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The semidwarf phenotype has been extensively selected during
modern crop breeding as an agronomically important trait. In-
troductionof the semidwarf gene, semi-dwarf1 (sd1),whichencodes
a gibberellin biosynthesis enzyme,made significant contributions to
the “green revolution” in rice (Oryza sativa L.). Here we report that
SD1 was involved not only in modern breeding including the green
revolution, but also in early steps of rice domestication. We identi-
fied twoSNPs inO. sativa subspecies (ssp.) japonicaSD1as functional
nucleotide polymorphisms (FNPs) responsible for shorter culm
length and low gibberellin biosynthetic activity. Genetic diversity
analysis among O. sativa ssp. japonica and indica, along with their
wild ancestor O. rufipogon Griff, revealed that these FNPs clearly
differentiate the japonica landrace andO. rufipogon. We also found
a dramatic reduction in nucleotide diversity around SD1 only in the
japonica landrace, not in the indica landrace or O. rufipogon. These
findings indicate that SD1 has been subjected to artificial selection
in rice evolution and that the FNPs participated in japonica domesti-
cation, suggesting that ancient humans already used the green
revolution gene.

Plant domestication involves the genetic modification of wild
species to create a new plant to meet human needs (1). During

this domestication, ancient humans subjected common agro-
nomic traits to artificial selection, thereby increasing the seed or
fruit size, synchronization of growth and flowering, loss of seed
dispersal, changes in plant architecture, and other characteristics
comprising the ‘‘domestication syndrome’’ (2). These traits have
contributed to more efficient cultivation, higher yields, and more
valuable products for human use. Consequently, crop species have
undergone extensive selection for these agronomically important
traits, and genes impacted by artificial selection can be essential
genetic factors in the domestication process (3).
Asian rice, Oryza sativa, was domesticated from its wild an-

cestor, O. rufipogon, ∼10,000 y ago (4–6). Recently, genes that
control the domestication syndrome have been isolated in rice
(7–9). In fact, several of these genes have been subjected to ar-
tificial selection during domestication and modern breeding (10–
13). Although the genes controlling plant architecture are agri-
culturally important, little is known about their respective alter-
ations during rice domestication (8, 9). In this study, we focused
on Semi-dwarf1 (SD1), a null allele of which is known as a “green
revolution” gene that has been used extensively in rice modern
breeding over the last 50 y (14–17). We found that SD1 was also
involved in the rice domestication process by controlling culm
length (CL) in ancient japonica landraces. Ancient humans had
selected mutations in the green revolution gene long before the
green revolution of the 20th century.

Results
Quantitative Trait Locus Analysis for CL and Positional Cloning of
qCL1a. To identify genes controlling CL in rice domestication, we
conducted the quantitative trait locus (QTL) analysis for CL in

a set of backcross inbred lines (BILs) derived from a cross be-
tween two O. sativa ssp., the japonica variety Nipponbare and the
indica variety Kasalath (18). Because japonica and indica have
distinctly different domestication histories (4–6), we predicted the
elucidation of two different domestication processes by compar-
ing these subspecies. The mean CL of Kasalath was significantly
longer than that of Nipponbare (116.0 ± 8.4 cm vs. 83.7 ± 4.4 cm;
Fig. 1 A and B). In the BILs, CL ranged continuously from 56.9 to
118.8 cm, and transgressive segregants were observed beyond the
parental varieties (Fig. S1). These segregants indicated that this
trait was controlled by multiple QTLs. We detected four QTLs,
and focused further studies on a QTL designated qCL1 (QTL for
CL on chromosome 1), which explained 20.9% of the total phe-
notypic variation in the population (Fig. 1C and Table S1). The
CL of lines introgressed with the Kasalath qCL1 region in the
Nipponbare background was significantly longer than that of
Nipponbare (Fig. 1D and Fig. S2), confirming that the intro-
gressed segment included the QTL. High-resolution mapping
using ∼5,000 plants segregating at the qCL1 locus demonstrated
that qCL1 consisted of at least two loci, qCL1a and qCL1b. Be-
cause the genetic effect of qCL1a was larger than that of qCL1b
(Fig. 1D), we chose qCL1a as a target for positional cloning. As
a result of positional cloning, qCL1a was delimited within a 336-
kb region betweenmarkers AS-147-1 andAS-151-1 (Fig. 1D). The
Rice Annotation Project Database (http://rapdb.dna.affrc.go.jp/)
indicated that this region contained at least 40 genes. Of these, we
focused on GA20ox-2, SD1, which encodes GA20 oxidase, an
enzyme involved in gibberellin (GA) biosynthesis. Previously,
several mutations that resulted in a semidwarf phenotype were
identified in SD1, a trait that triggered the green revolution in rice
(14–17). Comparison of the SD1 sequence revealed two non-
synonymous SNPs at residue 100 in the first exon [glutamic acid
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(E) and glycine residues (G)] and at residue 340 in the third exon
[glutamine (Q) and arginine (R)] in Nipponbare and Kasalath,
respectively (Fig. 1E).

