. Fractions of 30 s wide were collected from 20 to 80 min after

sample injection (120 fractions). To reduce LC-MS/MS analysis

time, fractions eluting 12 min apart were pooled, vacuum dried

and re-dissolved in 40 ml of 2% acetonitrile. In total, 24 pooled

redundancy between these NATs. Met-Met-, Met-Lys- and Met-Gln- are acetylated by NatF and potentially other NATs. Information about Met-His-,
Met-Arg-, Met-Trp- and Met-Tyr- is limited, but it is likely that some of these N-termini are acetylated as well, by NatF and perhaps NatC.
doi:10.1371/journal.pgen.1002169.g009
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fractions per setup were subjected to LC-MS/MS analysis (see

below).

LC-MS/MS analysis. LC-MS/MS analysis was performed

using an Ultimate 3000 HPLC system (Dionex, Amsterdam,

The Netherlands) in-line connected to a LTQ Orbitrap XL mass

spectrometer (Thermo Electron, Bremen, Germany) and, per LC-

MS/MS analysis, 2 ml of sample was consumed. LC-MS/MS

analysis and generation of MS/MS peak lists were performed as

described [52]. These MS/MS peak lists were then searched with

Mascot using the Mascot Daemon interface (version 2.2.0, Matrix

Science). The Mascot search parameters were set as follows.

Searches were performed in the Swiss-Prot database with

taxonomy set to human (UniProtKB/SwissProt database version

2010_05 containing 20,286 human protein sequences). Trideu-

tero-acetylation at lysines, carbamidomethylation of cysteine and

methionine oxidation to methionine-sulfoxide were set as fixed

modifications. Variable modifications were trideutero-acetylation,

acetylation and 13C2-acetylation of protein N-termini and

pyroglutamate formation of N-terminal glutamine. Endoprotei-

nase Arg-C/P (Arg-C specificity with arginine-proline cleavage

allowed) was set as enzyme allowing no missed cleavages. The

mass tolerance on the precursor ion was set to 10 ppm and on

fragment ions to 0.5 Da. The estimated false discovery rate by

searching decoy databases was typically found to lie between 2 and

4% on the spectrum level [48]. Quantification of the degree of N-

Ac was done as previously explained [18].

In vitro N-terminal acetylation assay using purified
MBP-hNaa60p and synthetic peptides

Purified MBP-hNaa60p (500 nM) was mixed with selected

oligopeptide substrates (200 mM) and 300 mM of acetyl-CoA in a

total volume of 50 ml acetylation buffer (50 mM Tris (pH 8.5),

800 mM EDTA, 10% glycerol, 1 mM DTT) and incubated at

37uC for 35 min. The enzyme activities were quenched by the

addition of 5 ml of 10% TFA. Peptide acetylation was quantified

using RP-HPLC as described previously [23].

Synthetic peptide sequences
Peptides were custom-made (Biogenes) to a purity of 80–95%. All

peptides contain 7 unique amino acids at their N-terminus, as these

are the major determinants influencing N-terminal acetylation. The

next 17 amino acids are essentially identical to the ACTH peptide

sequence (RWGRPVGRRRRPVRVYP) however; lysines were

replaced by arginines to minimize any potential interference by Ne-

acetylation. Oligopeptide sequences:

SYSM-RRR (ACTH (aa138–161, P01189): [H] SYSMDH-

FRWGRPVGRRRRPVRVYP [OH]; MDEL-RRR (NF-kkB p65,

Q04206): [H] MDELFPLRWGRPVGRRRRPVRVYP [OH];

MLGT-RRR (hnRNP H, P31943): [H] MLGTEGGRWG-

RPVGRRRRPVRVYP [OH]; MAPL-RRR (Prot phosphatase 6,

O00743): [H] MAPLDLDRWGRPVGRRRRPVRVYP [OH];

MLGP-RRR (hnRNP F, P52597): [H] MLGPEGGRWGRPVG-

RRRRPVRVYP [OH]; SESS-RRR (High mob. gr. prot A1,

P17096): [H] SESSSKSRWGRPVGRRRRPVRVYP [OH]; MKKS-

RRR (Septin 9, Q9UHD8): [H] MKKSYSGRWGRPVGRRRRPV-

RVYP [OH].

