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Abstract: Migraine is one of the commonest neurological disorders. Despite intensive research, its exact pathomechanism 
is still not fully understood and effective therapy is not always available. One of the key molecules involved in migraine  
is glutamate, whose receptors are found on the first-, second- and third-order trigeminal neurones and are also present in 
the migraine generators, including the dorsal raphe nucleus, nucleus raphe magnus, locus coeruleus and periaqueductal 
grey matter. Glutamate receptors are important in cortical spreading depression, which may be the electrophysiological 
correlate of migraine aura.  

The kynurenine metabolites, endogenous tryptophan metabolites, include kynurenic acid (KYNA), which exerts a  
blocking effect on ionotropic glutamate and �7-nicotinic acetylcholine receptors. Thus, KYNA and its derivatives may  
act as modulators at various levels of the pathomechanism of migraine. They can give rise to antinociceptive effects at the 
periphery, in the trigeminal nucleus caudalis, and may also act on migraine generators and cortical spreading depression. 
The experimental data suggest that KYNA or its derivatives might offer a novel approach to migraine therapy.  

Keywords: Cortical spreading depression, glutamate, kynurenic acid, kynurenine metabolites, migraine, migraine generators, 
trigeminal system.  

MIGRAINE 

 Migraine is one of the idiopathic headache syndromes 
[1], and one of the commonest neurological disorders [2]. 
Despite intensive research, the exact pathomechanism of 
migraine is still not fully understood and complete preven-
tive and attack therapy can not always be achieved. Activa-
tion of the peripheral and central arms of the trigeminal sys-
tem (TS) are known to be crucial in the attack [3]. This acti-
vation may be related to cortical spreading depression (CSD) 
or to the activity of distinct areas of the brain stem, known as 
migraine generators [4, 5]. 

 The fundamental mechanism of the migraine attack in-
volves activation of the trigeminovascular system. Through a 
trigger mechanism, vasodilatation of the dural and pial blood 
vessels occurs, which can stimulate the perivascular trigemi-
nal primary nerve endings. The activated nociceptors release 
neuropeptides at the periphery, including calcitonin gene-
related peptide (CGRP), substance P and neurokinin A [6]; 
the levels of CGRP and substance P are elevated during mi-
graine attacks in humans and in animal migraine models [7]. 
The released neuropeptides cause sterile neurogenic inflam-
mation in the dura mater, in the course of which the blood 
vessels further dilate, plasma protein extravasation occurs, 
the mast cells degranulate and release histamine, and poly-
morphonuclear leukocytes appear [8]. These reactions can  
be observed in animal models of migraine too [9, 10]. The  
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released inflammatory substances stimulate the trigeminal 
first-order neurones, leading to peripheral sensitization [11]. 
This usually evolves within 30 minutes, and gives rise to a 
throbbing head pain that is aggravated by activities that in-
crease the intracranial pressure, including physical exercise, 
bending down, coughing and sneezing [12].  

 The cell bodies of the trigeminal pseudounipolar first-
order neurones are located in the trigeminal ganglion (TG). 
The peripheral projections of these neurones partially inner-
vate the intracranial pain structures, including the dural and 
pial blood vessels, the large blood vessels of the brain, the 
dural sinuses and the dura and pia mater, while the central 
projections end on the second-order neurones of the trigemi-
nal nucleus caudalis (TNC), located in the medulla and the 
upper portion of the spinal cord. The activation of these first-
order neurones leads to an increase in the glutamate level in 
the TNC [13] and, presumably via the N-methyl-D-asparate 
(NMDA) glutamate receptors [14], to activation of the sec-
ond-order neurones [15]. Besides the NMDA receptors, all 
the other glutamate receptors are present in the TNC [16], 
and therefore they can also contribute to this process, which 
is confirmed by the fact that their antagonists are able to in-
hibit the increase in the number of c-Fos-immunoreactive 
(IR) neurones [17] and the evoked potential responses [18] in 
the TNC. Furthermore, the activation of second-order neu-
rones can be modulated through �7-nicotinic acetylcholine 
(nACh) receptors, which act presynaptically on the transmis-
sion of nociceptive information to the central nervous system 
[19, 20].  

