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Sequence census methods reduce molecular measurements such
as transcript abundance and protein-nucleic acid interactions to
counting problems via DNA sequencing. We focus on a novel
assay utilizing this approach, called selective 2′-hydroxyl acylation
analyzed by primer extension sequencing (SHAPE-Seq), that can be
used to characterize RNA secondary and tertiary structure. We
describe a fully automated data analysis pipeline for SHAPE-Seq
analysis that includes read processing, mapping, and structural
inference based on a model of the experiment. Our methods rely
on the solution of a series of convex optimization problems for
whichwe develop efficient and effective numerical algorithms. Our
results can be easily extended to other chemical probes of RNA
structure, and also generalized to modeling polymerase drop-off
in other sequence census-based experiments.

signal processing ∣ next generation sequencing ∣ chemical mapping ∣
RNA sequencing ∣ RNA folding

Over the past 30 years, techniques have been developed that
probe RNA structures with small molecules. In this class

of techniques, a chemical reagent modifies RNA molecules in
a structure-dependent fashion. Depending on the reagent used,
four distinct types of information can be gleaned, including
spatial nucleotide contact information, solvent accessibility of
the RNA backbone, the local electrostatic environment adjacent
to each nucleotide, and the local nucleotide flexibility (1). In each
of these techniques, the modification location is detected during
conversion to cDNA by blockage of reverse transcriptase at the
modification site (Fig. 1). The detection can be performed by di-
rect sequencing of the cDNA fragments using high-throughput
sequencing technology (2). However, because at most a single
modified site is revealed by every sequenced fragment (the closest
modification to the 3′ end), a mathematical model and inference
framework are needed to accurately infer the underlying structur-
al properties given the observed fragment distribution.

In this work, we introduce such a model and framework in the
context of the SHAPE (selective 2′-hydroxyl acylation analyzed
by primer extension) technique for characterizing local nucleo-
tide flexibility (3–5). The identification of adduct formation
can be performed by capillary electrophoresis (SHAPE-CE) or
by high-throughput sequencing of cDNA fragments (SHAPE-
Seq) (2) (Fig. 1). Every fragment begins at the 3′ end of the mo-
lecule and terminates at some adduct [(+) channel], or possibly at
a location where there was natural polymerase drop-off (6, 7),
which is controlled for in a separate control experiment [(−)
channel]. Following sequencing, reads are mapped back to the
RNA sequence and are classified by their end location. The re-
sulting read counts are the sufficient statistics for a model that is
used to infer estimates of the probabilities of adduct formation at
each nucleotide, called relative reactivities.

The probabilistic model we develop for SHAPE and the
sequencing that follows in SHAPE-Seq is highly structured and
has recursive properties that allow for efficient maximum-likeli-

hood inference and confidence interval estimates. Our approach
is inspired by probabilistic models used in RNA sequencing
(RNA-Seq) analysis to measure transcript identity and abun-
dance (8) and should be easily generalizable to any chemical
probing technique that characterizes different aspects of RNA
structure. We present results that confirm the accuracy of our ap-
proach and that reveal the simplicity in analyzing the data despite
the complexity of the models. Together, these provide a proof of
principle for the utilization of SHAPE-Seq for high-throughput
RNA structure characterization.

Modeling Polymerase Drop-Off
We consider an RNAmolecule that contains n sites. The sites are
numbered 1 to n according to their sequence position with respect
to the molecule’s 3′ end, where the latter is assigned position 0
and is excluded from analysis (Fig. 1). In a SHAPE-Seq experi-
ment, we observe cDNA fragments of varying lengths, where a
k-fragment corresponds to a mapped read of length k that spans
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Fig. 1. Overview of SHAPE-Seq. As the reverse transcriptase (blue oval) tran-
scribes the RNA, it encounters the first adduct and drops off (Left), or may
drop off prematurely (Right). Sequencing of fragments produces data in the
form of fragment counts (X). Similarly, a control experiment (Right) measures
natural drop-off (fragments labeled Y). The model parameters consist of
the adduct probabilities (Θ), the Poisson rate for the number of adducts
per molecule (c), and the drop-off probabilities in the control experiment
(Γ). Their estimates are denoted by Θ⋆, Γ⋆, and c⋆.
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sites 0 to k − 1 (1 ≤ k ≤ n), and a complete fragment corresponds
to a full transcript of length nþ 1. In the (−) channel control
assay, the primary source of incomplete fragments is reverse tran-
scriptase’s (RT) natural drop-off while transcribing the molecule.
Natural drop-off arises largely due to structural properties of
the molecule, and thus RT’s propensity to drop may vary along
sites. To study this process at nucleotide resolution, we define the
drop-off propensity at site k, γk, to be the conditional probability
that RT terminates transcription at site k, given that it has
reached this site. The n parameters Γ ¼ ðγ1;…;γnÞ, 0 ≤ γk ≤
1 ∀ k, completely characterize natural drop-off, and we wish to
estimate them from the (−) channel fragment counts.