Yeast strain generation and cultivation for in vivo
N-terminal acetylation analysis

The S. cerevisiae MATalpha strain BY4742 (Euroscarf) was

transformed with pBEVY-U or pBEVY-U-hNAA60 and transfor-

mants were selected on plates lacking uracil. The two strains

generated, BY4742-pBEVY-U (yeast normal) and BY4742-

pBEVY-U-hNAA60 (yeast+NatF), were cultivated in 300 ml

synthetic medium lacking uracil (Sigma) to an OD600nm of ,3.

After harvesting, cells were washed twice in lysis buffer (50 mM

Tris, 12 mM EDTA, 250 mM NaCl, 140 mM Na2HPO4

(pH 7.6) supplemented with a complete protease inhibitor mixture

tablet (1 tablet per 100 mL) (Roche Diagnostics) and glass beads

were added before several rounds of vortex/ice (106). One

milliliter of lysis buffer was used for a pellet resulting from 300 mL

of yeast culture. The lysates were centrifuged at 50006 g for

10 min and the retained supernatants were analyzed by

COFRADIC analyses. Aliquots were analysed by SDS-PAGE

and Western blotting using anti-hNaa60p. Solid guanidinium

hydrochloride was added to a final concentration of 4 M in order

to inactivate proteases and denature all proteins. Subsequently,

proteins were reduced and alkylated simultaneously, using

TCEP.HCl (1 mM final concentration (f.c.)) and IAA (2 mM

f.c.) respectively, for 1 h at 30uC. Subsequent steps of the N-

terminal COFRADIC protocol were performed as described

previously [48]. Aliquots were analysed by SDS-PAGE and

Western blotting using anti-hNaa60p.

Human cell culture and transfection
HeLa cells (epithelial cervix adenocarcinoma, ATCC CCL-2)

were cultured in Glutamax-containing DMEM medium supple-

mented with 10% dialyzed foetal bovine serum (Invitrogen,

Carlsbad, CA, USA), 100 units/ml penicillin (Invitrogen) and

100 mg/ml streptomycin (Invitrogen). Cells were grown in media

containing either natural (12C6) or 13C6
15N4 L-arginine (Cam-

bridge Isotope Labs, Andover, MA, USA) [53] at a concentration

of 80 mM (i.e. 20% of the suggested concentration present in

DMEM at which L-arginine to proline conversion was not

detectable for HeLa cells). Cells were cultured for at least six

population doublings to ensure complete incorporation of the

labeled arginine. Human K-562 cells (ATCC CCL-243) were

grown in Glutamax-containing RPMI-1640 medium supplement-

ed with 10% foetal calf serum, 100 units/ml penicillin and

100 mg/ml streptomycin. Cells were cultured at 37uC and in 5%

CO2.

Plasmid transfections were performed using Fugene6 (Roche)

according to the instruction manual. siRNA transfections were

performed using Dharmafect 1 (Dharmacon). In the overexpres-

sion experiment, 10610 cm dishes of cells cultivated in 13C6
15N4

L-arginine were transfected with control vector and cells

cultivated in 12C6 L-arginine were transfected with phNAA60-

V5. Cells were harvested 48 hours post-transfection. Aliquots

were analysed by SDS-PAGE and Western blotting using anti-V5

(Invitrogen) to confirm efficient overexpression (See Figure 6A).

