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Abstract
Oncolytic viruses consist of a diverse range of DNA and RNA viruses traditionally thought to
mediate their effects by exploiting aberrations in tumor pathways, allowing preferential viral
replication in, and killing of, tumor cells. Clinical development has progressed to late phase trials,
potentially heralding their introduction into clinical practice. However, despite this promise, the
activity of oncolytic viruses has yet to achieve the potential suggested in preclinical models. To
address this disparity, we need to recognise the complex interaction between oncolytic viruses,
tumor, chemotherapy, host immune system, and appreciate that direct oncolysis may not be the
only factor to play an important role in oncolytic virus-mediated anti-tumor efficacy.

Although key in inactivating viruses, the host immune system can also act as an ally against
tumors, interacting with oncolytic viruses under the right conditions to generate useful and long-
lasting anti-tumor immunity.

Preclinical data also suggest that oncolytic viruses demonstrate synergy with standard therapies,
which may offer improved clinical response rates. Here we explore clinical and preclinical data on
clinically relevant oncolytic viruses, highlighting areas of progress, uncertainty and translational
opportunity, with respect to immune recruitment and therapeutic synergy.
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Introduction
The notion of using of replicating viruses as potential anti-cancer agents goes back over a
century, with occasionally dramatic regressions of cancers following viral infections (1–6).
Clinical responses were observed in preliminary studies using replicating wild-type viruses
such as adenovirus (1) and mumps (5), However, progress faltered for a number of reasons:
fears over safety; the lack of objective response criteria; lack of randomized trials; and the
absence of Good Manufacturing Practice standards (1, 5, 6).

Despite these reservations, oncolytic viruses (OVs) remain exciting prospective anti-cancer
agents, because of reports of selective killing of tumor cells, (7, 8). There has been a recent
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resurgence of interest in OVs, based not only on fundamental advances in tumor and viral
biology, but also the ability to scale-up manufacture of clinical grade viruses, and improved
clinical trial designs (9, 10).

Clinical development of oncolytic viruses
Modern trials commenced in the mid 1990s, administering OVs by a variety of routes,
including intra-tumoral (IT), locoregionally and, more recently, intravenous (IV) routes
(Table 1).

Concerns over the safety of replicating OVs have eased, given the satisfactory treatment of
several hundred patients within multiple early phase trials of RNA (reovirus, Newcastle
Disease Virus (NDV), measles) and DNA (adenovirus, vaccinia, and Herpes Simplex Virus
(HSV)) OVs (11–25). Typical local response rates observed after IT administration range
from ~10–60% (14, 16, 17, 20, 23), with the best objective radiological responses lower, at
just under 30%, at best (20, 23). Single agent IV treatment offers even lower objective
responses, at <10% (12, 19, 21, 25).

Commonly-observed side-effects include local reactions within injected tumor masses,
following IT administration, and `flu-like syndromes, following intravenous infusion.
Edema, precipitating billiary tract obstruction and jaundice (22), or bronchial obstruction
and respiratory compromise (21), represent serious adverse events and have led to trial
protocols excluding patients where disease has the potential to cause critical obstruction
(23).

A closer look at the reasons behind the difference between preclinical studies and the
clinical experience may be the first step in realising the full anti-tumor potential of OVs. The
clinical development of dl-1520 (Onyx-015) (26), a well-characterised oncolytic adenovirus,
which was first used over a decade ago, illustrates some of the challenges in developing
OVs clinically.

Multiple clinical trials were completed in multiple tumor types and using various routes of
administration (Table 1). Objective local response rates were improved to >50% by
combining Onyx-015 with chemotherapy in squamous cell cancer of the head and neck
(SCCHN), hinting at synergy (15). However an unreported, incomplete Phase III trial halted
Onyx-015 clinical development (27).

H-101, a closely related virus, has since found use as a licensed cancer therapy in China for
SCCHN in combination with radiotherapy. Unfortunately H-101 approval is based on
limited controlled trial evidence (27), and a corruption scandal over the drugs approvals
process in China (involving unrelated agents) appears to have discouraged widespread use
(28).