A maximum-likelihood (ML) estimate of Γ is derived from
the (−) channel k-fragment and complete fragment counts
(Y 1;…;Y nþ1) as follows: We denote by pk the probability that
a molecule results in a k-fragment (1 ≤ k ≤ n) and by pnþ1 the
probability that it is transcribed in full. The likelihood of the
counts is thus proportional to

Qnþ1
k¼1 p

Yk
k , where ∑nþ1

k¼1 pk ¼ 1,
and takes the form of a log linear model. It is well-known that
such a model is uniquely maximized by

p̂k ¼
Yk

∑
nþ1

i¼1
Y i

∀ 1 ≤ k ≤ nþ 1; [1]

from which we can retrieve the estimate Γ̂ using the relations
pk ¼ γk

Q
k−1
i¼1 ð1 − γiÞ for k ¼ 1;…;n. We obtain γk by observing

that a fragment has length greater than k if and only if no drop-
off occurred until site k; that is, 1 −∑k

i¼1 pi ¼
Q

k
i¼1ð1 − γiÞ.

Hence,

γ̂k ¼ 1 −
1 −∑

k

i¼1
p̂i

1 −∑
k−1
i¼1

p̂i
¼ Yk

∑
nþ1

i¼k
Y i

∀ 1 ≤ k ≤ n: [2]

Importantly, RT’s drop-off gradually degrades the pool of actively
transcribed molecules throughout the experiment and is captured
by the relations pk ¼ γk

Q
k−1
i¼1 ð1 − γiÞ.

Modeling Chemical Modification
In the (+) channel, the RNA is treated with an electrophile that
reacts with conformationally flexible nucleotides to form 2′-O-ad-
ducts. We define the relative reactivity of a site to be the probabil-
ity of adduct formation at that site. Therefore, associated with the
RNA molecule are n nonnegative real numbers Θ ¼ ðθ1;…;θnÞ,
∑n

k¼1 θk ¼ 1, which we wish to estimate from sequencing data.
During modification, an RNA may be exposed to variable

numbers of electrophile molecules. We model the number of
times an RNA is exposed to electrophile molecules as a Poisson
process of an unknown rate c > 0, i.e., we assume that

Probði exposuresÞ ¼ cie−c

i!
; i ≥ 0; [3]

where each exposure may result in the modification of a site. A
point that is key to interpreting SHAPE data is that a k-fragment
is assumed to be generated when site k is the site that is first en-
countered by RT, regardless of the number of adducts that formed
upstream of k. This is important in light of the fact that SHAPE
experiments are calibrated to yield single-hit kinetics (i.e., c ≈ 1).
Under such conditions, a considerable portion of the molecules
are hit twice or more (e.g., 26.42% when c ¼ 1, as compared to
36.79% that are hit once). Given that an RNA is exposed i times,
the probability that a molecule carries its first adduct at site k is

Probðfirst adduct at site kji exposuresÞ

¼
�
∑
n

l¼k

θl

�
i
−
�

∑
n

l¼kþ1

θl

�
i
: [4]

When k ¼ n, the second sum is taken to be 0 so that Eq. 4 reduces
to θin (for convenience, we define 00 ¼ 1). Note that Eq. 4 entails
an approximation to our understanding of SHAPE chemistry as it
allows for repeated modification of a site. This approximation is
minor, however, largely due to negligible abundance of molecules
with a multitude of adducts under single-hit kinetics as well as
the lengths of the molecules. This premise is also supported by
robustness analysis of our framework (see SI Text for details).
Notably, the low probability of many hits also justifies the use of
an unbounded Poisson model rather than its truncation.

We can now obtain the probability of a molecule being mod-
ified at site k (although possibly also at subsequent sites):

Probðfirst adduct at site kÞ ¼ ∑
∞

i¼1

cie−c

i!

��
∑
n

l¼k

θl

�
i

−
�

∑
n

l¼kþ1

θl

�
i
�

[5]

¼ e−c ∑
∞

i¼0

�ðc∑n

l¼k
θlÞi

i!
−
ðc∑

n

l¼kþ1
θlÞi

i!