In the knockdown experiment, 10610 cm dishes of control

control cells cultivated in 12C6 L-arginine were transfected with

50 nM si-non-targeting control (D-001810, Dharmacon) and cells

cultivated in 13C6
15N4 L-arginine were transfected with 50 nM

sihNAA60 pool (D-014479, Dharmacon). After 48 hours of

transfection, the medium was replaced by new SILAC medium

containing 5 mM zVAD-fmk. After 84 hours, cells were harvest-

ed, lysed and subjected to COFRADIC analysis as described

previously [18]. Aliquots were analysed by SDS-PAGE and

Western blotting using anti-hNaa60p (Custom made affinity

purified rabbit antibody targeting a peptide corresponding to aa

69–82 of hNaa60p, Biogenes) to confirm efficient knockdown

(See Figure 6B). Each sample of the knockdown- and overex-

pression experiments resulted from 10610 cm dishes of cells and

was processed further for N-terminal COFRADIC analyses as

described previously [18].
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Quantification of the degree of Na-acetylation
The ratios of Na-acetylation for all N-termini were quantified

using MASCOT Distiller. The extent of Na-acetylation was

calculated after extracting the corresponding peak intensities

(extracted from the resulting rov-files). The modified peptide

sequences were used to calculate the theoretical isotope peak

distribution using the MS-isotope pattern calculator (http://

prospector.ucsf.edu). For both variants (i.e., in vivo Na-acetylated

(peak at m/z) and in vitro 13C2D3-Na-acetylated (peak at m/z+5 Da)),

the predicted intensity of the 5th contributing isotope was subtracted

from the measured intensity of the corresponding monoisotopic

peak of the other overlapping isotopic envelopes in order to correct

for overlapping isotopic envelopes. Only the corresponding highest

scoring MS/MS-spectra were withheld and inspected to evaluate

the calculated Na-acetylation degree (in case of inconsistencies,

whenever possible the second, third or next highest scoring MS/

MS-spectra were inspected to evaluate the calculated Na-acetylation

degree, if inconclusive the status was set as ‘‘N.D.’’). When unclear

MS-spectra were observed, the N-Ac status was also documented as

‘‘N.D.’’. When no clear isotopic envelope was present for one of the

possible variants, the status was set at 0% and 100% or 100% and

0% respectively. Further, if the Na-acetylation calculated was #2%

of $98%, the overall N-Ac status was accounted for as being free or

fully N-Ac respectively.

When comparing the degrees of Na-acetylation from two

independent control experiments (with the degrees of Na-

acetylation of more than 1,000 unique N-termini calculated) and

taking into account a [x210%, x+10%] interval around the

calculated x-value (the x-value being the degree (%) of Na-

acetylation for the calculated data point in one dataset), the p-

value was calculated to be p,0.01, indicating that upon setting

these limits, less than 1% of all measured N-Ac values differed

more than 10%. Therefore, a significant variation in the degree of

Na-acetylation was set to 10% or more. In the case of free N-

termini identified in a control setup however, significance was set

to 5% since in this case two isotopic envelopes could clearly be

distinguished.