Despite these setbacks, anticipation remains high, with recently reported phase 2 trials, with
HSV and reovirus OVs, underpinning current randomised phase 3 trials in melanoma (23,
29) and head & neck cancers (30). Clinical observations with these OVs, as outlined below,
suggest that recruitment of a host anti-tumor immune response, or synergy with other anti-
cancer agents, may represent important factors in optimizing OV efficacy.

The DNA herpes simplex virus OV, JS1/34.5-/47-/GM-CSF (“OncoVEXGMCSF”) represents
a clinically-advanced OV candidate, designed to invoke an anti-tumor immune response by
oncolytic release of tumor antigens, which, if “presented” appropriately to immune cells,
may provoke an anti-tumor immune response. This aim is enhanced by deletion of the ICP
47 gene, promoting greater presentation of tumor antigen on the infected cell surface.
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Further to this, expression of Granulocyte-Macrophage colony stimulating factor (GM-
CSF), a protein that stimulates antigen-presenting dendritic cell (DC) activity, increases the
likelihood of successful “recognition” of tumor antigen and a therapeutic anti-tumor immune
response (31).

In a phase two trial, intratumoral JS1/34.5-/47-/GM-CSF elicited thirteen (8 complete and 5
partial) objective RECIST (Response Evaluation Criteria In Solid Tumors) responses in 50
patients with unresectable metastatic melanoma (23). Treated patients had a 58% one-year
survival rate (23), comparing favourably to historical Phase II survival rates of 25.5% (32).
Data from a Phase III trial in metastatic malignant melanoma patients are keenly awaited
(33).

The dsRNA reovirus (Type 3 Dearing),is safe and effective in early phase clinical trials
employing IT (14, 34), IV (25, 35) and combination (30, 36) approaches (Table 1). An on-
going, randomised Phase III trial of reovirus, in combination with chemotherapy, in
refractory SCCHN follows a recent phase 1/2 study where 8 of 19 HNSCC patients achieved
an objective partial response (42%) (30). Reovirus therefore represents another advanced
contender in the race to enter the clinic (30, 36).

Oncolytic viruses and selective replication
Appreciating the rationale for the action of OV may help to put the role of the immune
response and synergy into perspective. Preclinical evidence regarding oncolytic efficacy
concentrates on the exploitation of dysregulated signalling pathways in tumor cells, which
may attenuate anti-viral responses or support viral replication (Figure 1).

RNA viruses benefit from disruption of anti-viral immune responses. Reovirus, benefits
from attenuation of the dsRNA-sensing, protein kinase receptor (PKR), via RAS activation
(37, 38). Deficiencies in cellular interferon responses in tumors allow NDV and vesicular
stomatitis virus (VSV) to replicate selectively (39, 40) (Figure 1).

Other viruses have been engineered to enhance anti-tumor activity or improve safety (Figure
1). The function of selectively-inactivated, replicative genes may be redundant due to
abnormalities in tumor cells, but equally can enhance safety, by preventing OV replication
in normal cells. Figure 1 outlines mechanisms, including: inactivation of the ICP 34.5 gene
controlling neurovirulence and late protein synthesis in HSV OVs e.g. JS1/34.5-/47-/GM-
CSF used in melanoma (31); deletion of thymidine kinase (TK), required for vaccinia
replication e.g. JX-594 used in melanoma and liver tumors (41); and deletion of the
adenoviral E1B gene, the product of which normally binds to and inactivates p53 e.g.
Onyx-015/H101 used in SCCHN (26).

Strategies for maximising the efficacy of OV therapy: exploiting the host
immune system

A comprehensive review of the immune system in the context of OV therapy is beyond the
scope of this article and has been summarised elsewhere (42, 43). Briefly, the two arms of
the immune system are: adaptive (antigen-specific), which creates immunological memory
via B and T-cells; and innate (non-antigen-specific), involving macrophages, dendritic cells
(DC), and Natural-Killer (NK) cells.

