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Organic substances can adopt an amorphous solid or semisolid
state, influencing the rate of heterogeneous reactions and multi-
phase processes in atmospheric aerosols. Here we demonstrate
how molecular diffusion in the condensed phase affects the gas
uptake and chemical transformation of semisolid organic particles.
Flow tube experiments show that the ozone uptake and oxidative
aging of amorphous protein is kinetically limited by bulk diffusion.
The reactive gas uptake exhibits a pronounced increase with rela-
tive humidity, which can be explained by a decrease of viscosity
and increase of diffusivity due to hygroscopic water uptake trans-
forming the amorphous organic matrix from a glassy to a semi-
solid state (moisture-induced phase transition). The reaction rate
depends on the condensed phase diffusion coefficients of both the
oxidant and the organic reactant molecules, which can be de-
scribed by a kinetic multilayer flux model but not by the traditional
resistor model approach of multiphase chemistry. The chemical life-
time of reactive compounds in atmospheric particles can increase
from seconds to days as the rate of diffusion in semisolid phases
can decrease by multiple orders of magnitude in response to low
temperature or low relative humidity. The findings demonstrate
that the occurrence and properties of amorphous semisolid phases
challenge traditional views and require advanced formalisms for
the description of organic particle formation and transformation
in atmospheric models of aerosol effects on air quality, public
health, and climate.

Stokes-Einstein ∣ percolation theory ∣ glass transition ∣ secondary organic
aerosol partitioning ∣ ozonolysis

Aerosols are ubiquitous in the atmosphere and have strong
effects on climate and public health (1–3). Depending on

chemical composition, phase state, and surface properties, aero-
sol particles can act as nuclei for cloud droplets and ice crystals,
and they can affect the abundance of trace gases through hetero-
geneous chemical reactions (4–8). Gas-particle interactions can
also significantly change the physical and chemical properties
of aerosols such as toxicity, reactivity, hygroscopicity, and radia-
tive properties (9–13). Chemical reactions and mass-transport
lead to continuous transformation and changes in the composi-
tion of atmospheric aerosols (“chemical aging”) (14–20).

Atmospheric aerosol particles may occur as solids or liquids
or as a mixture of both depending on their composition and
ambient conditions (21, 22). Carbonaceous combustion aerosol
particles such as soot and related substances are known to be
quasi-solid and undergo chemical reactions at the surface rather
than in the bulk (black or elemental carbon, graphene, and poly-
cyclic aromatic hydrocarbons) (1, 23–25). Until recently, second-
ary organic aerosol (SOA) particles formed in the atmosphere
from condensable oxidation products of volatile organic com-
pounds were assumed to be liquid (26–28). Virtanen et al. (2010)
(29), however, showed that biogenic SOA particles formed in
plant chamber experiments and in new particle formation events
over boreal forests can adopt an amorphous semisolid state,
which is in line with the observed presence of oligomers or other
organic compounds with high molecular mass and low volatility

in SOA (30, 31). Many organic substances, including carboxylic
acids, carbohydrates, and proteins, tend to form amorphous
phases upon cooling or drying of aqueous solution droplets
(32–34). Depending on viscosity and microstructure, the amor-
phous phases can be classified as glasses, rubbers, gels, or ultra-
viscous liquids (32).

Amorphous substances have no long-range atomic order and
are classified as solid glasses when their viscosity exceeds
1012 Pa s (35). Semisolid substances like rubbers, gels, or ultravis-
cous liquids have viscosities that are in the range of ∼1012 to
∼102 Pa s, which is still orders of magnitude higher than the visc-
osity of liquid water at ambient conditions (∼10−3 Pa s) (32, 36).
Through the Stokes-Einstein equation, the viscosity of an amor-
phous organic substance can be related to its molecular self-
diffusion coefficient (Dorg):

Dorg ¼
kT
6πaν

: [1]

Here k is the Boltzmann constant (1.38 × 10−23 JK−1), T is the
temperature (K), a is the effective molecular radius (m), and ν is
the dynamic viscosity (Pa s). Typical viscosity values and related
diffusion coefficients for liquid, semisolid, and solid phases are
listed in Table 1. Note that Dorg can vary over fifteen orders of
magnitude from ∼10−5 cm2 s−1 in a liquid to ∼10−20 cm2 s−1 in a
solid organic matrix.

