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Abstract
A new approach of recognizing vowels from articulatory position time-series data was proposed
and tested in this paper. This approach directly mapped articulatory position time-series data to
vowels without extracting articulatory features such as mouth opening. The input time-series data
were time-normalized and sampled to fixed-width vectors of articulatory positions. Three
commonly used classifiers, Neural Network, Support Vector Machine and Decision Tree were
used and their performances were compared on the vectors. A single speaker dataset of eight
major English vowels acquired using Electromagnetic Articulograph (EMA) AG500 was used.
Recognition rate using cross validation ranged from 76.07% to 91.32% for the three classifiers. In
addition, the trained decision trees were consistent with articulatory features commonly used to
descriptively distinguish vowels in classical phonetics. The findings are intended to improve the
accuracy and response time of a real-time articulatory-to-acoustics synthesizer.
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I. Introduction
Recognizing speech from articulatory movements has attracted the attention of researchers
from a variety of fields (i.e., computer science, electronic engineering, and communication
science and disorders) in recent years. Potential applications include a robust objective
technique for assessing the severity of speech impairment and facilitating the treatment of
speech disorders. For example, a real-time articulatory-to-acoustic synthesizer based on this
technique may enable laryngectomee patients to speak in a more natural way than is
currently possible. It can also be used as a tool for speech motor learning research [17] and
to facilitate second language learning [14]. In addition, a better understanding of the
relations between articulatory movements and speech will facilitate acoustic speech
recognition [5,22], and the development of text-to-speech synthesis (TTS) that are based on
articulatory modeling.

However, the complexity of human speech production mechanism makes articulatory speech
recognition a formidable problem. One significant challenge is the many-to-one mapping
between articulatory configurations and phonemes. The mapping has not been clearly
determined. In classical phonetics, phonemes are distinguished by their location of primary
constriction in the vocal tract (i.e., dental, velar) and the manner (i.e., stop, continuant) in
which they are produced. However, attempts to develop mappings between speech
movements and their associated sounds have been significantly challenged by the high
degree of variation within and across talkers in their lip, jaw, and tongue movements.
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There are mainly two types of approaches to recognize speech from articulatory movements
in literature. The first type is to extract articulatory features (i.e., maximum mouth width/
height, tongue dorsum peak position, maximum mouth opening/closing velocity) from
articulatory position data, then to recognize phonemes from those features [3,4,5,6,7].
Blackburn and Young [8] trained a pseudo articulatory speech synthesis model using x-ray
data of speech movement for recognition. This type of approaches is based on the phonetic
knowledge for distinguishing vowels mentioned in the previous paragraph. The second type
of approaches is to map articulatory position data (including facial motion) to acoustic data
[9,10,11,12,13]. High correlations have been found between articulatory movement data and
acoustics of syllables [10] or sentences [12,13]. Classifiers such as Neural Network and
Hidden Markov Models were used in both approaches [4,5,6,12]. Although some of the
results are encouraging, articulatory speech recognition research is still in its early stages.
The recognition rates obtained in the literature ranged from 70s to low 90s in percentage,
and most of the results have been obtained from relatively small datasets.

Our long-term goal is to build a real-time articulatory-to-acoustics synthesizer. The device
will take articulatory position time-series data as input, recognize the speech (phonemes,
syllables or words), then synthesize a natural sound sequence as output using a pre-recorded
sound database. A classifier is trained before it is used to recognize the speech from input
data. The focus of this paper is recognizing speech from the input data using a classifier.

Our approach is to directly map articulatory position time-series data to phonemes using a
classifier without extracting articulatory features such as maximum mouth opening and
without calculating the correlation between input data and target acoustics. The input data
are time-normalized to fixed width and are sampled to vectors of attributes. An attribute is a
time point of articulatory position. Acoustic data obtained in data collection are used for
segmenting the input data only. They are not used for recognition. Such an approach would
make real-time prediction possible in our articulatory-to-acoustics synthesizer, because there
is no computational processing required to extract articulatory features or to calculate the
correlation between input data and target sounds in the prediction stage. The classifier is
trained before the synthesizer starts running. So it does not matter if the training process is
time intensive for our application. The focus of the current research effort was to determine
and improve the recognition accuracy.

This investigation has two objectives: (1) To test the accuracy of our recognition approach
of directly mapping articulatory position time-series data to phonemes; and (2) To find the
best suited classifier for the future development of an articulatory-to-acoustics synthesizer.
Three commonly used classifiers, Neural Network (NN), Support Vector Machine (SVM)
[1,2,16], and Decision Tree (C4.5) [19,20] were evaluated for their accuracy and processing
speed.