Potential interactions of the host immune system with OVs and tumors are summarised in
Tables 2 and 3. These interactions are complex and illustrate how the host immune response
can be focused on the virus (anti-viral immunity), or the tumor (anti-tumor immunity). The
development of anti-tumor immunity depends on the interplay between tumor and immune
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system and it is well recognised that tumors employ multiple mechanisms to avoid anti-
tumor immunity, including decreased immunogenicity, resistance to immune-mediated
killing, and immune subversion (Table 2).

Theories of immune activation suggest effective immunity requires an appropriate “danger
signal” indicating cellular or tissue distress (44), or stimulation of “pattern recognition
receptors” (PRR) on immune activating cells (45). The immune premise of OVs is the
provision of these activating functions, by oncolytic killing of tumor cells (“danger”) and
release of tumor antigens (stimulation of PRR), thereby engaging effective anti-tumor
immunity.

Preclinical adaptive immune response data
Pre-clinical work suggests that OVs may promote immune responses, which outweigh direct
oncolysis in mediating anti-tumor efficacy (Table 2). Long-term immune control may arise
from OV-infected tumor cells boosting both innate and subsequent adaptive tumor specific
immune responses. The clinical OVs JS1/34.5-/47-/GM-CSF and JX-594 express a GMCSF
transgene in order to enhance adaptive anti-tumor immunity (41, 46). GMCSF improves
antigen presentation through activation of DC, consequent immune recognition of released
tumor antigens, eventually stimulating an increase in tumor specific cytotoxic T-
lymphocytes (TS-CTL), which have been associated with long-term tumor control in both
clinical and pre-clinical studies (Table 2). .

We have demonstrated, in immunocompetent mice carrying B16 melanoma cells, that
reovirus and VSV can enhance tumor clearance and induce specific long-term protection
from tumor re-challenge, via generation of melanoma antigen specific lymphocytes (47–49).

However, our studies also demonstrate an important pitfall: Viral delivery method (i.v.
versus carriage on immune cells), or increasing dose of virus, induces anti-viral immunity,
rather than anti-tumor immunity, with loss of long-term tumor-control (Table 3) (48). This is
unsurprising, as adaptive responses, and, in particular, neutralising antibodies (nAb) prove a
common and powerful inhibitory end-response to infection, involving a variety of oncolytic
viruses including VSV (50), reovirus (51), measles virus (52) and HSV-1 (53). The difficult
task of understanding how to stimulate profitable anti-tumor immunity, rather than (or
alongside) anti-viral immunity, will be key in mediating successful OV-immunotherapy
(Tables 2,3).

Preclinical innate immune response data
Data using clinically-relevant OVs demonstrate an intriguing relationship with the host
innate system. OVs may be inactivated preventing direct oncolysis (Table 3), but also show
a potentially productive inflammatory anti-tumor response (Table 2). Reovirus can boost a
variety of innate anti-tumor functions, including NK recruitment, alongside activation and
induction of DC maturation (54).

Cytokines such as the interleukins (IL) and interferons (IFN) are proteins which regulate the
growth and function of immune cells, thereby potentially having either positive or negative
effects on anti-tumor immunity. Whilst reovirus can directly influence the balance of tumor
cytokines from immunosuppressive to inflammatory, increasing cytokines associated with
tumor rejection (55), several attempts have been made to directly incorporate cytokine
transgenes into OVs. Interferons are cytokines which enhance tumor antigen presentation
and cytotoxicity. Interferon 1-beta (IFN-1-β) transgene expression from an oncolytic VSV
vector enhances overall anti-tumor activity in a murine mesothelioma model, through a T-
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cell activating mechanism. In addition, SCID mice were protected from lethal neurotoxicity
associated with wild-type VSV by IFN-1-β production in non-tumor tissue (56).

IL-12 is another cytokine of interest which shows pleiotrophic effects, including stimulation
of T helper cells, increased tumor infiltration and cytotoxicity by CTLs and NK cells, and
stimulation of IFN-γ production, resulting in anti-angiogenic effects (57–59). IL-12
expression from the clinically-relevant HSV virus, NV1020, led to increased IFN-γ
production, induction of antiangiogenic proteins, and an enhanced therapeutic effect, when
assessed in vivo (60).