Comparison of SD1 Alleles from Nipponbare and Kasalath. To verify
that SD1 corresponds to qCL1a, we produced transgenic plants
containing the entire SD1 alleles from Nipponbare (N-SD1) and
Kasalath (K-SD1) in the Nipponbare background. K-SD1 showed
significantly longer CL than N-SD1 and the empty vector control
(Fig. 2 A and B), demonstrating that SD1 corresponds to qCL1a.
To clarify the effect of the two amino acid differences, we com-
pared the catalytic activity of N-SD1 (SD1-EQ), K-SD1 (SD1-
GR), and intermediate types (SD1-GQ and SD1-ER) produced in
Escherichia coli. SD1 catalyzes the pathway from GA53 to GA20,
the main GA synthesis pathway in rice leaves and stems (19).

Although all SD1 proteins catalyzed the conversion of GA53 to
GA20, SD1-GRdemonstrated significantly higher activity than the
other three SD1 types (Fig. 2C). This indicates that two SNPs in
SD1-EQ are functional nucleotide polymorphisms (FNPs) that
are key natural variations in this gene.

Genetic Diversity Analysis in the SD1 Region. We analyzed the
prevalence of two FNPs in SD1 in a set of 72 diverse rice acces-
sions. To exclude the effects of modern breeding, we chose
landraces that were considered primitive cultivars after domesti-
cation and that represented maximum genetic diversity within
O. sativa (20) for the subsequent analyses. In our collection, all of
the japonica landraces (including both tropical and temperate ja-
ponica) carried SD1-EQ, whereas most of the indica landraces
carried SD1-GR (Tables S2 and S3), indicating that these FNPs
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Fig. 1. QTL analysis for CL and isolation of qCL1a. (A and B) Gross morphology (A) and CL (B) of Nipponbare and Kasalath at the mature stage. (Scale bar in A:
20 cm.) Asterisks in B indicate a significant difference (P < 0.001) according to the t test. Error bars represent the SD from the mean (n = 6). (C) QTL analysis for
CL in a BIL population. The circles indicate the positions of QTLs, and the circle sizes indicate the relative contribution of each QTL. The red and blue circles
indicate QTLs that Nipponbare and Kasalath alleles contribute to the elongation of CL, respectively. qCL1 is marked on chromosome 1. (D) High-resolution
mapping of qCL1. (Left) Graphical genotypes of four selected recombinant homozygous lines. The horizontal lines represent chromosome 1, and a physical
map is shown for the qCL1 region of chromosome 1. The vertical bars represent the molecular markers. The white and gray bars indicate homozygous alleles
of Nipponbare and Kasalath, respectively. (Right) CL for each recombinant homozygous line. Letters (a–d) denote statistically significant differences (P < 0.05)
according to Tukey’s test. Error bars indicate the SD from the mean (n = 5). (E) Comparison of SD1 amino acid sequences between Nipponbare and Kasalath.
The yellow squares and horizontal lines denote the exons and introns of SD1, respectively. The amino acid sequences of GA20ox proteins from Nipponbare,
Kasalath, O. rufipogon, maize, barley, wheat, Arabidopsis, pea, tobacco, and tomato were aligned using ClustalW, followed by manual alignment. The red
triangles indicate amino acid substitutions between Nipponbare and Kasalath.
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differentiate japonica and indica. All 42 accessions ofO. rufipogon
from different origins carried SD1-GR (Tables S2 and S3),
strongly suggesting that the two FNPs in SD1-EQ had been spe-
cifically selected during the japonica domestication process.
To determine whether SD1-EQ had undergone artificial se-

lection during japonica domestication, we analyzed the genetic
variation in a ∼4.0-kb region encompassing the entire SD1 se-
quence in O. sativa and O. rufipogon. Our representative samples
included 16 landraces of japonica, 15 landraces of indica, and 16
accessions of O. rufipogon (Table S3). An apparent reduction in
genetic variation was observed at the SD1 locus in japonica
landraces, but not in indica landraces or in O. rufipogon. The SD1
nucleotide diversity in the japonica landraces (π =0.00013) lost
98% of the diversity in the O. rufipogon sample (π =0.00568),
whereas the indica landraces (π =0.00424) showed only a 25%
reduction (Table S4). The nucleotide diversity in japonica SD1
was 10-fold lower than that of 111 randomly chosen gene frag-
ments (π =0.00111) (21), suggesting that the low nucleotide di-
versity observed in japonica SD1 cannot be explained by a
population bottleneck alone, because that would have caused a
reduction in nucleotide diversity throughout the genome.