II. Experimental Setup
A. Dataset

For this preliminary study, only one single speaker dataset was considered.

The single-speaker dataset contained eight major English vowels /ɑ/, /i/, /e/, /æ/, /ᴧ/, /ᵓ/, /
ᵒ/, /ᵤ/ produced by a native female college student who was a native American English
speaker.

Data collection involved recording 3D motions from the tongue and lips during vowel
production. Table I gives a list of the articulators and location from which the 3D movement
data were collected along the midsagittal plane. UL refers to the middle point of upper lip
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and LL refers to the middle point of lower lip. T1, T2, T3 and T4 were placed on the
midsagittal line of the tongue. T1 is tongue tip and T4 is tongue back. Only the y and z
coordinates were used in this project, because the movement along the x axis is minimal
during speech production. Here, x, y and z were defined as spatial dimensions width, height
and length in a 3D Cartesian coordinate system.

The position data of each phoneme are time-normalized and sampled to fixed width. The
width was fixed, because all classifiers require that input must be in fixed number vectors of
attributes. Prior to analysis the movement data were centered about their means.

B. Classifiers
Three widely used classifiers were used and compared in this study. Neural Networks are a
powerful non-linear computational modeling tool, used widely to model the complex
relationship between inputs and targets. Support Vector Machine is relatively newer than
Neural Networks and has attracted the interests of machine learning researchers in recent
years [16]. C4.5 is a decision tree based classification tool [19,20]. In C4.5, each attribute
can be used for splitting the data to smaller sets (branching in the decision tree). Three
representative implementations for the classifiers were selected. The commercial
implementation of a Feed Forward Back Propagation Network (FFBP) provided in Matlab
(MathWorks Inc.), LIBSVM [16], an implementation of “one-against-one” multiple-class
classification with default kernel Radial Basis Function (RBF), and C4.5 [19 20] were used
in our experiment.

C. Analysis
Cross validation was used to determine the classification and prediction accuracy of each
algorithm. Using this method, samples used to train the algorithms are different from those
that are used to test their accuracy. This technique is the standard method of testing
classification accuracy in machine learning experiments.

In this study, the default settings were used for each classifier. Only the number of units (85)
in the hidden layer of the neural network was determined in a preliminary experiment.
Prediction probability estimation was enabled in SVM [16]. One reason is that the optimal
parameters found in this dataset do not generalize to other datasets, due to the high variation
in speech movements. And according to our preliminary experiments, there was no
significant difference when some parameters of SVM and C4.5 were changed.

III. Data Collection and Processing
A. Participant

Speech movements were obtained from a native English speaking female college student.
The participant had a negative history of hearing or speech impairment.

B. Device
The Electromagnetic Articulograph (EMA) AG500 [15] was used to register the 3D
movements of the lip, jaw, and tongue during vowel production. The EMA AG500 records
movements by establishing a calibrated electromagnetic field that induces current into small
electromagnetic sensor coils that are attached to the articulators. The subject with attached
sensors is seated with his/her head within the electromagnetic cube. When the subject
speaks, the 3D positions of the sensors are recorded and saved to a desktop computer
connecting to the cube. The origin of the coordinate system of EMA is the center of the
cube. The anatomically based coordinate system that was used defined the x axis as the
participant’s right and left (horizontal), the y axis as the participant’s top and bottom
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(vertical), and z axis as the participant’s front and back. The spatial accuracy of motion
tracking using the EMA (AG500) is approximately 0.5 mm [21].

Fig. 1 shows the twelve sensors attached on the subject’s head, face, and tongue. Three of
the sensors were attached on a pair of glasses the subject wore. HC (Head Center) was on
the bridge of the glasses, and HL (Head Left) and HR (Head Right) were on the left and
right outside edge of each lense respectively. The movements of HC, HL and HR were used
to derive lip and tongue movement data that were independent from head motion. These
sensors were attached to a pair of rigid glasses to avoid skin motion artifact [23]. Four of the
sensors, T1, T2, T3 and T4, were attached on the midsagittal line of the tongue. There was
an interval of around 10mm between two continuous tongue sensors [18]. Three of the
sensors, JL (Jaw Left), JR and JC, were attached on the canines and one of the incisors. The
movements of jaw were prepared for future use only.