Innate neutrophil infiltration also enhances therapeutic efficacy of measles and vaccinia
viruses, the latter by triggering endothelial collapse, anti-vascular effects and bystander
apoptosis of tumor (61, 62). In this instance, interfering with the neutrophil response
increased direct oncolytic killing, but decreased bystander anti-vascular therapy and overall
anti-tumor efficacy (61) (Table 3). However other studies have shown the opposite effect,
with inhibition of the innate response improving replication and therapeutic efficacy of
HSV, vaccinia, and reovirus (53, 63–65) (Table 2). These differences underline the
influence of experimental conditions. Ultimately, complex OV, tumor and immune
interactions may not be adequately represented in present preclinical models, and clinical
relevance may be best sought in a translational setting.

Clinical Immune data with OVs
Immune response data on OVs in clinical practice are limited, but give an indication of the
host response to tumor and to OV alike. Available data relate to the phase-2 trial of
GMCSF-expressing JS1/34.5-/47-/GM-CSF, described earlier (23). This trial is notable for
the clinically significant proportion of complete responses (16%).

The authors utilised novel immune assessment criteria, allowing a limited degree of tumor
progression, prior to response (considered clinically insignificant and not requiring
alternative treatment intervention), permitting the development of an immune-mediated
response (66). These guidelines were developed for immune-stimulating therapies, such as
the monoclonal antibody ipilimumab, which has recently shown a ground-breaking 3-month
survival advantage over a peptide vaccine in metastatic melanoma (67). Six of the 13
patients showing an objective response also showed characteristics in keeping with immune
response criteria, with limited progression in soft tissue and visceral sites, followed by four
complete and two partial RECIST, responses (23).

Despite an emphasis on JS1/34.5-/47-/GM-CSF's “cancer-vaccine” properties, the only
immune study on tumor and blood samples reported includes just eleven of the 50 trial
patients recruited in total (29). Nevertheless, indicative observations were made, with the
generation of cytotoxic T-cells against a melanoma-associated antigen (MART-1) found in
the tumor and peripheral blood of responding patients. In addition, comparatively low levels
of immune-suppressive, T-regulatory (T-reg) cells, linked to poorer outcomes in other
clinical studies, were found within injected tumors (29, 68) (Table 3).

Another well-studied cytokine, IL-2, offers the potential to increase NK cell and CD8+ T-
cell function, and the ability to increase vascular permeability (69). When expressed from a
vaccinia virus vector in 6 patients with malignant pleural mesothelioma, IL-2 expression
was detectable and associated with T-cell infiltration in half of biopsied tumors, obtained
from all six patients. No systemic toxicity was observed, but nor were any objective clinical
responses seen, or further studies reported (70).
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Clinical evidence of both, radiological, and immune-mediated, anti-tumour responses have
been observed in trials employing vaccinia, JS1/34.5-/47-/GMCSF, JX-594 and Onyx-015.
These responses were seen at sites distant from those injected, in keeping with preclinical
observations of systemic, immune-mediated effects (15, 20, 22, 23) (Table 2). Biopsies of
non-injected tumor sites have demonstrated immune cell infiltration consistent with this
(20). However, another study observed vaccinia virus (JX-594) in biopsies from non-
injected sites, suggesting systemic dissemination of virus and direct oncolysis as a viable
alternative mediator of tumor responses (22).

Pre-clinical work with OVs raises questions of whether the traditional dose-escalation
approach is appropriate for early phase trials of OVs. Our own pre-clinical studies in murine
melanoma models, suggest it may actually be counterproductive to administer the Maximum
Tolerated Dose of OV, as this approach may encourage anti-viral, rather than anti-tumor,
immunity (48, 49) (Table 3). It is well-established that current clinical doses and modes of
administration result in clinically robust, protective neutralising antibody (nAb) responses to
reovirus, NDV and vaccinia virus, even in heavily pre-treated patients (21, 22, 71) (Table 3).
Levels of nAb do not directly relate to initial clinical response, i.e. pre-existing anti-viral
immunity does not necessarily prevent direct oncolytic therapy, perhaps reflecting the
immune suppressive local tumor environment, allowing OV replication (21, 22, 71).
However, it would be of interest to establish whether the nAb response occurs at the expense
of an eventual adaptive anti-tumor immune response and, more importantly, whether this
impacts on long-term outcome.