 Besides peripheral sensitization, the persistent activation 
of second-order trigeminal neurones evolves to central sensi-
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tization in migraineurs, with the appearance of cutaneous 
allodynia of the scalp and face [15, 21], when non-
nociceptive stimuli produce pain. The central sensitization 
comprises an exaggerated sensory drive, mediated in part by 
glutamate receptor activation, since increases in extracellular 
glutamate are correlated with changes in sensory thresholds 
on the face of the rat [13]. Moreover, the activated second-
order trigeminal neurones have functional connections to 
other important brain stem centres, such as the nucleus trac-
tus solitarius, which can result in nausea and vomiting. Fur-
ther activation and sensitization of the TS can provoke the 
sensitization of the third-order neurones from the thalamus to 
the cortex, which leads to other symptoms of migraine, in-
cluding photophobia, phonophobia, osmophobia and allo-
dynia of the extremities [21]. 

 Migraine attacks are casually linked with the activation 
of distinct brain stem nuclei, known as migraine generators, 
which include the dorsal raphe nucleus (DRN), the nucleus 
raphe magnus (NRM), the locus coeruleus (LC) and the 
periaqueductal grey matter (PAG) [5, 22, 23], which are 
components of the ascending and descending pain pathways. 
The importance of these areas in migraine is underlined by 
the fact that migraine attacks could be induced in human 
subjects by stimulation of the PAG with an implanted elec-
trode [24]. A possible explanation is that the above-described 
areas may be dysfunctional [25] and perhaps lose their natu-
ral antinociceptive function, resulting in headache. Gluta-
mate appears at this level too since its antagonist can de-
crease the activity of the NRM [26], and its level is increased 
after stimulation of the sciatic nerve and mechanical foot 
shock in the LC [27] or after neuronal stimulation in the 
PAG [28].  

 Another potential trigger mechanism of migraine in-
volves CSD. This is a slow continuous spread of excitation, 
followed by depression [29], and is accompanied by slowly-
spreading cortical hypoperfusion [30]. It is widely accepted 
that CSD is the basis of migraine aura [31], which includes 
various transient neurologic symptoms, the most common of 
which are visual symptoms. In the process of CSD, activa-
tion of the neuronal apical dendrites [32] and astrocytes [33] 
seems to be important. The latter can link neuronal and vas-
cular events [34]. Although it is not fully understood how 
CSD can trigger migraine attacks, under certain experimental 
conditions in animal models, CSD is able to activate the tri-
geminovascular afferents [4], increase the persistent blood 
flow and cause plasma protein extravasation in the dura ma-
ter [35] and hence to initiate the above-described sensitiza-
tion procedures in the TS. Another connection between CSD 
and trigeminal activation may be glutamate and its receptors 
[36], which play important roles in the generation and 
propagation of CSD [37].  

ROLE OF GLUTAMATE IN MIGRAINE 

 Glutamate is known to play an important role in primary 
afferent neurotransmission and nociception [38], and numer-
ous human and animal studies suggest that glutamate is addi-
tionally crucial in the pathomechanism of migraine [39]. 
Measurements of the level of glutamate in the plasma and 
platelets in migraine patients led to conflicting results: there 
have been reports of elevated basal glutamate levels in the 

plasma and platelets of migraineurs, which are further en-
hanced during the attacks [40, 41], while other studies have 
described lower or similar levels to those in control subjects 
[41, 42]. Elevated levels of glutamate in the cerebrospinal 
fluid have been measured during attacks in migraineurs, 
which favours the hypothesis of persistent neuronal hyperex-
citability in the disorder [42]. The glutamate receptor an-
tagonists can abolish the aura in patients with familial 
hemiplegic migraine [43] and headache [44]. Animal and 
human localization studies have revealed glutamate receptors 
in the TS [16, 45, 46, 47]. Irritation of the trigeminal nerve 
results in an increased glutamate level in the TNC [13]. L-
Glutamate and NMDA can excite the trigeminothalamic no-
ciceptive neurones [14, 48], and NMDA receptor activation 
mediates nociceptive transmission in the TNC [14]. The ad-
ministration of glutamate receptor antagonists mitigated the 
activation of second-order neurones, i.e. the increase in the 
number of c-Fos-IR neurones [17, 49], the local blood flow 
changes [50] and the evoked potential responses [18] in the 
TNC and the dural plasma protein extravasation [51]. Fur-
thermore, the NMDA receptors in the thalamus contribute to 
the development and maintenance of inflammation-induced 
hyperalgesia [52]. 