Detection of Selective Sweep and Coalescent Simulation. If SD1-EQ
had been selected during the process of japonica domestication,
then a lower level of genetic diversity in the flanking region
known as selective sweep (3, 10, 22, 23) should be observed.
Thus, we compared the nucleotide diversity in 18 genes spanning
a 664-kb region surrounding the SD1 locus in japonica, indica,
and O. rufipogon. The diversity of japonica in this region was
apparently lower than that of indica and O. rufipogon across
a ∼404-kb region from genes 3–15 (Fig. 3). Coalescent simu-
lations (24) demonstrated that the japonica genetic diversity seen
in this region (π = 0.0000536) was significantly lower (P < 0.01)
than that of O. rufipogon (π = 0.00524), supporting our hy-
pothesis of selection for SD1-EQ during japonica domestication.
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We found no evidence supporting selection for indica SD1,
suggesting that this selection event could be specific to japonica
domestication (SI Methods and Fig. S3).

Origin of SD1-EQ. To clarify the origin of SD1-EQ, we performed
phylogenetic analyses based on genome-wide transposon insertion
patterns and entire SD1 genomic sequences. In O. rufipogon, five
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accessions (W1954, W1958, IRGC105402, W1945, and W1943)
were closely related to japonica landraces on a genome-wide level
(Fig. 4A). Three of these accessions (IRGC105402, W1945, and
W1943) had SD1 nucleotide sequences similar to those of japonica
landraces even though these accessions had SD1-GR (Fig. 4B and
Table S3). This finding suggests that SD1-EQ was derived from an
ancestor related to the japonica-like O. rufipogon (Fig. 5). This
finding also indicates that FNPs in SD1 clearly differentiate be-
tween O. rufipogon and japonica.

Discussion
In this study, we have identified SD1 as a domestication gene
controlling CL and have demonstrated that FNPs in SD1 were
subjected to artificial selection during japonica domestication.
Because SD1 is a gene associated with rice plant architecture, this
agronomic trait must be an essential target of artificial selection
including both rice domestication and modern breeding. Our data
suppose that ancient humans already used the green revolution
gene; they took an interest in the height of rice plants as well as in
seed shattering and size, and ultimately selected shorter plants with
the SD1-EQ allele. On the other hand, in the rice green revolution
during the 20th century, breeders favored the null allele of SD1
from the indica population (14–17), indicating that distinct SD1
alleles played an active role in the short plant height during rice
evolution. Note that a clear reduction in genetic variation observed
around SD1 indicates selection for this region. These results do not
completely exclude the possibility that selection acted on other
genes in the region (i.e., the region between genes 3 and 15 in Fig.
3). However, no obvious phenotypic differences were observed
between near-isogenic lines containing the SD1-GR region and
Nipponbare, except for CL. In addition, there are no reports or
annotations for agronomically important traits in this region except
SD1. Thus, SD1 would be the target for artificial selection.
Natural variation revealed the extant accessions with SD1-EQ

(japonica) and SD1-GR (O. rufipogon and general indica). Myste-
riously, no accession was found to have the intermediate alleles
SD1-GQ and SD1-ER in either O. sativa or O. rufipogon. Two pos-
sible processes led to the eventual generation of SD1-EQ: mutations
occurring twice and resulting in conversion of SD1-GR to SD1-EQ,
or a mutation in SD1-GR resulting in SD1-GQ and SD1-ER, which

subsequently underwent a recombination event. These interme-
diate alleles might have disappeared because of reasons such as
genetic drift. Because there was little difference in enzymatic ac-
tivity between SD1-EQ and the intermediates (Fig. 2C), which
probably resulted in shorter CL, ancient humans could not distin-
guish plants with SD1-EQ and the intermediates. Whether the
intermediates were targets for artificial selection before SD1-EQ
was generated remains unclear from current data.
We also have demonstrated that FNPs in SD1 clearly differ-

entiate between O. rufipogon and japonica. The SD1-EQ allele
was probably fixed during japonica domestication before the
speciation of tropical and temperate japonica. Such a distinct dif-
ferentiation is rare in crops. Most FNPs in genes associated with
domestication were not completely fixed between cultivated and
wild relatives (7, 11, 13, 25–28), meaning that several cultivars
still retain wild-relative alleles in domestication-related genes.
These genes may be strongly affected by artificial selection
during late stages of domestication; however, exceptions include
FNPs in sh4 for seed shattering in rice (29) and tga1 for the loss
of cupulate fruitcases in maize (30), which are fixed differences
between cultivated and wild relatives. Thus, mutation and se-
lection for these genes are considered critical steps in the do-
mestication of these crops. Collectively, our results indicate that
the SD1-EQ allele arose in a japonica ancestor in the early stages
of japonica domestication, and that selection for these FNPs was
a critical step in japonica domestication (Fig. 5).
Previous studies have suggested that hybridization between