Overall, present clinical data support, to a limited extent, preclinical observations that anti-
tumor immune responses are important in long-term OV efficacy. It would seem desirable
that primary immune end-points are explored and validated in future trials of OV therapy.

Maximising OV therapy: combination therapy for synergy
Pre-clinical: OV combination with chemotherapy

Multiple preclinical studies indicate a highly-desirable synergistic effect when combining
chemotherapy with OV. Table 4 lists OVs showing synergy in combination with
chemotherapy and some possible mechanisms involved. A common pre-clinical method for
assessing synergy is the Chou Talalay Combination Index (CI). This commonly-used
analysis involves plotting dose-effect curves for each therapy and multiplying diluted
combinations of the therapies, using the “median effect” equation, to obtain a combination
index (CI). CI values of <1, 1, and >1 indicate synergy, additive effect and antagonism
respectively (72).

The taxane chemotherapies (docetaxel and paclitaxel) consistently demonstrate strong
synergistic activity (CI <1) in pre-clinical combination studies with a variety of OVs
including adenovirus, reovirus and HSV (see table 4). There are various suggested
mechanisms of synergy, perhaps reflecting the complex biology of OV and broad effects of
chemotherapy. The microtubule-stabilizing action of taxanes appears to be important in
facilitating reoviral and adenovirus replication (73, 74). Induction of apoptosis may be a
common pathway for OV synergy with taxanes. Reovirus-induced, caspase-dependent
apoptosis is synergistically enhanced by the prolonged G2-M arrest induced by paclitaxel, in
lung cancer cell lines. Similarly synergistic apoptotic cell death results from the combination
of HSV induced G1 arrest, and taxane G2-M arrest, in prostate cancer cells (75).

Paclitaxel sensitivity is also synergistically enhanced by vaccinia-induced release of type I
IFN following viral infection, and high-mobility group protein B1 following cell lysis (76).
Finally, physical effects may play a part in synergy, as shown in pre-clinical studies in
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which the combination of oncolytic HSV and taxane chemotherapy resulted in cell lysis and
breakdown of tumor, with improved ingress and replication of virus in tumor cells (77).
Other chemotherapies also show synergy, via similar mechanisms, e.g. cisplatin, which
potentiates apoptosis in melanoma lines (78, 79), however the wide-ranging, high-level,
synergy observed between various OVs and taxanes, would support such combinations
being explored clinically (Table 4).

A recent report describes a systematic attempt to maximise synergy whilst retaining
oncolytic ability (80). Diallo and colleagues describe a “pharmacoviral” screen, in which the
impact of each of over 12,000 chemical compounds on viral oncolysis was assessed in a
cell-based assay, using a high throughput screening method. The cytotoxicity of low titers of
the VSV mutant, VSV-Δ51, which is highly sensitive to the interferon response, was
assessed, with and without drug, in a partially-resistant cell-line (81). Their approach
identified a number of potential compounds demonstrating synergy for the replication and
spread of VSV-Δ51 in vitro.

One of the chemical compounds assessed in this way, VSe1 (3,4-dichloro-5-phenyl 2,5-
dihydrofuran-2-one), was shown to suppress the interferon response to VSV, conferring on
VSV a temporary and apparently tumor-selective replication advantage in vivo. Their
discovery of a specific compound complementing the known biology of the mutant VSV-
Δ51 suggests this screening approach could be replicated with other viruses. Although this is
an attractive prospect, it has not yet been realised in clinical practice (81).

This synergy of VSV-Δ51and VSe-1 is in keeping with other preclinical observations that
suppression of the innate anti-viral immune response can improve oncolysis and efficacy
(Table 2) (63–65). There is further preclinical evidence, in melanoma, that reoviral synergy
with cisplatin accompanies ablation of the local innate inflammatory response (78), shown
preclinically to boost innate anti-tumor immunity (54, 82). An important question to resolve
is therefore whether the improvement in direct oncolysis accompanying selective
suppression of the innate anti-viral response may be offset by the potential loss of anti-tumor
immunity? A reasonable hypothesis would be to expect synergy to be reflected in greater,
immediate, tumor shrinkage (compared to chemotherapy alone). In contrast, development of
an anti-tumor response may be expected to correspond to longer duration of response, prior
to subsequent progression. These transtionally relevant questions could be addressed, for
example, in the ongoing trial of chemotherapy ± reovirus in SCCHN.