 Glutamate and its receptors are present in the migraine 
generators too, and seem to be important from the aspect of 
nociception. For example, the broad-spectrum excitatory 
amino acid (EAA) antagonist kynurenic acid (KYNA) can 
decrease the effect of low-intensity electrical stimulation of 
the nucleus cuneiformis in the NRM [26], and can reduce the 
response of the serotoninergic neurones in the DRN [53, 54, 
55, 56]. Moreover, electrical stimulation of the sciatic nerve 
and mechanical foot shock enhanced the rates of glutamate 
release from the LC [27]. The excitatory effect on the LC of 
glutamate released from the terminals of the nucleus paragi-
gantocellularis, the main source of glutamate in the LC [57], 
was inhibited by glutamate receptor antagonists [57, 58]. 
Finally, in the PAG, the glutamate level was increased after 
neuronal stimulation [28]. These results suggest that gluta-
mate and its receptors may well be important in the trigger-
ing of migraine attacks too, and not merely during headache.  
 In the generation of CSD, a number of different ion 
pumps and channels are involved [59], among which NMDA 
receptors and therefore glutamate seem to play crucial roles: 
(i) NMDA receptor antagonists can inhibit CSD [60], (ii) 
glutamate is released during CSD under both in vivo and in
vitro conditions [61, 62] and (iii) the administration of glu-
tamate and NMDA can evoke CSD [36, 37]. One rare auto-
somally inherited subtype of migraine with aura is familial 
hemiplegic migraine. In patients with this condition, CSD 
may be triggered more easily presumably because the muta-
tions involved increase the synaptic glutamate level [63].  
 Overall, it seems that glutamate is one of the key mole-
cules in migraine at many levels of the nervous system. Its 
modulation may be an important means of understanding the 
pathomechanisms underlying the attack and it may be of 
potential therapeutic value in migraine. 

KYNURENINE METABOLITES 

 The oxidative ring opening of tryptophan (TRP) leads to 
L-kynurenine (L-KYN) and the kynurenine pathway (KP) 
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(Fig. 1). The class of compounds known as kynurenine me-
tabolites comprises the totality of the metabolites of the KP, 
the central route [64] responsible for around 95% of the TRP 
metabolism [65]. It takes place in the macrophages and mi-
croglial cells, and in part in the astrocytes [66, 67], and gives 
rise to the formation of nicotinamide adenine dinucleotide 
(NAD) and nicotinamide adenine dinucleotide phosphate 
(NADP) [68].  
 The basal compound of the KP is L-KYN, which  
can cross the blood–brain barrier with the aid of a neutral 
amino acid carrier [69]. The metabolites of the KP include  
3-hydroxykynurenine (3-HK), anthranilic acid (ANA), 3-
hydroxyanthranilic acid (3-HA), xanthurenic acid (XA),  
quinolinic acid (QUIN) and KYNA, all with neuroactive 
properties [70].  
 3-HK and 3-HA, generated from L-KYN, can cause neu-
ronal damage, because they can elevate the oxidative stress 
level by production of free radicals [71, 72] or can provoke 
primary or secondary excitotoxicity [73, 74]. 3-HK is present 
in nanomolar concentrations in the mammalian brain, though 
its level can rise to the micromolar range in several patho-

logical conditions [75]. The content of 3-HA, synthetized 
from 3-HK and/or ANA, likewise increases in various neuro-
logical disorders [76]. 3-HK and 3-HA have been demon-
strated to cause the death of cultured neuronal cells [77, 78], 
the cortical and striatal neurones proving the most vulnerable 
to the toxic effects of 3-HK [78]. Consequently, these com-
pounds have neurotoxic effects [74]. 

