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Abstract
The protein universe can be organized in families that group proteins sharing common ancestry.
Such families display variable levels of structural and functional divergence, from homogenous
families, where all members have the same function and very similar structure, to very divergent
families, where large variations in function and structure are observed. For practical purposes of
structure and function prediction, it would be beneficial to identify sub-groups of proteins with
highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein
families. We compared three algorithms in their ability to cluster large protein families and discuss
whether any of these methods could reliably identify such iso-structural or iso-functional groups.
We show that clustering using profile-sequence and profile-profile comparison methods closely
reproduces clusters based on similarities between 3D structures or clusters of proteins with similar
biological functions. In contrast, the still commonly used sequence-based methods with fixed
thresholds result in vast overestimates of structural and functional diversity in protein families. As
a result, these methods also overestimate the number of protein structures that have to be
determined to fully characterize structural space of such families. The fact that one can build
reliable models based on apparently distantly related templates is crucial for extracting maximal
amount of information from new sequencing projects.
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Introduction
The size of the known protein universe is expanding rapidly, driven by the ongoing technical
advances in DNA sequencing. While this may suggest that whatever we know about
proteins today may be dwarfed by upcoming discoveries, the consequences of this growth
are partly mitigated by the fact that the majority of newly discovered proteins can be reliably
classified into a hierarchical system of already known and characterized protein families.
Because of the complex relations between protein amino-acid sequence, three-dimensional
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structure and function, typically three levels of family classification are used. The most
intuitive concept – protein family, which groups proteins whose relation is manifested in
strong sequence similarity, forms the core of this classification. Proteins in the same family
are expected to have very similar (or identical) function and some level of divergence in
their structures. The increased sensitivity of sequence comparison methods and the growing
amount of structural information has allowed us to recognize distant evolutionary relations
leading to the definition of a higher classification level, - superfamily grouping distantly
related proteins with similar structures and detectable homology. Proteins whose structures
share overall shape and connectivity of the secondary structures in the domain core 1 form
fold groups - the highest level of classification. At this level of structural hierarchy proteins
may or may not be homologous.

Besides these three levels, for practical purposes, protein families are often split into smaller
groups called modeling families (iso-structural groups), grouping together very closely
related and structurally very similar proteins (that would add one more level below family
level).

The difference between family and modeling family classification levels seems to be very
superficial, but it is related to a very practical problem: if the structure of at least one protein
from a modeling family has been solved experimentally, structures of others can be easily
and accurately predicted using tools of comparative modeling. This leads to an important
question: how can we define modeling families, or in other words, can we recognize groups
of proteins with highly similar structures solely from sequence information? Historically, a
threshold of 30% sequence identity was used for this purpose. This is a conservative choice
minimizing the number of potentially wrong models. Unfortunately, at the same time it leads
to a gross overestimate of structural diversity in protein families, suggesting that only a
relatively small percentage of all known proteins can be accurately modeled2,3 and leading
to a picture of a universe of protein structures that expands almost linearly with the number
of known proteins4. Both these statements are at least partially incorrect, as they ignore a
significant number of strong structural similarities between distantly related proteins5 that
could be recognized using more sophisticated strategies.

Any sequence based threshold or criteria of accurate structure prediction are based on a
general observation that proteins with more similar sequences tend to fold into more similar
structures. We have to underscore the fact that this is a statistical correlation and, no
threshold of sequence similarity can give us absolute certainty that two structures reach
certain level of similarity as both very similar 5 and very divergent 6 pairs of structures can
be found at any sequence identity level. Because of that, in our analysis we present average
accuracies, which can be compared between different clustering strategies. For instance,
profile-profile alignments (and corresponding models) above the threshold of 20% sequence
identity reach average accuracy comparable to those based on Blast alignments with
sequence identity higher than 30%).

Sizes of protein families, superfamilies, and fold groups follow a power-law distribution7,
with some being very large, containing thousands and, in some cases, hundreds of thousands
proteins. The 2000 largest protein families account for 70% of non-singleton protein
sequences8 and a similar distribution is observed in the genomes of even the most exotic
species and in never before studied environments recently sampled by metagenomics. At the
higher hierarchy levels a few hundred superfamilies or fold groups account for over 50% of
proteins in fully sequenced genomes8. For such superfamilies or folds, estimates of their
structural diversity based on simple sequence identity threshold suggest that they could
contain hundreds and, in some cases, even tens of thousands of modeling families. Thus, to
provide accurate models for all or even for a significant percentage of proteins in such
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groups, we would have to solve unrealistically large number of representatives. However,
we suggest here that this picture is incorrect and that the real structural diversity in protein
families is much smaller than suggested by estimates based on simple sequence identity
similarity thresholds. In fact, at least for some proteins, high quality models can be built
from very distant templates5,9 (also see reviews of the field of remote homology detection
by Dunbrack10 and Xu11) and hundreds of examples of very strong structural similarity
between apparently distant homologs can be found 5.