Clinical OV and chemotherapy combination data
None of the currently available data clearly indicate whether pre-clinical synergy between
OVs and chemotherapy can be translated into improved clinical outcomes, but there are
signals suggesting improved response from the combination of OV and cytotoxic drugs in
clinical trials. Although not developed commercially, a combination Phase 2 trial of IT
Onyx-015, combined with cisplatin and 5-fluourouracil chemotherapy, in patients with
recurrent SCCHN, demonstrated notable complete (8/37) and partial response rates (19/37)
in injected nodules (15). These results compared favorably to historical data obtained with
either virus alone or chemotherapy alone (22–33%) (17, 83), and were consistent with
preclinical models showing synergy with the same agents (26).

Reovirus combined with docetaxel has proven safe in a Phase I trial of 16 patients, with one
objective complete response, 3 partial responses and 7 patients with stable disease observed
(84). Reovirus was detectable in tumor biopsies, and docetaxel did not compromise the
neutralising antibody response to reovirus (NARA). In contrast, a similar early phase trial of
gemcitabine combined with reovirus led to liver toxicity, and reduced NARA. Only one
objective response was seen amongst 16 patients treated, plus 6 patients with stable disease
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(85). Reovirus/taxane and reovirus/platinum combinations have also featured in a phase 2
study in relapsed SCCHN patients. Nineteen patients, most of whom were refractory to
previous platinum-based chemotherapy, were treated with intravenous reovirus, along with
carboplatin and paclitaxel chemotherapy with partial response rates over 40% and stable
disease in a further 30% (30). However, in contrast to the JS1/34.5-/47-/GM-CSF phase 2
data in melanoma (23), no complete responses were observed, and though promising in
terms of response rate, the small sample size and current lack of information regarding
duration of response, do not immediately predict the success of chemo-virotherapy in this
setting according to predictive algorithms (30, 86). The result of a key ongoing randomised
phase-3 trial using the same chemotherapy combination ± reovirus in SCCHN patients is
therefore awaited with genuine interest.

Conclusions
OVs represent a diverse group of viruses with the ability to selectively kill tumor cells, and
thus represent attractive anti-cancer agents. Pre-clinical oncolytic activity has not, thus far,
been translated into routine clinical, which may reflect the inability of pre-clinical models to
replicate the complexity of diverse interactions between virus tumor, and intact host immune
system.

It is clear that embracing existing knowledge, by encouraging anti-tumor immunity
(OncoVEXGMCSF) or exploiting synergy with chemotherapy (reovirus, ONYX-015), to
enhance OV efficacy has already contributed to emerging promise, leading to late phase OV
clinical trials (23, 30, 33). Robust late phase data is required before we can accept OVs as
legitimate alternatives to current therapies, however current approaches appear to be on the
cusp of offering the genuine prospect of improved clinical outcomes.

Questions still remain: Is it possible, or even desirable, to overcome anti-viral immunity? Is
anti-tumor immunity really more important than direct oncolysis? If so, is it possible to
quantify this, and consistently to manipulate the host immune response against tumors?
Synergy may offer improved response rates, but will it also lead to long-term tumor control?
Is synergy also compatible with productive anti-tumor immunity? These questions may well
be too complex to resolve using current preclinical models and further highlight the
continuing need for in-depth translational studies, ideally in the context of OV trials.
Deriving clear answers will help direct future approaches, offer enhanced therapy and could
ultimately lead to improved survival for patients.

Translational relevance
Oncolytic viruses (OVs) are biologically targeted agents, with the ability to potently, and
selectively replicate in and kill tumor cells. There is undoubted promise with late phase
trials using both DNA and RNA viruses underway, however their clinical efficacy
remains to be proven.