 Transamination of 3-HK leads to XA, this generally be-
ing considered part of a detoxification process that reduces 
the concentration of 3-HK [79]. The role of XA in mammals 
is not well defined. Under physiological conditions, XA is 
present in the rat brain at a concentration of about 1 �M; an 
increase is observed in its level in the urine in an animal 
model of depression [80]. Administration of high doses of 
XA to rats seems to induce a degree of sedation and analge-
sia [81]. XA undergoes vesicular accumulation, is trans-
ported by neuronal cells, is present in neuronal circuits and is 
released via a calcium-dependent process in response to 
stimulation, these features strongly indicating a physiological 
role for XA in synaptic signalling [79].  

Fig. (1). The kynurenine pathway.
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 QUIN, from which NAD and NADP are formed [68], 
resides in the cerebrospinal fluid in nanomolar or low mi-
cromolar concentrations [82]. When administered intrastri-
atally, it causes a significant destruction of neurones [73]; its 
excitotoxic effect is presumably exerted through agonism of 
the NMDA receptor [83] or stimulation of the release and 
inhibition of the uptake of endogenous glutamate [84]. It also 
induces lipid peroxidation [85, 86] and the production of 
reactive oxygen species [86]. Changes in the absolute or 
relative concentration of QUIN play an important role in 
certain neurodegenerative disorders [75, 87, 88].  

 In contrast with QUIN, KYNA (4-hydroxyquinoline-2-
carboxylic acid) exerts a neuroprotective effect: it is able to 
prevent the neuronal loss in excitotoxic, ischaemia-induced 
and neuronal injuries [89, 90]. It is synthesized directly from 
L-KYN in the astrocytes and neurones [67, 91] enzymati-
cally by the action of kynurenine aminotransferases (KATs) 
[92, 93], mitochondrial aspartate aminotransferase [94] and 
hemoperoxidases, or non-enzymatically by reactive oxygen 
species (ROS) [95]. Beyond this route KYNA can be pro-
duced from TRP on an additional pathway by tryptophan 
aminotransferase and ROS [96, 97]. Similarly to that of 
QUIN, the concentration of KYNA in the human brain is in 
the nanomolar range [98], which changes in pathological 
circumstances, including neurological disorders. The level of 
KYNA can either decrease or increase in various neurolo- 
gical disorders [75, 87, 99]. KYNA is one of the few  
known endogenous inhibitors of the EAA receptors, includ-
ing the �-amino-3-hydroxy-5-methyl-4-isoxazole propionic 
acid (AMPA), NMDA and kainate (KA) receptor types at 
higher concentrations [100, 101, 102]. At around 7.9 �M it 
can block the NMDA receptor by attaching to its glycine-
binding site [101]. As a consequence of its binding to the 
glutamate-binding site, KYNA may influence the receptors 
via two mechanisms: in nanomolar to micromolar concentra-
tions, it facilitates the AMPA receptors, whereas at high con-
centrations, it inhibits the glutamate receptors [103]. It was 
demonstrated by Rozsa et al. [104] that KYNA in micromo-
lar concentrations exerts a neuroinhibitory effect, while in 
nanomolar concentrations it behaves as a facilitator in the rat 
hippocampus. KYNA may therefore play an important role 
in the regulation (inhibition/excitation) in the neuronal net-
work. The normal concentration of KYNA is too low to in-
fluence the EAA receptors, and the published data indicate 
that, even under pathological conditions, the concentration 
elevation will not necessarily allow KYNA to influence the 
co-agonist site of the NMDA receptor [105]. It has also been 
reported to act as a non-competitive blocker of the �7-nACh 
receptor [106]. This action, which may play a part in the 
ability of KYNA to generate a deficit in the sensory system 
[107, 108], has been suggested to be mediated by its binding 
to sites located in the N-terminal domain of the �7-nACh 
receptor subunit [109]. Recent results support the view that 
the KYNA-sensitive presynaptic �7-nACh receptors inhibit 
glutamate release at low concentration (30–100 nM) [105, 
110]. Thus, the nACh receptors may take part in the inhibi-
tory effects of KYNA at low concentration. KYNA could 
potentially have therapeutic effects in neurological disorders 
[75, 111, 112] via the above-described receptor inhibitory 
effects, but its use as a neuroprotective agent is rather re-
stricted because it has only a very limited ability to cross the 

blood–brain barrier [69]. The experimental data suggest that 
peripheral treatment with L-KYN dose-dependently in-
creases the concentration of the neuroprotective KYNA in 
the brain, offering an opportunity for the treatment of stroke 
and neurodegenerative disorders [88, 113, 114, 115].  

