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Endothelium-derived nitric oxide (NO) is vasoprotective, as it enhances endothelial cell
survival and proliferation, inhibits the excessive proliferation of vascular smooth muscle
cells, and suppresses the adhesion of platelets and inflammatory cells to the vessel wall [1].
Substantial evidence from pre-clinical studies and human research indicates that impairment
of the endothelial NO synthase (NOS) pathway accelerates vascular disease, and increases
the risk for major adverse cardiovascular events [2–5]. Impairment of the NOS pathway is
multifactorial, but it is increasingly apparent that circulating inhibitors of NOS play an
important role. Asymmetric dimethylarginine (ADMA) and monomethyl-L-arginine (MMA)
[6] are endogenous competitive inhibitors of NOS. Most human studies have focused on
ADMA, as it is the more prevalent species in human plasma. Plasma ADMA is elevated in
patients with cardiovascular disease or with risk factors, and it contributes to vascular
resistance and stiffness [7, 8]. Notably, several large studies have shown that plasma ADMA
is an independent biomarker for cardiovascular morbidity and total mortality [4, 5, 9].
Accordingly, endogenous mechanisms that regulate ADMA are deserving of further
scientific attention.

Synthesis and Metabolism of ADMA
Protein-arginine methyltransferases (PRMTs) methylate arginine residues on histone and
other nuclear proteins [10–12]. When these proteins are hydrolyzed, free methylarginines
are released, including ADMA, MMA, and symmetric dimethylarginine (SDMA; this latter
methylarginine does not inhibit NOS) (Figure). These may be expelled from the cell by the
cationic (CAT) transporter to be secreted in the urine, which is the primary route for SDMA
clearance. However, the majority of ADMA and MMA (~80%) is degraded within the cell
by dimethylarginine dimethylaminohydrolase (DDAH) [13–16]. The activity of DDAH is
reduced by oxidative stress that is associated with cardiovascular disease [17–19], causing
ADMA levels to become elevated in these conditions [13, 20]. By contrast, global
overexpression of DDAH1 in transgenic mice reduces ADMA levels and increases NO
production [21–23]. These DDAH-1 overexpressing mice manifest reduced vascular
resistance, increased insulin sensitivity and enhanced endothelial regeneration [21–23]; and
they are resistant to vascular lesion formation induced by endothelial denudation, vascular
inflammation, or hypercholesterolemia [22, 24, 25]. These observations are consistent with
an essential role of DDAH1 in maintaining vascular homeostasis.

Global DDAH1 Deletion: Accumulation of ADMA and Loss of Homeostasis
In this issue of ATVB, Hu and colleagues [26] provide strong evidence that, of the two
DDAH isoforms (DDAH1 and DDAH2), DDAH1 is largely responsible for the degradation
of ADMA. They generated a murine model of global DDAH1 knockout (DDAH1−/−) by
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targeting exon4 of the DDAH1 gene. The DDAH1−/− mice displayed normal developmental
features while showing negligible tissue DDAH activity in several tissues. The abrogation of
DDAH enzymatic activity (assessed using isotope-labeled ADMA or MMA) was surprising,
since expression of the DDAH-2 isoenzyme was unaffected. The expression of endothelial
NOS (eNOS), PRMTs 1 and 3, and CAT were unaffected also. With the loss of DDAH
activity there were significant elevations in tissue and plasma ADMA and MMA.

Isolated aortic rings from the DDAH1−/− mice manifested impaired endothelium dependent
vasodilation in response to acetylcholine, consistent with ADMA-induced suppression of
NOS. These animals also exhibited a significant increase in blood pressure, reminiscent of
the hemodynamic abnormality in eNOS knockout mice [27]. The elevation in BP was
reversed by infusion of L-arginine consistent with the competitive inhibition of NOS by
ADMA.

This study confirms the importance of DDAH in regulating NO synthesis, by its degradation
of the endogenous NOS inhibitors ADMA and MMA. Furthermore, this study suggests that
a specific isoenzyme, DDAH1, is primarily responsible for metabolism of the
methylarginines, and that DDAH2 cannot compensate for the loss of DDAH1.

Future Directions
Although the study of Hu and coworkers [26] complements previous studies using the
endothelial-specific DDAH1 knockout and heterozygous DDAH1 deficient mice [28, 29], it
also raises some interesting questions. Firstly, there is a discrepancy between this study and
a previous one which suggested that the global DDAH-1 knockout was lethal [29]. It is
possible that in the previous study (in which exon1 of DDAH was targeted), the deletion
might have adversely affected another genomic region necessary for embryogenesis.

If DDAH2 does not compensate for the loss of DDAH1, what may be its function? The
literature is mixed regarding the importance of DDAH2 in the metabolism of ADMA [6, 30–
32]. Overexpression of DDAH-2 improves endothelium dependent vasorelaxation and
increases NO synthesis, whereas siRNA knockdown of DDAH-2 reduces NO synthesis [31–
33] However, the story becomes more interesting by recent evidence that both DDAH-1 and
DDAH-2 manifest protein-protein interactions that may affect the NOS pathway
independently of ADMA metabolism [31, 34]

The global DDAH-1 knockout mouse of Hu and colleagues will be useful to further
interrogate the role of DDAH1 deficiency in vascular disorders. In the meanwhile, the
weight of the evidence indicates that DDAH-1 is a worthy therapeutic target. Agents which
increase DDAH expression are known [35, 36] and one of these, an FXR agonist, is in
clinical trials [37]. An alternative approach is to develop an allosteric activator of the
enzyme. Although development of an allosteric activator is not a typical pharmaceutical
approach, recent studies indicate that this may be an achievable aim [38, 39]. An agent that
increases the expression and/or activity of DDAH-1 would be anticipated to reduce blood
pressure, enhance insulin sensitivity, and reduce adverse cardiovascular outcomes.
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Figure.
The role of DDAH1 in the metabolism of the NOS antagonists ADMA and MMA levels.
DMA = dimethylamine. PRMTs = protein arginine methyltransferases. Other abbreviations
as in text.
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