�
[6]

¼ e
cð
∑

n

l¼k
θl−1Þ − e

cð
∑

n

l¼kþ1

θl−1Þ
: [7]

Incorporating the natural drop-off probabilities, we have

Probðk-fragment from modificationÞ

¼
�
e
cð
∑

n

l¼k
θl−1Þ − e

cð
∑

n

l¼kþ1

θl−1Þ
�Yk−1

i¼1

ð1 − γiÞ; [8]

where
Q

k−1
i¼1 ð1 − γiÞ reflects the natural degradation in the elon-

gating modified-molecule pool. We attribute all other observed
fragments to natural causes, which take effect in two distinct
pools: unmodified molecules and modified ones for which RT
may drop off before encountering the first adduct (see Fig. 1).
These factors are combined to yield the probability of observing
a k-fragment from natural drop-off:

Probðk-fragment from natural dropoffÞ
¼ Probðk-fragmentjunmodifiedÞProbðunmodifiedÞ
þ Probðk-fragmentjfirst adduct at site l > kÞ
× Probðfirst adduct at site l > kÞ [9]

¼
�
e−c þ∑

∞

i¼1

cie−c

i!

�
∑
n

l¼kþ1

θl

�
i
�
γk

Yk−1
i¼1

ð1 − γiÞ [10]

¼ e−c
�
∑
∞

i¼0

ðc∑
n

l¼kþ1
θlÞi

i!

�
γk

Yk−1
i¼1

ð1 − γiÞ [11]

¼ e
cð
∑

n

l¼kþ1

θl−1Þ
γk

Yk−1
i¼1

ð1 − γiÞ: [12]

As a special case, the probability of observing a complete frag-
ment in the (+) channel is

Probðcomplete fragmentÞ ¼ e−c
Yn
i¼1

ð1 − γiÞ: [13]

It can be seen from Eqs. 10 and 13 that under single-hit kinetics,
the unmodified pool is expected to occupy a significant portion of
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the target pool, as c ¼ 1 implies equal probabilities of experien-
cing no modification or a single hit. We can think of it as having a
(−) channel contained within the (+) channel. Finally, based on
Eqs. 8–12, the probability of observing a k-fragment in the (+)
channel is

Probðk-fragmentÞ ¼ e
cð
∑

n

l¼k
θl−1Þ Yk−1

i¼1

ð1 − γiÞ

− e
cð
∑

n

l¼kþ1

θl−1Þ Yk
i¼1

ð1 − γiÞ: [14]

Assuming we observe (X1;…;Xnþ1) k-fragment and complete
fragment counts in the (+) channel, the likelihood of observing
the entire data from both channels is given by

LðΘ;Γ;cÞ ¼
Ynþ1

k¼1

pYk
k ×

Yn
k¼1

½Probðk-fragmentÞ�Xk

× ½Probðcomplete fragmentÞ�Xnþ1 ; [15]

and can be explicitly written as

LðΘ;Γ;cÞ ¼
Yn
k¼1

�
γk

Yk−1
i¼1

ð1 − γiÞ
�
Yk Yn

k¼1

�
e
cð
∑

n

l¼k
θl−1Þ Yk−1

i¼1

ð1 − γiÞ

− e
cð
∑

n

l¼kþ1

θl−1Þ Yk
i¼1

ð1 − γiÞ
�
Xk
�Yn
i¼1

ð1 − γiÞ
�
Ynþ1

×
�
e−c

Yn
i¼1

ð1 − γiÞ
�
Xnþ1

: [16]

Here, we maximize LðΘ;Γ;cÞ to find the model parameters
that best explain the observed data and thus best reflect under-
lying structural properties of the RNA molecule.

Maximum-Likelihood Estimation
We begin by stating a theorem that leads to an algorithm for ML
estimation which either provides the exact solution, or else fails
and reports that status. We assume that Xnþ1;Y nþ1 > 0.

Algorithm 1:
1. Estimate c by setting

ĉ ¼ log
�

Ynþ1

∑
nþ1

i¼1
Y i

�
− log

�
Xnþ1

∑
nþ1

i¼1
Xi

�
: [17]

2. Estimate Γ by setting

γ̂k ¼
Yk

∑
nþ1

i¼k
Y i

∀ 1 ≤ k ≤ n: [18]

3. Estimate the SHAPE reactivities Θ by

θ̂k ¼
1

ĉ

�
log

�
1þ ŵk

∑
nþ1

i¼kþ1
ŵi

�
þ logð1 − γ̂kÞ

�
; [19]

where fŵ1;…;ŵnþ1g describe the observed (+) channel frag-
ment-length distribution; i.e., ŵk ¼ Xk

∑nþ1
i¼1

Xi
.