 Various studies have identified nACh receptors and 
subunits in the nociceptors of the TG at the messenger ribo-
nucleic acid (mRNA) and protein levels [116]. The �3ß4 and 
�4ß2 subtypes of the nACh receptor can presumably be 
found on the trigeminal free nerve endings [117]. Other stud-
ies have reported that the �7-nACh receptor is likely to be 
present in the TG [116]. These receptors can play a role in 
the tonic inhibition of spinal pain, which can modulate spinal 
pain perception [118] and probably reduce neurogenic facial 
vasodilatation, presumably as a result of the decreased re-
lease of CGRP from the trigeminal afferent neurones [119].  

KYNURENINE METABOLITES AND MIGRAINE 

1. Effects of Kynurenine Metabolites on First-Order 
Neurones 

 It is presumably due in part to the existence of various 
peripheral mechanism that TRP and some of its metabolites, 
including KYN, KYNA, QUIN, ANA and XA, administered 
intraperitoneally, can induce analgesia in both the tail- 
flick and the hot-plate tests, the degree and duration of  
analgesia varying, depending on the drug, the dose and the 
test [81] (Fig. 2). The derivatives of ANA, including N-(3,4-
dimethoxycinnamoyl)anthranilic acid (tranilast), N-(2,3-
xylyl)anthranilic acid (CI-473, mefenamic acid) and the  
sodium salt of N-(2,6-dichloro-m-tolyl)anthranilic acid  
(sodium meclofenamate), probably act at the periphery 
[120], exerting both anti-inflammatory and analgesic proper-
ties, with several mechanisms of action [121, 122, 123]. 3-
HA also has anti-inflammatory effects [124].  

 Numerous data are available in connection with the anti-
nociceptive peripheral effect of KYNA. The intraperitoneal 
injection of rats with KYNA decreased the pain sensitivity in 
both the tail-flick and the hot-plate tests [125]. Topical intra-
articularly administered KYNA, without signs of systemic 
side-effects, dose-dependently decreased mechanical allo-
dynia, which manifested 30 min after the injection and the 
highest dose (400 �g) produced prolonged antinociception 
and almost total relief of allodynia [126]. A KYNA deriva-
tive, the 5,7-dichlorokynurenic acid (5,7-DCK), dose-
dependently inhibited the development of the nocifensive 
behaviour evoked by formalin-induced tissue injury and in-
flammation, and reversed cold allodynia in the chronic con-
striction injury model, and tactile allodynia in animals sub-
jected to spinal nerve ligation [127]. In one animal model of 
trigeminovascular activation after electrical stimulation of 
the TG, the KAT expression of the dural Schwann cells, 
mast cells and macrophages was decreased, presumably as a 
result of release from these cells; at the same time, the con-
tent of nitric oxide synthase (NOS)-IR nerve fibres in the 
dura mater increased, suggesting the release of nitric oxide 
(NO) at the periphery [128]. In another animal model of tri-
geminal activation, administration of the NO donor nitro-
glycerine (NTG), the decrease in the area covered by CGRP-
IR fibres was prevented by L-KYN in combination with pro-
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benecid (PROB) and a KYNA derivative [129], the most 
likely explanation being that these compounds blocked the 
activation of first-order neurones and the consecutive release 
of CGRP from the nerve endings (Fig. 3). These peripheral 
effects of KYNA can materialize on glutamate receptors 
localized at the periphery, including the dorsal root and tri-
geminal ganglion [130, 131], primary sensory afferents [132, 
133], postganglionic sympathetic efferents [134], the tem-
poromandibular joint [135] and Schwann cells [136] or on 
�7-nACh receptors located at the periphery, e.g. the trigemi-
nal ganglion [116]. The G-protein-coupled receptor-35 
(GPR35), recently identified as a receptor for KYNA [137], 
is expressed within nociceptive pathways, including the 
DRG and spinal cord, at the mRNA and protein levels [138, 
139] and is negatively coupled to adenylate cyclase - cyclic 
adenosine monophosphate (cAMP) signalling in the DRG 
neurons, which can modulate nociceptive signalling [139]. 
KYNA proved able to inhibit the forskolin-stimulated forma-
tion of cAMP from cultured rat DRG sensory neurones via 
the GPR35 receptors and can therefore also modulate noci-
ceptive signalling at the periphery [139].  