Increasingly there is recognition of a potentially productive, rather than inhibitory,
relationship between OVs and the host immune response, with fresh approaches
encouraging host anti-tumor immunity showing clinical promise.

Preclinical synergy with chemotherapy is reflected in increased clinical response rates,
and may represent another way to optimise OV therapy. However preclinical evidence
also suggests chemotherapy may impact on the host immune response, with uncertain
effects on long-term outcome. Clinical data corresponding to the complex interactions
between OV, tumor, chemotherapies, and the host immune system is lacking. Therefore
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high quality translational studies are required to enhance our understanding of the
biology of OVs, in order to improve outcomes further.
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EGFR epidermal growth factor receptor

vgf vaccinia growth factor

TK Thymidine kinase

tkdeleted thymidine kinase deleted

Rb Retinoblastoma gene

ICP34deleted ICP34 deleted virus

VV vaccinia virus

PKR protein kinase receptor
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Fig. 1.
Tumor selective replication of oncolytic viruses: The figure illustrates aberrant tumor
pathways that offer redundancy to oncolytic viral genes contributing to tumor selectivity: [1]
Activation of EGFR abrogates vgf that normally stimulates EGFR, in readiness for vaccinia
infection; [2] Activation of RAS induces an inhibitor of PKR, that would normally prevent
translation of RNA viral (reovirus or NDV) genes, to control infection; [3] Aberrantly
activated protein expression compensates for ICP-34 absence (ICP-34 normally induces
protein expression) restricting replication to dividing (tumor) cells; [4] Tumor suppressor
inactivation can compensate for absent viral proteins, e.g. E1B is normally required to
inactivate p53; [5] Up-regulated cellular TK in tumor compensates for absent TK in tk
deleted VV (tk-); [6] Interferon responses are powerful mediators of anti-viral responses,
and often impaired in tumors especially benefitting RNA viruses NDV and VSV.
Downstream attenuation of PKR also benefits the replication of reovirus and ICP34 deleted
HSV. Clinically relevant OV examples are given in brackets.
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Table 1

Oncolytic viruses in clinical development

Virus (clinical example) Tumor type Status Refs

E1B deleted Adenovirus (Onyx-015,
H-101)

SCCHN
SCCHN,

H-101 licensed as combination therapy for SCCHN (China only)
Phase II/III trials SCCHN, HCC, CRC, Hepatobilliary

27,107
15,16,17,19,24

HSV (OncoVEXGMCSF) Melanoma Phase III registration trial in Melanoma
Phase III in SCCHN

23, 33, 46

Reovirus (Reolysin) SCCHN Phase I, Phase II melanoma, lung sarcoma
Phase III in SCCHN

14, 25, 30, 34, 35

Vaccinia (JX-594) HCC Phase I/II HCC, SCCHN
Phase III trial planned in Liver

22

NDV (PV-701) CRC Phase I/II 12, 21

Measles (MV-CEA) Ovary Phase I in Ovary 13

VSV (VSV-hIFNbeta) HCC Phase I HCC N/A

Abbreviations: SCCHN, squamous cell cancer of the head and neck; CRC, colorectal cancer; HCC, hepatocellular cancer; Refs, references.
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Table 2

Key interactions between tumors, the host immune system, and oncolytic viruses, resulting in enhanced anti-
tumor effects

Immune Effect Innate mechanism Adaptive mechanism

Decreased anti-tumor immunity

Improved lung cancer prognosis, related to NK
infiltration of tumor [C]*87

Tumor killing, associated with induction of anti-
tumor cytokines [P]55,88

Melanoma regression, following adoptive
transfer and tumoricidal effect of TS-CTL [C]89

OV stimulated anti-tumor immunity

Improved tumor killing, associated with
increased innate neutrophil infiltration & vascular
shutdown (VV, VSV) [P]61

Improved tumor killing, due to induction of intra-
tumoral anti-tumor cytokines (reovirus) [P]54

Enhanced release and presentation of tumor
associated antigens [P]91

Tumor regression in non-OV injected sites,
associated with ATI (HSV, reovirus, measles)
[C]14,23,29 [P]62

Tumor regression, associated with generation
of TS-CTL, and fall in immune-suppressive
cell levels (HSV) [C]29

Protection from tumor rechallenge, via TS-CTL
(reovirus, VSV) [P]47–49,55

Manipulation of anti-viral or anti-
tumor immunity

Increased tumor killing with enhanced OV
replication after attenuation of the host innate
response (HSV, VSV, VV & reovirus) [P]63–65,81

Tumor regression, associated with GMCSF
induced TS-CTL (VV, HSV) [C]23,29 [P]41,55

The complex interactions between tumor and host immune system, are further altered by the introduction of OV. Understanding and exploiting the
conditions that result in anti-tumor effects may help to maximise OV therapy.