Thoerem 1. If Eqs. 17–19 yield θ̂k ≥ 0 for all 1 ≤ k ≤ n and ĉ > 0,
then they determine the parameters ðΘ̂;Γ̂;ĉÞ that uniquely maximize
the likelihood Eq. 16 over all distributions Θ, over Γ such that
0 ≤ γk ≤ 1, and over c ∈ Rþ.

Proof: We first cast Eq. 16 as the following simplified log linear
model:

LðΘ;Γ;cÞ ¼ ~LðP;W Þ ¼
Ynþ1

k¼1

pYk
k

Ynþ1

k¼1

wXk
k ; [20]

where the pk’s were defined earlier, wk ¼ Probðk-fragmentÞ
(1 ≤ k ≤ n), and wnþ1 ¼ Probðcomplete fragmentÞ as in Eqs. 13
and 14. To simplify notation, we define the variables

ul ¼ ecθlðl ≤ nÞ; vk ¼ e−c
Yn
l¼k

ul
Yk−1
i¼1

ð1 − γiÞðk ≤ nþ 1Þ: [21]

Note that Eqs. 13 and 14 imply wk ¼ vk − vkþ1 (1 ≤ k ≤ n) and
wnþ1 ¼ vnþ1, and that setting∑n

l¼1 θl ¼ 1 results in v1 ¼ 1. Becuse
the wk’s represent probabilities, they are nonnegative and hence
the vk’s form a weakly decreasing sequence 1 ¼ v1 ≥ v2⋯ ≥
vnþ1 ¼ e−c

Q
n
i¼1ð1 − γiÞ. It is now also easy to see that ∑nþ1

k¼1 wk ¼
v1 ¼ 1 because the sum is telescoping.

We can now leverage well-known results for ML estimation
of log linear models. Essentially, when the parameters are non-
negative and sum to a known constant there is a unique closed-
form ML solution (9). The model in Eq. 20, however, imposes
two constraints: ∑nþ1

k¼1 pk ¼ ∑nþ1
k¼1 wk ¼ 1. In this case, similar

techniques (i.e., Lagrange multipliers) can be used to show that
the likelihood is uniquely maximized by

ŵk ¼
Xk

∑
nþ1

i¼1
Xi

and p̂k ¼
Yk

∑
nþ1

i¼1
Y i

∀ 1 ≤ k ≤ nþ 1. [22]

A direct consequence of Eq. 22 is that Γ̂ can be determined
from P̂, as was done earlier (see Eq. 2). One can also resolve
ĉ from ŵnþ1 ¼ Xnþ1

∑nþ1
i¼1

Xi
because wnþ1 ¼ e−c

Qn
i¼1ð1 − γiÞ implies

ĉ ¼ − logðXnþ1∕p̂nþ1

∑nþ1
i¼1

Xi
Þ ¼ log p̂nþ1 − logð Xnþ1

∑nþ1
i¼1

Xi
Þ. To backtrack θ̂k, we

use the previous construction: from the definitions we have that
vk ¼ ∑nþ1

i¼k wi, and hence

v̂k ¼ ∑
nþ1

i¼k

ŵi ¼ ∑
nþ1

i¼k
Xi

∑
nþ1

i¼1
Xi

: [23]

Now, from Eq. 21 we have uk ¼ vk
vkþ1

ð1 − γkÞ and therefore

ûk ¼
�
1þ ŵk

∑
nþ1

i¼kþ1
ŵi

�
ð1 − γ̂kÞ: [24]

Eq. 19 then follows from θk ¼ log uk
c .

It is left to verify whether the obtained solution lies within the
problem’s domain. Clearly, the γ̂k’s are properly bounded, and
our construction also guarantees ∑n

i¼1 θ̂i ¼ 1 whenever ĉ ≠ 0
(via v̂1 ¼ ∑nþ1

i¼1 ŵi ¼ 1 and Eq. 21). However, Eq. 17 might result
in ĉ ≤ 0, which is indicative of problematic data. More impor-
tantly, it is possible to encounter ĉ > 0 jointly with θ̂k < 0 (or
θ̂k > 1) for some k’s. To observe this, consider the product in
Eq. 24: The right-hand factor equals at most 1, whereas the
left-hand factor equals at least 1. Yet, both factors are based
on data from the (+) and (−) channels and are not constrained
to guarantee that 1 ≤ ûk ≤ eĉ, thereby leading to cases where
ĉ > 0 and θ̂k < 0 or θ̂k > 1. In such cases, Eq. 20’s solution maps
to an infeasible parameter set.