2. Effects of Kynurenine Metabolites on Second-Order 
Neurones 

 Besides the peripheral effects of the kynurenine metabo-
lites, several studies have confirmed that they can also act on 
the second-order neurones. 

 In behavioural examinations the intrathecal (i.t.) injection 
of KYNA and 7-chlorokynurenic acid (7-CK) produced 
dose-dependent and reversible analgesic effects in the  
hot-plate, tail-flick and formalin tests of nociception in  
mice [140] and in rats [141, 142]. Moreover, the i.t. admini-
stration of KYNA and 7-CK suppressed hyperalgesia dose-

dependently in rats injected with carrageenan [125, 143], 
treated with i.t. strychnine [144] or after unilateral partial 
ligation of the sciatic nerve [145]. In mice treated i.t. with an 
NMDA receptor agonist, the i.t. co-administered 7-CK inhib-
ited the nociceptive behaviour dose-dependently [146]. Fi-
nally, i.t. administration of 5,7-DCK dose-dependently re-
versed the hyperalgesia in hyperalgesic Mg-deficient rats 
[147]. However, the injection of 7-CK into the rostral ante-
rior cingulate cortex did not affect formalin-induced acute 
nociceptive behaviour or electric foot shock-induced condi-
tioned place avoidance [148] and the i.t. infusion of 5,7-
DCK failed to block the glycine-induced increased pain re-
sponse in neuropathic rats made by unilateral partial ligation 
of the sciatic nerve [149]. These results suggest that the  
central action of kynurenine metabolites in modulating pain 
perception does not extend to all brain areas that participate 
in nociception and is dependent on the receptors that take 
part in pain transmission.  

 There is also evidence concerning the antinociceptive 
effects of kynurenine metabolites at the spinal cord level 
(Fig. 2). The iontophoric administration of KYNA into the 
spinal cord of cats, for example, markedly reduced both the 
cutaneous and the muscular nociceptive responses of a wide 
dynamic range neurones [150] and the nociceptive re-
sponses, irregular spontaneous discharges and C-afferent-
induced responses of dorsal horn neurones facilitated by the 
iontophoretic injection of EAA receptor agonists [151]. Fur-
ther, the i.t. administration of 7-CK reduced the frequency-
dependent potentiation (wind-up) to repeated C-fibre stimu-
lation and the related post-discharges [152], but not the ini-
tial responses [153] in the nociceptive neurones located in 
the dorsal horn of rats. Additionally, single-unit recordings 
of the responses of dorsal horn neurones to C-, A�- and A�-

Fig. (2). Effects of kynurenine metabolites on the structures of nervous system, which are important in the pathomechanism of  
migraine and pain. 3-HA: 3-hydroxyanthranilic acid, 5,7-DCK: 5,7-dichlorokynurenic acid, 7-CK: 7-chlorokynurenic acid, ANA:  
anthranilic acid, CSD: cortical spreading depression, DRG: dorsal root ganglion, DRN: dorsal raphe nucleus, KYNA: kynurenic acid,  
LC: locus coeruleus, L-KYN: L-kynurenine, NRM: nucleus raphe magnus, PAG: periaqueductal grey matter, QUIN: quinolinic acid, TG:
trigeminal ganglion, TNC: trigeminal nucleus caudalis, TRP: tryptophan, XA: xanthurenic acid; �: increased concentration. 
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fibre stimulation and the wind-up and post-discharge  
responses of the same cells facilitated by bicuculline were 
inhibited by 7-CK in intact anaesthetized rats [154]. KYNA 
pre-administered i.t. significantly reduced the total number 
of c-Fos-IR neurones increased by carrageenan injection into 
the rat paw, with a more apparent reduction in laminae I-II 
and IV-V [125]. In vitro experiments on spinal cord also 
suggest the antinociceptive effect of KYNA. For example, it 
blocked the excitation of high-threshold mechanoreceptive 
units by either cutaneous nerve volleys or mechanical stimu-
lation of the skin, suppressed peripherally evoked responses 
to innocuous mechanical stimuli in the hamster [155] and 
blocked the responses to non-nociceptive and nociceptive 
stimulation of the skin of the leg modulated by motoneurone 
depolarizations and changes in extracellular potassium con-
centration in the frog [156].  