Compared to the self-diffusion coefficients of the large organic
molecules constituting the bulk material of amorphous organic
particles (multifunctional hydrocarbon derivatives, oligomers,
and macromolecules), the bulk diffusion coefficients of atmo-
spheric photooxidants and other small gas molecules entering
the organic matrix (O3, OH, NOx, H2O, etc.) are usually orders
of magnitude larger and less variable. Typically, the diffusion
coefficients of water and photo-oxidants (Dox) are around
∼10−10 cm2 s−1 in solids (37, 38), ∼10−9—10−6 cm2 s−1 in semiso-
lid (39), and ∼10−5 cm2 s−1 in liquid organic matrices (37, 40).

Fig. 1 shows the characteristic time of mass-transport and
mixing by molecular diffusion τcd in aerosol particles (41) accord-
ing to

τcd ¼
dp2

4π2D
[2]

as a function of particle diameter (dp ¼ 1 nm–10 μm) and diffu-
sion coefficient (D ¼ 10−5 cm2 s−1 to 10−21 cm2 s−1). In case of
nonreactive gas uptake (partitioning), τcd is the e-folding time
of equilibration, i.e., the time after which the concentration in
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the particle core deviates by less than a factor of 1/e from the
equilibrium value.

In the size range of the accumulation mode of atmospheric
aerosols (dp ≈ 102 nm), τcd for nonvolatile organic species varies
from microseconds to milliseconds for liquids, seconds to years
for semisolids, and many years for solids. Thus, diffusion is likely
to limit the kinetics of mass-transport and chemical reaction in
amorphous organic aerosol particles, but so far the effects of dif-
fusivity and their dependence on ambient conditions have hardly
been quantified (29, 42–44).

The viscosity and diffusivity of water soluble and hygroscopic
organic substances depend strongly on the ambient relative hu-
midity (RH), because water can act as a plasticizer and increase
the mobility of the organics (32, 43). Accordingly, the glass tran-
sition temperature of organic substances depends on RH (33, 34),
and amorphous semisolids can undergo moisture-induced phase
transitions (32, 43, 44). The viscosity and bulk diffusion coeffi-
cient of amorphous proteins can be estimated as a function of
relative humidity, using the Stokes-Einstein relation with pub-
lished viscosity and hygroscopic growth factor data (45–47) (SI
Text). As shown in Fig. 2A, the phase of the protein bovine serum
albumin (BSA) changes from solid to semisolid as RH increases,
while Dorg increases from 10−21 cm2 s−1 up to 10−10 cm2 s−1.
Fig. 2B shows the diffusion coefficient of ozone in the aqueous
protein as estimated from percolation theory and hygroscopicity
data [SI Text, (47–49)]. Dox is ∼10−10 cm2 s−1 at <20% RH, but it
increases up to ∼10−5 cm2 s−1 as RH increases to 100%.

Experimental and theoretical studies investigating atmo-
spheric multiphase processes usually apply resistor model formu-
lations that build on analogies with electric circuits (14, 15, 50,
51). The traditional resistor models, however, are usually based
on simplifying assumptions such as steady state conditions, homo-
geneous mixing, and limited numbers of species and processes.
To overcome these limitations, we use kinetic flux models to ana-
lyze measurement data of ozone uptake by amorphous semisolid

organics and to elucidate the effects of bulk diffusion on gas up-
take and chemical aging of atmospheric aerosols. Ozone uptake
experiments were performed in a flow tube coated with the pro-
tein BSA as a proxy for semisolid organic aerosol (32, 47), and
numerical simulations were performed with kinetic double- and
multilayer models of aerosol surface and bulk chemistry [K2-SUB
(52), KM-SUB (42)].

Results and Discussion
Ozone Uptake by Amorphous Protein. Measurements of ozone
uptake by amorphous protein were conducted in a coated wall
flow tube for a wide range of ozone concentrations and relative
humidities (42–207 ppb O3, 0–95% RH, 296 K, 1 atm). The mea-
surement results are ozone uptake coefficients (γO3

) which repre-
sent the probability that ozone molecules colliding with the
surface are taken up by the condensed phase [net loss from the
gas phase (53, 54)].