Theorem 1 states that Algorithm 1 fails if the estimates are
negative, as the results are then not biologically meaningful.
Intuitively, negative reactivities arise when the frequencies of
certain k-fragments in the (+) channel are exceedingly low
compared to their (−) channel counterparts, to the extent that
they cannot be explained by setting the relevant θ̂k’s to zero.
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In general, negative reactivities indicate that the (+) channel data
are inconsistent with the (−) channel data, or in other words, that
the entire dataset is “too noisy.”

When the user wishes to proceed with analysis in the presence
of data inconsistencies (see Interpretation), our goal is to resolve
them by finding 2nþ 1 feasible parameters that maximize Eq. 16.
Notably, optimizing the function efficiently is particularly impor-
tant since SHAPE-Seq is geared toward highly multiplexed prob-
ing (2). This, in turn, necessitates rapid analysis of the data
collected from a multitude of distinct RNA molecules. Neverthe-
less, efficient optimization is computationally challenging for
the following reasons. First, it involves boundary and fixed-sum
constraints, which preclude the use of standard local optimization
methods (e.g., gradient-based algorithms). Second, its scale is
large, as n is typically on the order of several hundreds (3, 7).
Here, we present Algorithm 2, which provides an efficient numer-
ical solution despite the problem’s complexity and large dimen-
sion. Note that hereafter we explicitly require ĉ > 0.

Algorithm 2:
1. Initialize. Exclude from analysis all entries where Xk ¼

Yk ¼ 0. For each of the remaining n0 entries, use Algorithm 1’s
output to set θ⋆k ¼ max

n
0; θ̂k

∑k: θ̂k>0
θ̂k

o
and γ⋆k ¼ γ̂k.

2. If logLðΘ;Γ;cÞ increased in less than ϵ or if M iterations were
completed then stop, else solve the following three optimiza-
tion problems:

• Optimize for c. Find c > 0 that maximizes logLðΘ⋆;Γ⋆;cÞ. Set
c⋆ to the solution.

• Optimize for Γ. Find Γ that maximizes logLðΘ⋆;Γ;c⋆Þ under
the constraints 0 ≤ γk ≤ 1 (k ≤ n0). Set Γ⋆ to the solution.

• Optimize for Θ. Find Θ that maximizes logLðΘ;Γ⋆;c⋆Þ under
the constraints θk ≥ 0 (k ≤ n0), ∑n0

k¼1 θk ¼ 1. Set Θ⋆ to the
solution.

Go to step 2.

The advantage to this formulation is that each of the three
subproblems is a convex optimization problem, as established
by Lemmas 1–3 in SI Text. A convex optimization problem has
two attractive properties: (i) if a local maximum exists, it is a glo-
bal maximum, and (ii) it is, in general, numerically tractable via
specialized interior-point methods (10). Yet, we stress that these
methods’ tractability and accuracy are limited by the problem’s
dimension and also depend to a large extent on its structure.
We circumvent these deficiencies by obtaining exact solutions
for the high-dimensional coordinate problems, namely maximiz-
ing Θ and Γ, as stated in the next two theorems.

Theorem 2. Given c⋆ > 0 and a distribution Θ⋆, the likelihood
function LGðΓÞ ¼ LðΘ⋆;Γ;c⋆Þ attains a unique maximum over all
Γ ∈ ½0;1�n at γ⋆k that is the maximum of zero and

Xk þ Yk − TkðSk þ YkÞ
2Sk−1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Xk þ Yk − TkðSk þ YkÞ�2 þ 4TkYkSk−1

p
2Sk−1

[25]

for all 1 ≤ k ≤ n, where Sk ¼ ∑nþ1
i¼kþ1ðXi þ Y iÞ (0 ≤ k ≤ n) and

Tk ¼ ec
⋆θ⋆k − 1 (1 ≤ k ≤ n).

The proof of the Theorem is in SI Text.
Although the third problem is not amenable to an explicit

solution like the second one, the next theorem shows that it
can in fact be reduced to numerically solving an equation in

one variable. Here, we utilized the water filling optimization
technique, which has been previously used to optimize power-
constrained transmission over parallel Gaussian channels (11).
A sketch of the proof is included below, with full details in SI Text.