To address these issues, we tested three popular sequence comparison methods as distance
measures for clustering five very large CATH protein topologies (fold groups). We start
from this very high level of the hierarchy to make sure that the group being analyzed is very
diverse and to avoid any a priori filtering of these proteins by sequence similarity that is
used to define protein superfamilies and families. In each case, we used structure-based
clustering as a “standard of truth” and asked to what extent clusters of structurally similar
proteins can be reproduced by sequence-based clustering. Since sequence is usually the first,
and often the only, information that we have about a protein, any improvement in using
sequence-only information to recognize iso-structural groups could have a significant
practical impact on classifying novel proteins. We also try to use a similar approach to
identify iso-functional groups, a task that is somewhat more difficult because of lack of
unique measure of functional similarity between proteins.

By using sequences from SCOP and CATH databases in all our benchmarks we were able to
test clustering accuracy independently from the question of dividing proteins into domains.
In reality the latter problem is often nontrivial for proteins without detectable similarity to
known structures. However, since our study is focused on large protein families that include
proteins with solved structures, boundaries of these domains can be identified in proteins
based on the alignment with their structural templates. This allowed us to focus on the
question of optimal clustering without tackling the problem of identifying and determining
domains and their boundaries.

In all our tests we used three popular sequence alignment methods: Blast12 (a standard
sequence-sequence comparison algorithm), PSI Blast13 (profile-sequence comparison
method) and FFAS14 (profile-profile method). It is well established that profile based
methods perform better than sequence based methods in recognizing remote homologies and
in alignment accuracy 14-19. However, this does not imply how well these algorithms can be
used to predict the level of structural divergence and therefore to reproduce internal structure
of protein families and, if yes, what is the extent of that improvement. Answering these
questions is the objective of our analysis.

Materials and Methods
Terminology

In our analyses, we used data from several public databases. Here we clarify how we used
terminologies adopted from these databases:

CATH20: We most often referred to the two levels of CATH hierarchy:

• superfamily – “groups together protein domains that are thought to share a
common ancestor and can, therefore, be described as homologous”21. This
level is similar to SCOP superfamily level.

• topology (fold) – groups superfamilies that “share the same overall shape and
connectivity of the secondary structure elements in the domain core”21. This
level is similar to SCOP fold level.
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PFAM22: we use PFAM families as a proxy for iso-functional groups of proteins (these
families are initially created based on sequence similarity but then usually curated by
experts).

SCOP23: this database was used only to prepare the general Benchmark of alignment
accuracy (described in the next section). In order to avoid confusion with CATH
hierarchy, we explicitly refer to SCOP domains, SCOP superfamilies, etc if different
from CATH domains, CATH superfamilies etc.

We use the term ‘protein family’ to refer to a set of proteins identified by sequence-only
based tools, which employ mostly HMMs, which implies common ancestry of all proteins in
the family. We sometimes also use the term ‘protein group’ for the highest levels of protein
classification (topology, fold), where homology between proteins is typically not
established.

Benchmarks
In this manuscript, we compared different alignment and clustering methods using sets of
proteins with known structures and functional assignments as benchmarks. Benchmarks
make it possible to evaluate accuracy of alignments by calculating structural similarity of
aligned regions or to evaluate different sequence clustering methods by comparing their
results to structure-based clusters or to groups of proteins with the same function.

Benchmark of alignment accuracy
Sequences and structures of protein domains clustered at 40% identity sequence identity
were downloaded from ASTRAL resource of SCOP database (ver. 1.73). (In this benchmark
set we used 40% sequence identity threshold in order to include pairs with similarities below
and above standard threshold of 30% sequence identity). Domains consisting of more than
one chain fragment and domains with missing residues were removed. Since the purpose of
this benchmark was to test alignment accuracy and not the detection of very weak
homology, we also removed sequences of domains whose similarity could not be reliably
detected using the most sensitive alignment program used here, the profile-profile algorithm
FFAS14. The remaining pairs were further filtered by aligning them with FATCAT flexible
structural alignment algorithm24 and removing pairs with CαRMSD higher than 3Å and
pairs where structural alignment covered less than 75% of any of two structures (in order to
eliminate cases where even structural alignment was not accurate or complete). Finally, to
avoid bias toward the largest superfamilies in SCOP database, the number of pairs accepted
from each SCOP superfamily was limited to 30. This procedure yielded 4561 protein pairs
representing 607 SCOP superfamilies.