subpopulations and subsequent introgressions of domestication-
related genes, combined with artificial and natural selection, gave
rise to the present rice landraces (4–6, 11, 13, 25–28). In fact, many
rice domestication-related genes, including rc,wx, gs3, and badh2.1,
were presumably established during japonica domestication and
subsequently introgressed into indica (11, 13, 25, 28). In the present
study, despite the earlier prevalence of SD1-EQ in japonica land-
races, SD1-EQ appeared to be introgressed into a small number of
indica landraces (3 out of 52; Tables S2 and S3). These few ex-
ceptional landraces carry a defined region of japonica-like DNA
flanking SD1 in the indica background, likely the result of natural
crossing and subsequent introgression during domestication after
the emergence of SD1-EQ in japonica. This clear differentiation of
SD1 between japonica and indica might be attributed to the ad-
aptation ofSD1 alleles in a specific region. An intriguing alternative
possibility is the contribution of a reproductive barrier to prevent
introgression of this locus. Relevant to this point, it is important to
note that qsh1, a domestication-related gene for reduced seed
shattering, originated in japonica and was also not introgressed into
indica (7). Both SD1-EQ and qsh1 are located on the long arm of
chromosome 1,∼1.9Mbp apart, and thus should behave as a linked
locus. The existence of a reproductive barrier between japonica and
indica has been reported in this region (31), and this barrier might
prevent the introgression of these two genes from japonica into
indica. It is noteworthy that two contradictory events, hybridization
between subpopulations and a potential reproductive barrier,
might play important roles in rice domestication.

Methods
Plant Material and Growth Conditions. Rice BILs, substitution lines, and acces-
sions used for genetic diversity analysis were obtained from the National In-
stitute of Agrobiological Sciences (18, 20). Other varieties used in this study
weremaintained at Nagoya University. All varieties were grown under natural
field conditions in the research field. Seeds of all varieties were immersed in
water for 2 d and then sown in a nursery bed. After 1 mo, the seedlings were
transplanted to a paddy field.

QTL Analysis. The CL of 98 BILs from a cross between Nipponbare and Kasalath
was evaluated for QTL analysis. The CL was defined as the length from the soil
surface to the panicle node. The linkage map was constructed using MAP-
MAKER/EXP version 3.0 (32). QGene version 3.29 (33) was used to identify
QTLs. Four loci were scored, and all had an LOD score >2.5.
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Fig. 5. Model of the domestication process in rice. The blue and red circles
indicate two genetically distinct groups, indica and japonica, and their cor-
responding ancestor, O. rufipogon. “GR” enclosed by a blue rectangle or
ellipse indicates a GR-type SD1 allele. “EQ” enclosed by red ellipse indicate
an EQ-type SD1 allele. Rectangles and ellipses indicate indica and japonica-
like alleles in relation to sequences outside of the FNPs of SD1, respectively.
Genes indicated by blue and red letters are genes introgressed from japonica
into indica and genes isolated into the japonica population, respectively.
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Selection of Accessions Used for Genetic Diversity Analysis. Accessions used for
genetic diversity analysis were chosen from a set of 72 landraces and 42
accessions of O. rufipogon to represent the genetic diversity of the entire
set based on restriction fragment length polymorphism data for O. sativa
(20) and p-SINE1, as well as the LTR retrotransposon insertion pattern for
O. rufipogon.*

Sequencing of SD1 and Surrounding Genes. Accessions were sequenced at SD1
and portions of 18flanking loci located at 11- to 82-kb intervals upstream and
downstream of SD1. All primers were designed from the Nipponbare geno-
mic sequence. For SD1, primers were designed to amplify seven partially
overlapping portions of the gene. For flanking loci, primers were designed to
amplify ∼880-bp portions of genes with putative or known function. All
primer pairs for flanking loci were designed on exons and spanned one or
more intron regions (Table S5). All PCR primers were analyzed by BLAST
against the Rice Annotation Project Database, to ensure amplification of only
the targeted genomic region. Nucleotide sequences were determined by the
dideoxynucleotide chain termination method using an automated sequenc-
ing system. Sequences were analyzed with GENETYX software.

Genetic Diversity Analysis. Population genetic analyses were conducted for
SD1 and the 18 flanking genes using DnaSP 5.1 (34). Levels of nucleotide
diversity per site and silent site were estimated as π for each of the landrace
groups of cultivated rice and O. rufipogon.

Phylogenetic Analysis. Phylogenetic trees were constructed using the
neighbor-joining method in PHYLIP version 3.69 (35). To produce the phy-
logenetic tree based on genome-wide transposon patterns, we used the
Cavalli–Sforza chord distance (36) calculated by Microsatellite Analyzer 4.05
(37), followed by the neighbor-joining method.
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