 The second-order nociceptive neurones of the TNC play 
an important role in the pathomechanism of migraine: the i.t. 
administration of 7-CK significantly reduced the neuronal 

mechanoreceptive field size and spontaneous activity in-
creased by neonatal capsaicin treatment in adult rats [157], 
and intracisternally administered KYNA effectively blocked 
capsaicin-induced eye wipings [158] (Fig. 3.). After systemic 
treatment with NTG, a well-known activator of the second-
order trigeminal neurones [159], L-KYN combined with 
PROB attenuated the increase in the number of c-Fos-IR neu-
rones in the TNC [160]. Similarly, at the same location, in the 
same experimental model, pretreatment with the L-
KYN+PROB combination and a KYNA derivative, 2-(2-N,N-
dimethylaminoethylamine-1-carbonyl)-1H-quinolin-4-one hy-
drochloride, mitigated the increase in the number of neuronal 
NOS- and calmodulin-dependent protein kinase II alpha-IR 
cells [129, 161]. Since both enzymes may play important roles 
in trigeminal central sensitization [162, 163], KYNA and its 
derivatives may exert modulatory effects on this phenomenon. 
KYNA alone failed to modulate c-Fos activation in the TNC in 
the same model [164], probably because of its poor ability to 
cross the blood–brain barrier, in marked contrast with its pre-

Fig. (3). Effects of kynurenine metabolites on the nervous structures involved in the pathogenesis of migraine. 7-CK: 7-
chlorokynurenic acid, CSD: cortical spreading depression, DRN: dorsal raphe nucleus, IV: fourth ventricle, KYNA: kynurenic acid, LC: 
locus coeruleus, L-KYN: L-kynurenine, NRM: nucleus raphe magnus, PAG: periaqueductal grey matter, QUIN: quinolinic acid, TG: tri-
geminal ganglion, TNC: trigeminal nucleus caudalis; �: increased concentration. 
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cursor L-KYN and its derivatives, which cross with ease. In 
another model of migraine, after electrical stimulation of the 
trigeminal ganglion, pretreatment with i.p. L-KYN combined 
with PROB mitigated the increase in the content of c-Fos-IR 
neurones in the rat TNC [165]. Thus, KYNA and its analogues 
are able to modulate second-order nociceptors in the TS. The 
above-described results suggest that kynurenine metabolites 
may have novel perspectives in the treatment of pain and  
migraine. 

3. Effects of Kynurenine Metabolites on Migraine  
Generators 

 There is abundant evidence to indicate that the kynurenine 
metabolites are able to influence the functioning of migraine 
generators located at the brain stem level (Fig. 3). 

 KYNA reduced the responses of serotoninergic neurones 
of the DRN that were evoked by phasic auditory stimuli [54], 
by stimulation of the lateral habenula [53], by local electrical 
stimulation of afferent terminals [55] and by substance P 
microinfusion [56]. KYNA can also abolish the activation of 
neurones in the NRM excited by glutamate administration 
[166] and by low-intensity electrical stimulation of the mes-
encephalic nucleus cuneiformis [26], and its injection into 
the PAG can modulate the excitatory and inhibitory effects 
of electrical and chemical stimulation of the medial preoptic 
nucleus of the hypothalamus on the NRM [167]. The 
kynurenine metabolites can modulate the LC too: for exam-
ple, intracerebroventricular administration of QUIN in-
creased the unit discharge of LC neurones [168]. However, 
KYNA was able to inhibit the activation of central noradren-
ergic neurones in the LC evoked by noxious stimulation such 
as electrical stimulation of the rat hindpaw [57], non-noxious 
and noxious cutaneous sensory stimuli [158], electrical 
stimulation of a rear footpad [169] and sciatic nerve stimula-
tion [58]; noxious effect, i.e. sciatic nerve stimulation pro-
vokes activation of the catecholamine metabolism within the 
LC cells, which is decreased by KYNA [170]. The robust 
activation of the LC neurones by the direct application of 
KA, NMDA, AMPA or quisqualate was reduced or com-
pletely antagonized by KYNA [58, 171, 172]. KYNA was 
also able to inhibit the activation of the LC neurones evoked 
by stimulation of nucleus paragigantocellularis [57], which 
causes increased levels of EAAs in the LC [57, 58]. Fur-
thermore, 7-CK prevented nociceptive behaviour (tail-flick) 
and pain-related changes in neuronal activity induced in the 
rostral ventromedial medulla by glycine or D-serine admini-
stration into the ventrolateral PAG [173]; the co-
administration of KYNA with morphine in the same area 
enhanced the acute antinociceptive effects of morphine 
[174]. These results demonstrate that the kynurenine metabo-
lites, are particularly KYNA and its derivatives, can give rise 
to antinociceptive effects through their influence on higher 
brain areas.  