Theorem 3. Given c⋆ > 0 and Γ⋆ ∈ ½0;1�n, the likelihood function
LTðΘÞ ¼ LðΘ;Γ⋆;c⋆Þ has a unique maximum over all distribu-
tions Θ, given by θ⋆k that is the maximum of zero and

1

c⋆

�
log

�
1þ ŵk

∑
nþ1

i¼kþ1
ŵi þ ν⋆

c⋆
∑

nþ1

i¼1

Xi
− 1

�
þ logð1 − γ⋆k Þ

�
[26]

for all 1 ≤ k ≤ n, where ν⋆ ∈ ½c⋆ ∑nþ1
i¼1 Xi;∞Þ solves the piecewise

equation

WðνÞ ¼
Yn
k¼1

max

(
1;ð1 − γ⋆k Þ

ν − c⋆ ∑
k−1
i¼1

Xi

ν − c⋆ ∑
k

i¼1
Xi

)
¼ ec

⋆
: [27]

Outline of proof: The Karush–Kuhn–Tucker (KKT) constraints
are a set of conditions that are necessary and sufficient for the
optimality of a solution of a convex optimization problem with
inequality constraints (10). We derive them by introducing a
Lagrange multiplier, denoted ν⋆, which corresponds to the fixed-
sum constraint, and n KKT multipliers, denoted λ⋆1 ;…;λ⋆n , which
pertain to the nonnegativity constraints. Using these variables, we
obtain the following conditions:

θ⋆k ≥ 0; λ⋆k ≥ 0; λ⋆k θ
⋆
k ¼ 0; k ¼ 1;…;n;

∑
n

k¼1

θ⋆k ¼ 1;
[28]

c⋆ ∑
k−1

i¼1

Xi þ Xkf 0kðθ⋆k Þ þ λ⋆k ¼ ν⋆; 1 ≤ k ≤ n; [29]

where f 0kðθÞ is the derivative of f kðθÞ ¼ logðec⋆θ − ð1 − γ⋆k ÞÞ.
Next, we derive the relations between θ⋆k , λ

⋆
k , and ν⋆ that solve

Eq. 29 for a site k. First, assume that it is solvable for θ⋆k > 0,
in which case we set λ⋆k ¼ 0. The left-hand side of Eq. 29 then
becomes the sum of a nonnegative constant and a strictly mono-
tonously decreasing function f 0kðθ⋆k Þ that is illustrated in Fig. S1A.
The choice of ν⋆ thus completely (and explicitly) determines θ⋆k ,
but importantly, ν⋆ must be smaller than a certain threshold to
yield θ⋆k > 0. This threshold depends on the constants c⋆,
X1;…;Xk, and γ⋆k and thus varies among the n sites. When ν⋆ ex-
ceeds site k’s threshold, the resulting θ⋆k violates the nonnegativity
constraint and instead we set it to zero and use λ⋆k as a slack vari-
able to fill the gap between ν⋆ and c⋆ ∑k−1

i¼1 Xi þ Xkf 0kð0Þ.
The derived relations imply that given ν⋆, a subset of Θ⋆ ’s

entries may be set to zero, with the remaining entries being
determined from ν⋆ via Eq. 26. Furthermore, the subset’s cardin-
ality decreases as we decrease ν⋆ and gradually cross the thresh-
olds of additional sites, where their θ⋆k ’s become positive. Having
obtained an explicit expression for θ⋆k ðν⋆Þ, it is left to find the ν⋆

at which ∑n
k¼1 θ

⋆
k ðν⋆Þ ¼ 1. It is found by observing that

∑n
k¼1 θ

⋆
k ðν⋆Þ forms a piecewise continuous and strictly monoto-

nously decreasing function (with increasing ν⋆), with breakpoints
at the above-mentioned thresholds, where the zero-entry subset
is updated. Note that the monotonicity between breakpoints is
due to f 0kðθ⋆k Þ’s strict monotonicity, whereby θ⋆k expands as ν⋆
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decreases. This allows us to gradually decrease ν⋆ until the sum
reaches 1 and can be visualized as flooding a region of varying
surface levels up to a constant amount of water (see Fig. S1B).
The original problem thereby reduces to finding the intersection
of∑n

k¼1 θ
⋆
k ðν⋆Þ with 1, or alternatively, of ec

⋆ ∑n
k¼1

θ⋆k ðν⋆Þ with ec
⋆ , as

formulated in Eq. 27.
Despite the apparent complexity of Eq. 27, its special proper-

ties lead to a straightforward root-finding routine. This, coupled
with efficient methods to solve the first two optimization pro-
blems (see SI Text), enabled us to implement Algorithm 2 so that
it can be run for hundreds of RNA molecules in a matter of
minutes (2).

Results
We used our automated bioinformatics pipeline to analyze data
from SHAPE-Seq probing of a mixture of well-studied RNAs
of lengths n ¼ 172–198. Alignments were generated by mapping
sequenced fragments to the known RNA sequences using the
Bowtie paired-end alignment program (12).

