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Abstract
The solution to the problem of plane wave and point source scattering by two concentric fluid
spheres is derived. The effect of differences in sound speed, density, and absorption coefficient is
taken into account. The scattered field is then found in the limit as the outer sphere becomes an
infinitely thin shell and compared to the solution for a single fluid sphere for verification. A
simulation is then performed using the concentric fluid sphere solution as an approximation to the
human head and compared to the solution of a single fluid sphere with the properties of either
bone or water. The solutions were found to be similar outside of the spheres but differ
significantly inside the spheres.

INTRODUCTION
The concentric sphere geometry can be used to approximate many applications. For
example, scattering from single cells could be modeled with the concentric sphere model
with the inner sphere having the properties of the nucleus and the outer sphere the properties
of the cytoplasm.1 Ultrasound contrast agents are composed of microbubbles enclosed in a
polymer, protein, or lipid shell which could also be analyzed using the concentric sphere
model.2 The finite element method is also currently being applied to model sound wave
propagation into the human head.3 It is important to validate the model with geometries that
have analytical solutions to test the accuracy of the model. One such geometry is that of two
concentric fluid spheres, where the outer sphere has the bulk fluid properties of bone
(neglecting the presence of shear waves) and the inner sphere has the properties of water.

Past publications have dealt with situations similar to this but are limited in their application.
For example, Goodman and Stern4 derived the solution to plane wave scattering from an
elastic shell in a fluid medium but the medium and inner sphere were assumed to have
identical properties. Kakogiannos’ and Roumeliotis’5 solution is limited to spheres whose
radii are small relative to a wavelength. The present work combines Sinai and Waag’s
solution to plane wave scattering from concentric fluid cylinders6 and Anderson’s solution
to plane wave scattering from a single fluid sphere7 to derive the solution to plane wave
scattering from two concentric fluid spheres. These solutions are also extended to include
attenuation and point sources.

Other publications have solved more general problems involving concentric spheres. For
example, Gerard and co-workers8,9 used resonant scattering theory as a framework to derive
solutions to scattering by spherical elastic layers. Martin10 derived the solution to concentric
fluid spheres when the properties of the outer sphere are specific functions of the distance
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from the center of the sphere. In both cases, the solution to scattering from two concentric
fluid spheres can be synthesized but require significant manipulation of the provided results.
The contribution of the present work is to provide simple expressions that can be readily
used to calculate fields scattered by concentric fluid spheres when shear waves can be
neglected.

II. ABBREVIATIONS
The following abbreviations are used in this paper.

Pm=Legendre polynomial

jm=spherical Bessel function

III. THEORY
For computational simplicity, the spheres are placed at the origin of a spherical coordinate
system (r, θ, ϕ), as shown in Fig. 1. The source is either a plane wave propagated in the −z
direction or a point source located on the positive z-axis at a distance R from the origin
which eliminates any dependence on ϕ.

The pressure in the infinite medium p0 is the sum of the incident pressure p0i and the
scattered pressure p0r.11

(1)

(2)

(3)

where μ=cos(θ) and ℒm is given by12

(4)

The pressure in the outer sphere p1 is the sum of a standing wave, p1r, and a traveling wave,
p1i.

(5)

(6)
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(7)

The pressure in the inner sphere can be written as

(8)

Applying the boundary conditions of continuity of pressure and radial velocity at the two
interfaces, a system of four equations with four unknowns results. This system can be
written in the matrix form:

(9)

where k̃n is the complex wave number, k̃n=kn+iαn, and

(10)

The coefficients can then be solved for analytically using Cramer’s rule or numerically using
LU decomposition.

Often, only the scattered pressure needs to be computed so the values of Bm, Cm, and Dm do
not need to be calculated. One can show that by direct manipulation of Eq. (9), the value of
Am is
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(11)

where

(12)

and

(13)

IV. VERIFICATION
One method of verifying the solution is to take the limit as the radius of the inner sphere, r2,
approaches the radius of the outer sphere, r1. It can be shown that the coefficient for the
scattered pressure in the infinite medium, Am, takes on the following value as r1→r2:

(14)

If loss is no longer considered, k̃n becomes k, and Zn becomes ρncn. Making these
substitutions,
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(15)

which is identical to Anderson’s solution for the single fluid sphere7 after some algebraic
manipulation.

V. SIMULATION
Three simulations were performed to compare the solution found using the concentric fluid
sphere model to the single fluid sphere model using a frequency of 12.5 kHz. The first
simulation approximated the human head as an outer sphere of bone (r1=75 mm, ρ1=2000
kg/m3, and c1=2900 m/s) surrounding an inner sphere of water (r2=65 mm, ρ2=1000 kg/m3,
and c2=1500 m/s) placed in an infinite medium of air (ρ0=1.21 kg/m3 and c0=343 m/s). The
second simulation used Anderson’s single fluid sphere solution to simulate a fluid sphere of
bone (a=75 mm, ρ′=2000 kg/m3, and c′=2900 m/s) placed in an infinite medium of air
(ρ=1.21 kg/m3 and c=343 m/s). The third simulation used Anderson’s single fluid sphere
solution to simulate a fluid sphere of water (a=75 mm, ρ′=1000 kg/m3, and c′=1500 m/s)
placed in an infinite medium of air (ρ=1.21 kg/m3 and c=343 m/s). The magnitude of the
pressure along the z-axis is plotted in Fig. 2.

As can be seen in Fig. 2, the pressure outside of the spheres is nearly identical for all three
solutions. This is expected because for all cases the impedance mismatch between the
scatterer and the background medium is very large, and therefore the scattered field
approaches the limiting rigid sphere case. Inside of the spheres, however, the three solutions
differ significantly.

VI. CONCLUSIONS
The solution to plane wave and point source scattering from two concentric fluid spheres
was derived. The effects of differences in speed of sound, density, and attenuation
coefficient were included. The coefficient required to solve for the scattered pressure was
explicitly computed for cases only requiring the scattered pressure. The limit as the outer
sphere becomes a thin shell is found and found to agree with Anderson’s solution to a single
fluid sphere. Finally, the solution is found to a concentric sphere approximation of the
human head and compared to approximations of the human head as a single fluid sphere. It
was found that outside of the scatterer, the solutions are similar but differ significantly inside
the scatterer.
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FIG. 1.
Physical properties. Infinite medium with density ρ0, sound speed c0, and absorption
coefficient α0. The outer sphere has density ρ1, sound speed c1, absorption coefficient α1,
and radius r1. The inner sphere has density ρ2, sound speed c2, absorption coefficient α2, and
radius r2. The spheres are centered at the origin of a spherical coordinate system (r,θ,ϕ),
where r is the radial coordinate, θ is the azimuthal coordinate, and ϕ is the polar coordinate.
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FIG. 2.
(Color online) Pressure magnitude along the z-axis for concentric fluid sphere and single
fluid sphere solutions.
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