4. Effects of Kynurenine Metabolites on CSD 

 There are a number of experimental data which suggest 
that glutamate plays an important role in the phenomenon of 
CSD. The glutamate level was found to be elevated during 
CSD [62, 61], glutamate or NMDA was able to trigger CSD 
[36, 37], and the NMDA, AMPA and KA receptor binding 

sites were increased 1 hour after the induction of CSD in rat 
neocortical tissues, which may be responsible for the delayed 
excitatory phase after it [175]. On the other hand, NMDA 
receptor antagonists, including the non-competitive channel 
blocking antagonists and competitive glutamate-recognition 
site antagonists, can inhibit the initiation, propagation, am-
plitude, frequency and susceptibility of CSD, whereas the 
non-NMDA receptor antagonists can not [60]. Those of the 
NMDA receptor antagonists that act on the NR2-B subunit 
may selectively inhibit the initiation and propagation of CSD 
[176]. These data strongly suggest that only the NMDA re-
ceptors play a role in CSD. This is further supported by the 
results of studies, which examined the effects of Mg2+ (an 
NMDA receptor channel blocker), and found that it can se-
lectively inhibit glutamate-induced spreading depression 
(SD) [177], and that the Mg2+ depletion, which releases the 
voltage-dependent block of the NMDA receptor channel, 
induces CSD [178].  

 Few studies have been made of the link between CSD 
and the kynurenine metabolites, and the available results are 
conflicting (Fig. 3). It has been established that unilateral, 
consecutive CSDs result in ipsilateral increases in KYNA 
levels in the frontal, parietal and occipital cortices [179]. 
Some studies have indicated that KYNA can inhibit SD un-
der certain conditions in the turtle cerebellum [37] and in the 
adult rat neocortex [180], while others were not able to de-
tect such an effect in the CA1 neurones of the rat hippocam-
pus [181] or in neocortical brain slices [182]. Interestingly, 
QUIN concentration-dependently suppressed the elicitation 
of CSD in the cerebral cortex of the rat, presumably because 
of NMDA receptor desensitization [183, 184]. Since a wide 
range of NMDA receptor antagonists are able to inhibit elec-
trical CSD, it is highly likely that KYNA can also do this. In 
experiments where KYNA was ineffective, ischaemic SD 
was elicited by O2/glucose deprivation, in which glutamate 
probably does not play a role, whereas it seems to be crucial 
in potassium-triggered SD. Consequently, KYNA and its 
derivatives may be of promise in the therapy against mi-
graine aura, where important parts are played by the ion 
pumps and hence the ion currents.  

CONCLUSIONS 

 Overall, the involvement of KP metabolites (particularly 
KYNA and its derivatives) at various sites of nociception 
and in migraine is of appreciable importance. The evidence 
points to the ability of these compounds to modulate mi-
graine at several levels of the related neuronal areas, includ-
ing the primary nociceptive afferents, the neurones in the 
TNC, and the migraine generators, and presumably at the 
CSD level too. KYNA and its derivatives may therefore of-
fer new opportunities in the therapy of migraine and other 
diseases related to trigeminal nociception.  
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