C. Stimuli & Procedure
The subject spoke the eight vowels (i.e., /ɑ/, /i/, /e/, /æ/, /ᴧ/, /ᵓ/, /ᵒ/, /ᵤ/) in a sequential order
at a normal speaking rate. There was a small interval between two continuous vowels. She
repeated the sequence twenty times. Seventeen valid sequences of all vowels were obtained
in the end. This sample size is comparable to that of other studies [3,4,6,7,9,10,13].

D. Data Processing
The movement data were segmented to obtain the movements associated with each vowel,
time-normalized, and sampled to vectors which were accepted by the classifiers.

Each movement data file was a recording of a sequence of all eight single vowels, and there
were seventeen such recordings. Prior to analysis, the head movements were subtracted from
the lip and tongue data. Then a low pass filter of 10 Hz was applied to the position data. The
acoustic data was used for segmenting the continuous sequence of eight vowels into single
vowel segments. The segmentation was done manually.

The articulatory position time-series data for each vowel was downsampled to 10 frames and
centered about its mean. All sampled frames of all articulators were concatenated as one
sample of 120 (6 articulators × 2 dimensions × 10 frames) attributes as an input sample.
According to our preliminary results, 10 time points was sufficient for preserving the details
of each movement trace. Table II illustrates how the whole sample was organized. The
format was consistent for the three classifiers in our experiment. The three implementations
of classifiers had different representations for target/label column in a sample. The Matlab
Neural Network used binary encoding, SVM used unique integers, and C4.5 used strings to
represent different phonemes.

IV. Results And Discussion
A. Classification

Six-fold cross validation was conducted for the three classifiers. There were totally six
executions. The dataset has totally 136 samples (8 vowels × 17 samples for each vowel). In
each execution, three of seventeen samples of each vowel were selected for testing, and the
rest were training samples. Since seventeen cannot be divided by six evenly, the first five
executions had three samples for each vowel as testing samples, but the last execution has
only two samples for each vowel as testing samples. The average recognition rate of the six
executions was considered as the cross-validation recognition accuracy.
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Table III gives recognition rates for the three classifiers using cross validation. The results
are comparable to those of previous research, which have reported recognition accuracies
between 70s and low 90s in percentage. In this study, SVM obtained significantly better
accuracy than NN and C4.5. C4.5 provided an estimated accuracy in each execution. The
average estimated accuracy of C4.5 was 85.48%, which is similar to the result of NN.

Fig. 2 provided the classification matrices of the fourth execution in cross validation. The
three classifiers had different recognition rates and different erroneous classifications. For
example, NN misclassified two /e/s to /ɑ/ and /i/ respectively, and one /ᵓ/ to /ᵒ/. SVM
misclassified one /e/ to /ɑ/. Decision Tree (C4.5) misclassified one /e/ to /ᴧ/, and one /ᴧ/ to /
ᵓ/.

It should be noted that the results were obtained using the original time-series data without
significant or complex data processing. Thus, the recognition accuracy can still be improved.
But as we discussed before, the goal of this study is to show the effectiveness and potential
of this approach. Improvements and full optimizations is part of our ongoing work.

B. Execution Time
Table IV gives the execution time in the cross-validation in Section IV-B. The training
epochs of NN were 7, 9, 7, 7, 7, 7 (average 7.33) respectively in the six executions of cross
validation.

SVM and C4.5 were executed on a laptop with 2.1G duo core processor and 2G memory.
NN ran on a 2.5G duo core processor with 6G memory desktop, because 2G memory was
not enough for NN. NN may need more time in both training and testing stage if running on
the same machine as SVM and C4.5, but there may be no significant difference.

Because each algorithm had different implementations (LIBSVM and C4.5 were
implemented using C language, and NN was implemented in Matlab), the processing speeds
cannot be compared directly. However, the processing time results clearly demonstrate the
potential for all three classifiers to be used for near-real time applications. Moreover,
because the training will be performed offline before the synthesizer is actually used, the
high training cost in time for a NN is not a significant problem.

C. Decision Trees
C4.5 provides not only the recognition result, but also information on how the recognition
(distinguishing vowels) works in the form of a decision tree, which identified the attributes
(articulator’s coordinate at a time point) used to distinguish vowels.