ML estimation took 1–2 s per molecule on a personal compu-
ter, and the reconstructed reactivities were in very good agree-
ment with those obtained from SHAPE-CE probing and
analysis (2). An example is shown in Fig. 2 for the Staphylococcus
aureus plasmid pT181 sense RNA. The raw k-fragment frequen-
cies in the (+) channel are illustrated next to the outputs of
Algorithms 1 and 2. The estimated rate was ĉ ¼ 1.46. One can
readily observe the input signal’s decay as well as a general trend
in its reconstruction, that is, signal attenuation at the molecule’s
3′ end gradually transitions into amplification over its 5′ end.
Additionally, Algorithm 1’s intermediate output is indicative of
high-quality data, as it displays very few negative estimates. The
depicted error bars correspond to one standard deviation of 500
bootstrap samples of the dataset and indicate negligible variation.
The complete details of estimation results and subsequent struc-
tural analysis conducted for all probed molecules appear in ref. 2.
The full data analysis pipeline is available at http://bio.math.
berkeley.edu/SHAPE-Seq/ as a supplementary file for download
(see SI Text for details).

To explore the robustness of our method, we investigated the
accuracy of the estimated Θ as a function of the sequencing depth
as well as under several model scenarios featuring hypothetical Θ
and Γ distributions. We assessed robustness with respect to data
size by analyzing, for different sizes, 200 randomly drawn subsets
of our dataset and determining the fraction of sites that were
assigned reactivities within 15% of the full-dataset estimate.
Average fraction and sample variation per subset size are shown
in Fig. S2. They demonstrate that high quality is retained in the
presence of an order-of-magnitude decrease in data throughput
and that a decrease of two orders of magnitude results in fair ac-
curacy. Fig. S3 recapitulates the latter claim by demonstrating
that 0.5% of the reads suffice to capture the general reactivity
profile of our dataset. The dependence of estimation quality
on structural features of the RNA was assessed by assigning var-

ious distributions to Θ and Γ and subsequently drawing 5 million
fragments from the induced fragment distributions. We collected
15%-, 10%-, and 5%-interval statistics. For 500 simulations per
case, the average fraction of hits decreased with increasing num-
ber of reactive sites and was lowest for the extreme case of an
exponentially declining Θ (i.e., 76% of 50 reactive sites were
within the 5% interval). Yet, variation around the average was
consistently negligible. In addition, effects of instantaneous drop-
off spikes in Γ amounted to several percents degradation at the
most. The complete analysis details are found in the SI Text and in
Tables S1 and S2.

Interpretation
Although Algorithm 1 may fail to generate the ML solution, it is
valuable in two ways. First, it informs the user of the experiment
and data quality via Θ̂ and summary-level statistics such as ĉ, p̂nþ1,
and ŵnþ1, which are not obtainable with the present SHAPE-CE
pipeline (4). The extent of data inconsistencies is manifested
in the negative θ̂k’s and can be assessed by inspecting their mag-
nitudes and abundance. In the presence of large-magnitude
negatives, the user may merely exclude certain sites from further
analysis (e.g., structure prediction), as is commonly done in
SHAPE-CE data analysis (4, 5).

Second, our model-based correction formula elucidates the
effects of the two bias sources and guides how to offset them.
This, in turn, highlights the virtues and deficiencies of existing
bioinformatics approaches. Specifically, we can rewrite Eq. 19
such that it maps the input fragment-length distributions to the
corrected output distribution, as follows:

θ̂k ¼
1

ĉ

�
log

�
1þ ŵk

∑
nþ1

i¼kþ1
ŵi

�
− log

�
1þ p̂k

∑
nþ1

i¼kþ1
p̂i

��
: [30]

One can see that the correction can be applied separately to the
noisy signal component (i.e., left-hand term) and the noise com-
ponent (i.e., right-hand term), as is currently done in SHAPE-CE
(6). More importantly, each frequency is corrected according
to its position in the distribution (i.e., its percentile). Particularly,
we can approximate the correction factor by 1

∑nþ1
i¼kþ1

ŵi
because, in

general, logð1þ ŵk

∑nþ1
i¼kþ1

ŵi
Þ ≈ ŵk

∑nþ1
i¼kþ1

ŵi
when n is large. Amplification

is thus adjusted according to the empirical cumulative distribu-
tion. This is in contrast to existing approaches where users apply
a heuristic exponential-decay correction that corrects according
to a nucleotide’s sequence position rather than its percentile (6, 7).
Moreover, this correction’s range and parameters are chosen by
the user, based on visual inspection.