Fig. 3 shows double-logarithmic plots of γO3
plotted against

reaction time (t), which exhibit a slope that is characteristic
for diffusion-limited gas uptake (γ ∝ ðD∕πtÞ1∕2, ∂ ln γ∕∂ ln t ¼
−0.5) (51, 55, 56). As shown in Fig. 3A, the uptake coefficients
observed at a given relative humidity decreased with increasing
gas-phase concentration of ozone, which is due to more rapid
depletion of condensed phase reactants (reactive amino acids in
the protein). Fig. 3B shows that the uptake coefficients observed
at a given ozone concentration level increased with increasing
relative humidity. This behavior can be explained by a decrease
of viscosity and increase of diffusivity with increasing RH, while
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Fig. 1. Characteristic time of bulk diffusion (τcd) in liquid, semisolid, and
solid particles as a function of diffusion coefficient and particle diameter. In
the size range of the atmospheric aerosol accumulation mode (dp ≈ 102 nm),
τcd in semisolid particles varies from seconds to years (light green arrow).

Table 1. Characteristic magnitudes of viscosity for different
phase states, corresponding self-diffusion coefficients of
organic matrix molecules (Dorg, Eq. 1 assuming a ¼ 10−10 m
at 298 K), and condensed phase diffusion coefficients of
small molecules like water and atmospheric oxidants (Dox)

Phase state ν (Pa s) Dorgðcm2 s−1Þ Doxðcm2 s−1Þ
Liquid ∼10−3 ∼10−5 ∼10−5
Semisolid ∼102–1012 ∼10−10–10−20 ∼10−7–10−9
Solid ≥1012 ≤10−20 ∼10−10
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Fig. 2. (A) Viscosity (ν) and self-diffusion coefficient (Dorg) of the protein BSA
estimated as a function of relative humidity (RH) using the Stokes-Einstein
relation with published viscosity data and hygroscopic growth factor data
for BSA. As RH increases, the protein phase changes from solid over semisolid
to viscous liquid, while Dorg increases from ∼10−21 cm2 s−1 to ∼10−10 cm2 s−1.
(B) Diffusion coefficient of ozone (Dox) in BSA estimated as a function of
RH by theoretical calculations using hygroscopic growth factor data. Dox is
∼5 × 10−10 cm2 s−1 in solid BSA at RH <20%, but it increases up to
∼10−6 cm2 s−1 in a viscous liquid aqueous phase at RH > 95%. The shaded
areas represent uncertainties of estimation. The red stars show the Dorg and
Dox values derived from the ozone uptake experiments, and the error bars
indicate corresponding uncertainties.
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the amorphous protein is transformed from a glassy to a semiso-
lid state.

The time, concentration, and humidity dependence of γO3
can

be reproduced by the kinetic multilayer flux model KM-SUB
(42) as illustrated by the dotted lines in Fig. 3 and in Fig. S1.
The model input parameters include the surface accommodation
coefficient of ozone, the surface and bulk reaction rate coeffi-
cients between ozone and reactive amino acids, and the bulk dif-
fusion coefficients of ozone and reactive amino acids (Dox, Dorg).
Initial estimates of these parameters were taken from previous
work (12, 24, 52), and best fit values were obtained by iterative
variation as detailed in SI Text. The best fit values and humidity
dependence ofDox andDorg derived from the kinetic experiments
are shown in Fig. 2. The experimental results agree well with the
estimates obtained from theoretical calculations using literature
data of protein viscosity and hygroscopic growth.

Fig. 4 displays the model simulation results for the experiment
performed at 42 ppb O3 and 50% RH. Initially γO3

equals the
surface accommodation coefficient αs;O3

≈ 1 due to adsorption
of ozone onto the particle surface. After ∼10−8 s the ozone con-
centration at the surface reaches a steady state level of ∼107 cm−2

(Fig. S2A) determined by the combination of reversible adsorp-
tion, surface reaction, and surface-to-bulk transport, and γO3

de-
creases to the value of the bulk accommodation coefficient
of αb;O3

≈ 10−5 (Fig. 4A), indicating that the contribution of
the surface reaction to the total ozone uptake is relatively minor.
Up to ∼10 s, γO3

remains as large as αb;O3
, i.e., the uptake kinetics

are limited by the transfer of ozone from the surface to the near-
surface-bulk where it can readily oxidize reactive amino acids in
the amorphous protein. After ∼10 s, which is the time when
experimental data become available, γO3

decreases below αb;O3
,

because the uptake is kinetically limited by diffusion in the bulk
where ozone can oxidize further reactive amino acids.