An example of decision tree generated by C4.5 is given in Fig. 3. The decision tree was used
to distinguish the four vowels /ɑ/, /i/, /æ/ and /ᵒ/. The decision tree took all 68 (4 vowels ×
17 samples for each vowel) samples as input. A path from root to a leaf represents the
procedure used to distinguish a given vowel. First, the decision tree distinguished /O/ from
the other vowels just by the sixth z coordinate of LL (Lower Lip, LLz6). Then, it
distinguished /æ/ from the rest by the eighth z coordinate of T2 (Tongue Body Front, T2z8).
Finally, /ɑ/ and /i/ were distinguished by the fourth z coordinate of T3 (Tongue Body Back,
T3z4). The numbers in the decision tree in Fig. 3 were normalized articulatory positions in
mm. The tree can distinguish all the four vowels 100% for the given dataset. The decision
tree is consistent with the classic descriptions of the distinguishing features among vowels.
Furthermore, the decision tree also shows that LL, T2 and T3 contribute more than the rest
of the articulators (UL, T1 and T4) in distinguishing the four phonemes /ɑ/, /i/, /æ/ and /ᵒ/.
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Thus, even though the accuracy of decision tree based classifier was not as good as the
others, only this technique provided details about how the time-varying positions were used
to distinguish vowels. This information is quite useful and merits further investigation.

V. Summary and Conclusion
A new approach of recognizing speech from articulatory movement was proposed and tested
in this paper. The approach directly mapped articulatory position time-series data to vowels
using a classifier without extracting articulatory features such as mouth opening.
Recognition accuracy and processing speed of three widely used classifiers, Neural
Network, Support Vector Machine and Decision Tree (C4.5) were compared working on a
single speaker dataset of eight major English vowels /ɑ/, /i/, /e/, /æ/, /ᴧ/, /ᵓ/, /ᵒ/, /ᵤ/. Each
vowel was spoken seventeen times by a female native English speaker.

The experimental results demonstrated the effectiveness of this approach and its potential
for building a real-time articulatory-to-acoustics synthesizer. Cross validation results were
85.76%, 91.32% and 76.07% for the three classifiers respectively. The results were
comparable to others presented in the literature. As noted before, the results were obtained
with only minimal data preprocessing.

The results showed that our approach is promising. However, additional studies are needed
to examine its effectiveness for larger datasets. We briefly list the major conclusions of our
study.

1. Recognition of a limited set of vowels is feasible by mapping articulatory position
time-series data to vowels directly using a classifier.

2. SVM may be the best candidate for building a real-time articulatory-to-acoustics
synthesizer among the three classifiers, considering overall performance. SVM
obtained significantly better accuracy than NN and Decision Tree in cross
validation. In addition, SVM and Decision Tree executed fast either in training or
in testing on the given dataset. NN was much slower in training stage but was as
comparably fast as SVM and Decision Tree in testing. Thus NN should not be
excluded for consideration as a candidate for building the synthesizer.

3. Decision Tree has its unique advantages. Decision trees give the information how
the time-varying articulatory positions are used to distinguish vowels. Decision
Tree may be a good candidate for articulatory analysis of speech disorder problems.

VI. Future Work
This research can be extended in the following directions.

1. Extend dataset to a larger set of vowels, syllables, and words. The extended dataset
can include consonant-contexted vowels (CVC), and vowel-contexted consonants
(VCV), as well as single vowels. The most interest lies in the word-level
articulatory speech recognition.

2. Continuous speech recognition from articulatory position time-series data. The
focus is to recognize not only the phonemes from continuous streams of
articulatory movement data but also the intervals (pause) between any two
continuous phonemes.

3. Build a prototype of real-time articulatory-to-acoustics synthesizer. The synthesizer
would take articulatory position time-series data as input, recognizes the phoneme/
words, and synthesizes natural sound sequences as output using a prerecorded
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sound database. Phonemes/words to acoustics synthesis will focus on producing
natural sounds.
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Figure 1.
Sensor positions.
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Figure 2.
Classification matrices in the 4th execution of cross validation.
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Figure 3.
Decision tree for distinguishing /ɑ/, /i/, /æ/ and /ᵒ/
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TABLE I

Articulators (Data Attributes)

Articulator Location

UL Upper Lip

LL Lower Lip

T1 Tongue tip

T2 Tongue Body Front

T3 Tongue Body Back

T4 Tongue Back
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TABLE III

Recognition Rate in Cross Validation

NN SVM C4.5

Recognition
Rate (%)

85.76
(8.78)

91.32
(3.34)

76.07
(11.00)

Standard deviation in parenthesis.
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TABLE IV

Execution Time (Second)

Time NN SVM C4.5

Training 666.72 0.013 0.071

Testing 0.0104 0.005 0.005
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