In the ideal case where Θ ¼ ð1n ;…; 1nÞ and γk ¼ γ0 ∀ k, the two
approaches coincide (see illustration in Fig. S4A), whereas they
differ as the RNA diverges from a uniform pattern, which is the
case for biologically relevant RNAs. For example, in the Bacillus
subtilis RNase P RNA specificity domain, most reactive bases are
confined to a short segment (13), thereby inducing considerable

5’3’
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Fig. 2. ML estimation for S. aureus plasmid pT181 sense RNA. Bootstrap error bars are shown in black on the final ML estimation. Sites 1–45 showed negligible
frequencies and were omitted from display. The starred bar is not fully shown and has magnitude −0.16.
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signal decay over that region. However, due to its short span, it
is easily missed by the eye (see SHAPE-Seq data in Fig. S4 B
and C). The need for correction is also commonly overlooked
in the (−) channel, which often displays a few outstanding spikes
over low-frequency background. These reflect natural transcrip-
tion barriers that significantly degrade the pool of molecules
that are transcribed past these points. Hence, the decay pattern
clearly departs from a smooth gradual decline toward a stepwise
behavior, as illustrated in Fig. S4 D and E. Sharp instantaneous
degradations in the target pool should be accounted for such
that noise estimates past these points are boosted accordingly.
In Eq. 30, this is encapsulated into the noise correction term, such
that the spike’s effect is propagated to upstream sites, whereas
existing methods merely subtract the spike locally from the
matching signal intensity.

Finally, the above interpretation gives rise to a simple nonpara-
metric correction, where logarithms are removed and reactivities
are normalized such that θ̂k ∝ maxf0; ŵk

∑nþ1
i¼kþ1

ŵi
− p̂k

∑nþ1
i¼kþ1

p̂i
g. Interest-

ingly, the reactivities reconstructed with this approach were, for
the most part, very close to theML estimates. However, they tend
to diverge as reactivities increase, which, in turn, may confer more
sensitivity to outliers.

Discussion
In this work, we present the first rigorous model of the SHAPE
experiment used to probe the structures of RNA molecules.
Using this model, we developed a robust method to determine
the set of reactivities that best explains the observed cDNA frag-
ment-length distribution. Coupled with our alignment pipeline,
this produces an automated workflow for SHAPE analysis via
sequencing and improves upon existing approaches for analyzing
SHAPE data. Current approaches use a heuristic exponential de-
cay correction and (−) channel scaling to assign low reactivities to
user-identified sites thought to have little reactivity (6). Although
they do correct for natural polymerase drop-off, these procedures
can require expert knowledge to choose when and where to
apply. Our approach also leverages accurate measurement of the
number of full-length transcripts to provide an estimate of the
modification rate, c. This has not been possible with SHAPE-
CE due to detection limitations of CE in quantifying the signal
of full-length fragments. Although our ML framework was ap-
plied to data generated from sequencing experiments, it could
be adapted to CE-based data to automate their analysis.

Our robustness analysis shows that SHAPE-Seq is remarkably
accurate even at low throughput making it tractable with lower

throughput desktop sequencers, suitable for low abundance
RNAs, and effective for multiplexed bar coding to simultaneously
probe large numbers of molecules in parallel (2).

In the present work, we have focused on the application of our
method to SHAPE-Seq (2). However, our method for modeling
the effects of RT drop-off is broadly applicable to any sequence
census method that utilizes a pool of RNA molecules as the
basis for the measurement. In particular, our method should be
directly applicable to the general class of RNA structure-depen-
dent chemical probing techniques that utilize single modifications
to probe other features such as solvent accessibility of the back-
bone and local electrostatic environment of the nucleotide (1).
Additional interesting challenges will arise when extending our
method to techniques where adduct formation is correlated to
structural features at more than one position in the RNA, for
example with chemicals that probe through-space neighbors (1).
Other methods that involve converting RNA into cDNA, includ-
ing transcript abundance quantitation and alternative splicing iso-
form identification with RNA-Seq (8, 14), and qRT-PCR, could
potentially benefit from our estimation of premature termination
of the RT process represented by γ̂k to correct for drop-off biases.
Moreover, we believe these methods generalize to the setting of
random priming where fragments may not always begin at the
same place, allowing us to determine the structures of de novo
pools of RNA such as natural transcriptomes.

In general, our automated data analysis pipeline, coupled with
the SHAPE-Seq protocol, is a high-throughput method to infer
secondary and tertiary structural information for every nucleotide
in an RNA solution (2). Furthermore, the final output of this
method, the optimal Θ that represent the reactivity of each
nucleotide to adduct formation, are well understood and can be
used to constrain existing RNA structure prediction programs to
remarkably increase their accuracy (5, 15). SHAPE-Seq should
also be able to provide much-needed information for recent
algorithms that predict tertiary RNA structures from primary
sequence (16).
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