Clustering benchmark
We used five very large topologies selected from CATH database to test the agreement
between sequence clusters, structural clusters and functional categories. (By using CATH
topology level instead of CATH superfamily level, we avoided any a priori filtering of these
sequences by sequence similarity since CATH topology level is based only on structural
similarity. However, in order to reduce the calculation time, we downloaded sequences from
CATH database that were already clustered at 60% sequence identity cutoff assuming that
above that threshold significant structural differences between protein are very rare
(numbers of structures given below refer to already clustered sequences).

The following five CATH topologies were included in the benchmark:

1. Topology 3.20.20, “TIM Barrel-like”, 27 superfamilies, 493 structures

2. Topology 2.60.40, “Immunoglobulin-like”, 83 superfamilies, 723 structures
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3. Topology 3.40.50, “Rossmann fold”, 105 superfamilies, 1500 structures

4. Topology 3.30.70, “Alpha-Beta Plaits”, 77 superfamilies, 341 structures

5. Topology 3.10.450, “NTF2-like”, 13 superfamilies, 80 structures

Benchmarks of modeling coverage
We evaluated a practical impact of using profile based method by calculating modeling
coverage of the following sets of proteins:

• the proteomes representing four different Kingdoms of life (A.fulgidus, E.coli,
A.thaliana, and H.sapiens). Protein sequences from these organisms were
downloaded from REFSEQ FTP site (ftp://ftp.ncbi.nih.gov/genomes/).

• selected superfamilies from CATH database. We used 56 CATH superfamilies that
were systematically targeted by the Protein Structure Initiative (PSI) 25 to test the
practical impact of using optimized alignment methods on the modeling coverage
of large families whose overall structure is known. Sequences of proteins from
CATH superfamilies were downloaded and clustered at 30% sequence identity to
reduce redundancy. Only superfamilies containing at least 10 non-redundant
structures and more than 30% of those structures determined by the PSI were
included in the benchmark. The resulting benchmark contains 56 CATH
superfamilies with number of proteins ranging from 1,979 to 196,906 and the total
number of protein sequences included in the benchmark is about 1.5 million. The
number of proteins with known structures in these families ranges between 17 and
1331.

Sequence-based clustering
Blast, PSI-Blast and FFAS method were used to cluster sequences from each of the five very
large protein topologies included in the Clustering benchmark. Sequences pre-clustered at
60% sequence identity level were aligned pair-wise (one-to-one) by each of the three
alignment methods. Any pair of aligned sequences was put in the same cluster if the
alignment covered at least 50% of the query sequence and the normalized sequence identity
was above the cutoff value. In the case of Blast, we tested two methods of calculating
sequence identity: the standard method provided by Blast and the sequence identity
normalized by the length of the query sequence.

Structure-based clustering
A rigid option for FATCAT structure alignment algorithm24 was used to perform pairwise
comparison of all structural domains from five CATH topologies included in the Clustering
benchmark. Any pair of structures was placed in the same cluster if the alignment covered at
least 70% of residues of any of two compared domains and CαRMSD of the alignment was
below 2.5Å. CαRMSD of 2.5Å is often used as the threshold of close structural similarity.
For instance, it is usually possible to use molecular replacement method to solve structure
using a model with that level of similarity to the target. We decided to use a relatively high
alignment coverage requirement of 70% in order to eliminate additional complications
related to partial structural similarities. We used higher threshold for structural alignments
than for sequence alignments (where we used 50%) since structural alignments usually tend
to be longer and are not limited to regions of high sequence conservation.

Identifying functional categories in large CATH topologies
Sequences of CATH domains were compared with the PFAM database version 23 using the
HMMER program (ver. 2.3.2)26. We used an e-value cutoff of 0.01 for HMMER hits. In
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cases where multiple hits were found, only the hit with the lowest e-value was accepted. In
comparison with sequence clusters (generated by Blast, PSI-Blast, and FFAS), we only used
proteins for which such PFAM hits were found. Proteins with Pfam hits to the same family
were grouped in one functional group. Such functional groups were then compared with
sequence-based clusters.

Comparison of sequence-based clusters, structure-based clusters, and functional
categories for 5 large CATH topologies

Blast, PSI-Blast and FFAS were used to perform pair-wise alignments of all sequences and
then clusters were calculated with single linkage algorithm using different sequence identity
cutoffs. The resulting clusters were then compared with structure-based clusters calculated
with FATCAT algorithm (as described above) and with functional categories based on
Pfam.

The accuracy of predicting structural clusters from sequence clusters was evaluated by
counting the number of cases when structural clusters contain proteins from two or more
sequence clusters (“split” clusters) and the number of cases when proteins from two or more
structural clusters belong to the same sequence cluster (“merged” clusters). In order to avoid
arbitrarily selected clustering cutoffs, the analysis was performed for a wide range of
sequence identity values. If the number of split and merged clusters is zero for a given
sequence identity cutoff, then it indicates exact prediction of sequence clusters by structural
clusters. This is usually not the case, but we assess the quality of prediction of structural
clusters from sequence clusters by the number of split and merged structural clusters at the
point where the graphs intersect (i.e., the point where number of merged clusters is equal the
number of split clusters). This number can be used to compare the agreement between
different clustering methods and structure-based clustering independently from the exact
scoring schemes they use. One can also assume that X coordinate of this intersection point
corresponds to an optimal sequence identity cutoff for clustering of a protein family.