Abbreviations: [C], clinical evidence; [P], preclinical evidence; NK, natural killer cells; TS-CTL, tumor specific cytotoxic T-lymphocyte;
GMCSF, granulocyte-macrophage colony stimulating factor.

*
References in superscript.
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Table 3

Interactions between tumor, the host immune system, and oncolytic viruses attenuating anti-cancer effects, or
increasing toxicity.

Immune Effect Innate mechanism Adaptive mechanism

Decreased anti-tumor immunity

↓Tumor cell Immunogenicity, due to ↓caspase
expression [P]*97

↓ Antitumor NK cell activity, due to sustained
NKG2D ligand expression [P]98

Tumor resistance to immune killing, via ↓death
receptors [P]94

Suppression of ATI, due to increased immune-
suppressive Treg numbers [C]68 [P]95

OV stimulated anti-viral immunity

OV inactivation with potential reduced
oncolysis due to:

• Interferon response (VSV) [P]80

• Complement mediated killing
(HSV) [P]99

OV inactivation with potential reduced oncolysis
due to:

• Induction of nAb response (VV, HSV,
reovirus, VSV) [C]21,22,25 [P]50–52

• Potent anti-viral, versus TS-CTL,
immune response (reovirus, VSV)
[P]48–49

Manipulation of anti-viral immunity
Decreased tumor killing following loss of
bystander effect, due to attenuation of innate
response (VSV) [P]61

Increased in vivo toxicity from OV, due to
ablation of nAb response (reovirus) [P]100

The complex interplay between tumor, host immunity and OV may be detrimental to anti-tumor therapy. Direct loss of immune control of tumors
may be observed, oncolytic therapy may be attenuated by the host immune response to OVs, and OV toxicity may be increased. Understanding and
avoiding these interactions may serve to enhance OV mediated therapy.

Abbreviations: [C], clinical evidence; [P], preclinical evidence; NKG2D, activating receptors for NK cells; Tregs, T regulatory cells.

*
References in superscript.
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Table 4

Synergy between oncolytic viruses and chemotherapy agents

Virus Agent (tumor model) Putative Mechanisms

HSV (G207) * Temozolamide (Glioma)†103

Taxane (docetaxel) (Prostate)75

Temozolamide induced increase in stress response genes, with
ICP-34 homology102,103

Mitotic slippage with ↑apoptosis through combined G2-M and G1
arrest75

Reovirus (Reolysin) Taxane (paclitaxel), cisplatin
gemcitabine, vinblastine (Lung)79

Cisplatin, paclitaxel (Melanoma)78

Prolonged mitotic arrest, with ↑apoptosis78,79

↑Caspase dependent apoptosis78

Vaccinia Virus Taxane (paclitaxel) (Ovary, Colorectal)76 Chemosensitisation by:

• Post infection, type I interferon release

• Post-lysis, High-mobility group protein B1 release76

Adeno Virus (Onyx-015) Taxane (paclitaxel), cisplatin, (Lung)‡101

Paclitaxel (Ovary)104

E1a induced cell cycle activation106

E1a sensitization to chemotherapy105

Mitotic slippage, and apoptosis104

Preclinical therapeutic synergy with OV is recognised across a range of tumor types and chemotherapies, and is ascribed when the Chou-Talalay
combination index (CI) <1, (see main text). Underlying putative mechanisms of synergy are outlined.

*
Examples of clinically assessed oncolytic viruses are given in brackets

†
references in superscript

‡
this study used an alternative method to CI, to attribute synergy.
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