In Fig. 4B the y-axis indicates the radial distance from the
bottom of the protein coating (r) normalized by the film thickness
(rp), ranging from the bottom (r∕rp ≈ 0) to the surface of the film

(r∕rp ≈ 1). The isolines in Fig. 4B show the radial distribution
and temporal evolution of ozone in the amorphous protein
matrix. Due to low diffusivity and reactive consumption, ozone
initially exhibits a steep concentration gradient near the surface
(r∕rp > 0.90), while the underlying bulk material remains essen-
tially ozone-free. After ∼10 s ozone begins to diffuse further into
the bulk (Fig. 4B), the reactive amino acids are depleted near the
surface (Fig. S2C), and the reaction front proceeds further into
the particle bulk (Fig. S2D).

In contrast to the kinetic multilayer model KM-SUB, the ki-
netic double-layer model K2-SUB failed to reproduce the experi-
mental results. In analogy to traditional resistor models, K2-SUB
does not resolve radial profiles but approximates the effect of
bulk processes by a reacto-diffusive flux term (50, 51, 53). This
term accounts for the diffusion of gaseous reactants but neglects
the diffusion of condensed phase reactants, assuming that the
latter are homogeneously mixed. Using the same kinetic para-
meters as KM-SUB, K2-SUB cannot reproduce the observed
time dependence of the ozone uptake coefficient. Instead, the
predicted value of γO3

would remain constant over an extended
period to 103 s and then drop off steeply due to rapid depletion of
reactive amino acids throughout the homogeneously mixed pro-
tein film (dashed line in Fig. 4A). The results demonstrate that
the assumption of homogeneous mixing and the application of
the reacto-diffusive term of traditional resistor models are not
appropriate for condensed phase reactants with low diffusivity
in an amorphous semisolid matrix. Reliable predictions for such
reaction systems require models that are able to resolve the dif-
fusion of both gaseous and condensed phase reactants.

Atmospheric Implications. To explore and characterize the effects
of bulk diffusion on the chemical aging of semisolid organic aero-
sols in the atmosphere, we calculated the chemical half-life (t1∕2)
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The decrease of γO3

over time exhibits a double-logarithmic slope close to
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of reactive amino acids in amorphous protein particles exposed
to ozone under a wide range of ambient relative humidity and
temperature. t1∕2 is defined as the time after which the number
of reactive amino acids in the particle has decreased to half of its
initial value. The particle diameter was set to 200 nm, which is
typical for the accumulation mode of atmospheric aerosols, and
the ozone concentration was varied in the range of zero to
200 ppb, covering clean and polluted conditions in the lower at-
mosphere. The kinetic parameters were the same as in the model
simulation of the flow tube experiments (Table S1). The depen-
dence of Dox and Dorg on relative humidity is shown in Fig. 2, and
their temperature dependence is discussed in the supplement
(SI Text).

The results of these calculations are shown in Fig. 5. As ex-
pected, t1∕2 decreases with increasing ozone gas-phase concentra-
tion. Fig. 5A shows that t1∕2 depends strongly on the ambient
relative humidity at 25 °C. At 50 ppb O3, for instance, t1∕2 is ∼4 h
at 20%RH, ∼1.5 h at 50%RH, and only ∼0.1 h at 90%RH. This
variation is mainly because of the increase of Dox at higher RH
due to the moisture-induced phase transition of protein particles
(i.e., solid at low RH, semisolid at medium RH, and viscous liquid
at high RH). Fig. 5B shows the dependence of t1∕2 on ambient
temperature at 50% RH: t1∕2 is ∼1.5 h at 25 °C, and it increases
to ∼20 h at −60 °C due to the decrease of Dox. To account for the
possibility of freezing at low temperatures, we added a scenario
assuming a diffusion coefficient similar to the values character-
istic for small molecules in ice, i.e., Dox ≈ 10−11 cm2 s−1 (57), re-
sulting in t1∕2 ≈ 100 h at 50 ppb O3 and −60 °C (upper bound of
shaded area). Note that a decrease of reaction rate coefficients
with decreasing temperature may increase t1∕2 even further. The
results show that the chemical half-life of organics can increase

dramatically when particles are transported from the boundary
layer to the upper free troposphere.