RNA interference and immunofluorescence microscopy
of Drosophila Dmel2 cells

Dmel2 cells were cultured at 25uC and RNAi was performed

according to standard procedures. To deplete dNaa60 (CG18177),

Dmel2 cells were separately transfected with two different double-

stranded RNAs (dsRNA) corresponding to fragments of dNaa60

defined by the set of primers (Forward-1) CAACAAACA-

CAGTGCGCC and (Reverse-1) CACATTTCGATAGGGTTT-

GATTTC or (Forward-2) GACTCGATGGGTCGTTCCGC

and (Reverse-2) GTGGATGGCCGCCGTTAAT. GFP-targeting

dsRNA was used as control. Each primer incorporates a T7 RNA

polymerase binding site. All PCR products were used as template

to synthesize dsRNA by use of the T7 RiboMAX Express kit

(Promega). Drosophila Dmel2 cells were grown in SFM Medium

(GIBCO) supplemented with 16 glutamine and 16 PenStrep

(GIBCO). Cells were counted and diluted to 26106 cells/ml in

SFM medium supplemented with glutamine. Cells were incubated

during 1 h with 40 mg for each dsRNA at a concentration of 1 mg/

ml. After 1 h incubation with dsRNA, 3 ml of SFM media

supplemented with glutamine and PenStrep (GIBCO) was added

back. After 93 h dsRNA treatment, 26106 cells were added to

coverslips by 1 h incubation at 25uC. Cells were fixed with 4%

formaldehyde, 0.03 M PIPES, 0.11 M HEPES, 0.01 M EGTA

and 4 mM MgSO4 for 10 min, followed by two washes in 16
PBS. Permeabilization and blocking was performed for 1 h with

PBS-TB (PBS, 0.1% Triton X-100, 1% fetal bovine serum).

Primary antibody incubations were done in blocking solution for

2 h at room temperature or overnight at 4uC, followed by three

5 min washes in PBS-TB. Secondary antibody incubations were

performed as described for the primary antibodies, including three

5 min washes. Primary antibodies included mouse anti-a-tubulin

DM1A (1:500; Sigma), rabbit anti-pSer10-Histone H3 (1:500;

Upstate Biotechnology), chicken anti-Cid (1:500; kindly provided

by David Glover’s laboratory) and rabbit anti-Cnn (1:500; kindly

provided by Jordan Raff). F-actin was stained with rhodamine-

conjugated phalloidin (Sigma) and DNA was stained with DAPI at

1:1000 (stock concentration 1 mg/ml), with the addition of 5 mg/

ml RNAse A. Visualization of fixed cells was performed using a

Delta Vision Core System (Applied Precision) using a 1006
UplanSApo objective and a cascade2 EMCCD camera (Photo-

metrics). Images were acquired as a series of z-sections separated

by 0.2-mm intervals. Deconvolution was performed using the

conservative ratio method in softWoRx software. Phenotypic

quantification was performed using a regular Epifluorescent

microscope Leica DMRA2.

Supporting Information

Figure S1 Amino acid frequencies at position 2 of hNaa60p and

dNaa60p substrates. Bar charts of the amino acid frequencies at

the 2nd position in the Met- (black bars) and Leu-starting (red bars)

oligopeptide substrates identified in proteome-derived peptide

library screens of hNaa60p (upper panel) and dNaa60p (lower

panel).

(TIF)

Figure S2 dNAA50 but not dNAA60 dsRNAi treated cells arrest

in mitosis. Graph showing mitotic index in control, dNAA60 and

dNAA50 dsRNA treated Dmel2 cells. Mitotic index is the

percentage of cells positive for phospho-Histone H3 (pSer10).

(TIF)

Table S1 List of 868 unique N-terminal peptides (start position 1

or 2) identified in the proteome of the control yeast strain and/or

the yeast strain expressing hNaa60p.

(DOC)

Table S2 List of 1,497 human N-terminal peptides (start

position 1 or 2) identified in the hNaa60p overexpression or

knockdown experiments in HeLa cells.

(DOC)

Table S3 Relating the occurrence of N-Ac and different N-

termini in yeast and humans. An unbiased estimation of N-Ac for

all methionine-starting yeast (6613) and human SwissProt entries

(20102) (SwissProt version 57.8) was performed based on the

nature of the N-terminal amino acids and the N-terminal

acetylation status uncovered in this study.

(DOC)

Table S4 List of the 72 unique in vivo hNaa60p substrate N-

termini identified in yeast. S4A. hNaa60p yeast substrate N-

termini (44) which were completely unacetylated in the control

setup analyzed. S4B. hNaa60p yeast substrate N-termini (28)

which were partially N-Ac in the control setup analyzed.

(DOC)

Table S5 List of N-termini affected in their N-Ac status by

knockdown or overexpression of hNaa60p in HeLa cells.

(DOC)
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