Fig. 6 illustrates how the phase state, viscosity, and diffusivity
of atmospheric organic aerosol particle may vary upon changes in
ambient relative humidity and temperature (physical transforma-
tion). Consequently, the chemical transformation and aging upon
exposure to atmospheric oxidants such as O3, OH, NO3, N2O5,
and halogen radicals will proceed differently (58, 59). In solid
particles, the reactants are essentially confined to the surface,
whereas they are rapidly mixed throughout the bulk of liquid par-
ticles. The chemical aging of semisolid organic substances is likely
to be limited by the rate of molecular diffusion in the particle
bulk. Our measurement and model results demonstrate that
chemical reactions in amorphous semisolid aerosol particles
are indeed limited by bulk diffusion, and that the rate of reaction
can be strongly influenced by changes in relative humidity leading
to changes in phase state and diffusivity due to hygroscopic water
uptake. Thus, the chemical half-life of reactive organic com-
pounds can change by orders of magnitude depending on ambient
temperature and relative humidity, and uptake can become lim-
ited either by surface reaction, surface-bulk exchange, or bulk
diffusion, underpinning the large potential effects of phase state
for chemical aging (29, 42, 60, 61). The results of this study de-
monstrate quantitatively that mass-transport can have strong
nonlinear effects on the chemical composition of atmospheric
aerosols (16), and that amorphous semisolid states with high visc-
osity and low diffusion coefficients can effectively shield reactive
organic compounds from degradation by atmospheric oxidants.

In addition to chemical aging of atmospheric aerosol particles,
kinetic limitations of gas uptake by bulk diffusion may also influ-
ence the gas-particle partitioning of semivolatile organic com-
pounds (SVOCs). In current gas-particle partitioning models,
SVOCs are usually assumed to be well mixed throughout the
particle (62–64). However, slow bulk diffusion may change the
growth of SOA particles from absorptive to adsorptive, resulting
in steep concentration gradients. On the other hand, slow trans-
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port from the bulk to the surface may play an important role in
the suppression of SOA evaporation (65). Moreover, aerosol
hygroscopic growth and the nucleation of cloud droplets or ice
crystals can be retarded or inhibited by slow diffusion (29, 32,
34, 43, 44, 47, 54, 66–69). The occurrence and properties of amor-
phous semisolid phases challenge traditional views and require
new formalisms for the description of organic particle transfor-
mation and partitioning in atmospheric models of aerosol effects
on air quality, public health, cloud physics, and climate.

Methods
BSA was obtained from Sigma-Aldrich (>96%, Sigma); it is a globular protein
with a molecular mass of 67 kDa. Ozone uptake experiments with BSA were
conducted in a cylindrical coated wall flow tube reactor (surface area
120 cm2, surface-to-volume ratio 5 cm−1). The sand-blasted inner surface
of the pyrex tube was coated with BSA dissolved in water (18.2 MΩ cm, Milli
Q plus 185, Millipore) and dried gently with a flow of nitrogen. This proce-
dure led to about 2–4mg of BSA deposited on the tube, which corresponds to
a film thickness of BSA of 130–350 nm, assuming BSA to be evenly spread. O3

was introduced into the flow reactor with synthetic air as carrier gas with a
total flow rate of ∼1 L min−1. The experiments were conducted at atmo-
spheric pressure and room temperature (∼1 atm, ∼296 K) and different
relative humidities (0–95%). The gas-phase ozone concentration was moni-
tored using a photometric ozone analyzer. The uptake coefficients of ozone
(γO3

) were calculated using the Cooney-Kim-Davis method to concomitantly
take into account radial gas-phase diffusion and first-order loss at the wall
(70, 71). The model approach applied to analyze the experimental results is
described in the SI Text [KM-SUB (42), K2-SUB (52), Figs. S3, S4, S5, and S6].
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