An analogous method was used to evaluate the prediction of functional categories from
sequence clusters when, instead of structural clusters, sequence clusters were compared with
functional categories based on Pfam assignments.

Selection of sequence identity cutoff values for accurate comparative modeling with
different methods

Widely used criteria of accurate comparative modeling are 30% sequence identity and 50%
alignment coverage in Blast alignment algorithm. We have used Blast alignments fulfilling
these criteria as a reference for other clustering methods and parameters.

We calculated the alignments of all sequence pairs from the benchmark described in the
previous section using Blast, PSI-Blast, and FFAS methods and calculated CαRMSD of
these alignments. (CαRMSD value of the alignment is known to be closely correlated with
accuracy of the model that is built using this alignment).

We created a ‘reference set’ of accurate Blast alignments by selecting sequence pairs from
the benchmark where at least 50% of the first sequence (a ‘query’) was aligned with the
second sequence (a template) and sequence identity of the alignment exceeded 30%. The
average CαRMSD of these alignments was 2.6Å.

We then selected subsets of aligned pairs where at least 50% of the query sequence was
aligned with the template, and further narrowed down these subsets by applying increasing
sequence identity cutoffs and, for each of the resulting subsets calculated the average
CαRMSD of alignments remaining in the set. These steps were repeated separately for PSI-
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Blast and FFAS. The sequence identity cutoff that corresponded to average alignment
CαRMSD of 2.6Å, was 26% and 20% of normalized sequence identity for PSI-Blast and
FFAS, respectively. These cutoff values were then used to calculate percentage of modeling
coverage for in the Benchmark of modeling coverage consisting of large superfamilies from
CATH database (see the next Section). Since the Benchmark of alignment accuracy consists
of filtered protein pairs linked by high structural similarity, one can expect that the average
model's accuracy might be lower for the alignment of more remotely related proteins.
However, we assume here that the same average alignment accuracy of tested methods over
the benchmark would translate into comparable (albeit, possibly lower) average alignment
accuracy in more difficult modeling problems. It means that normalized sequence identity
cutoffs of 26% and 20% for PSI-Blast and FFAS alignments, respectively, correspond to
alignment accuracy achieved by Blast with 30% sequence identity threshold.

Testing the percentage of modeling coverage by different alignment methods
Sequences of proteins with and without structures were downloaded from Gene-3D27

resource associated with CATH database for each of 56 protein superfamilies included in the
Benchmark of modeling coverage. Proteins within each superfamily from this benchmark
were clustered at 30% sequence identity using Blast implemented in PSI-CD-HIT script28.
For each superfamily, its internal clusters were divided into 2 groups: clusters without
structural coverage, where none of the proteins had any experimentally determined structure
and clusters with structural coverage, containing at least one such protein. This clustering
corresponds to “standard” modeling coverage by Blast method with fixed thresholds of 30%
sequence identity and 50% alignment completeness. Modeling coverage by PSI-Blast and
FFAS was calculated by aligning proteins from clusters with no structural coverage
(obtained in the previous step) to proteins with known structures from that superfamily. If
more than 50% of residues from any protein could be aligned with a known structure and the
percentage of identity was above a cutoff specific for this method, this protein was counted
as having an accurate structural model (normalized sequence identity cutoffs used for PSI-
Blast and FFAS equal 26% and 20%, respectively were calculated as described in one of the
earlier sections).

Results and Discussion
Comparing sequence-based clusters with structure-based clusters

To address the question of predicting clusters of structurally similar proteins by using
sequence only information, we assessed the agreement between protein clusters identified
with the structure comparison FATCAT algorithm24,29 with a set of sequence-based clusters
generated with different sequence comparison methods. Such agreement can be assessed by
calculating the “confusion” index; namely, counting the number of false negatives, i.e.
structural clusters “split” between different sequence clusters where sequence-based
clustering falsely predicted structural divergence, and the number of false positives, i.e.
structural clusters “merged” in one sequence cluster where sequence-based clustering falsely
predicted structural similarity. These two numbers were plotted as a function of the
sequence identity cutoffs used in sequence-based clustering. If both numbers reach zero for
a certain sequence identity threshold, sequence-based clustering would exactly reproduce the
structure clusters. But even if this does not happen, the height (Y-coordinate) of the point
where the false positive and false negative plots intersect can be used to compare the
accuracy of different clustering procedures. Also, the X-coordinate at the intersection is a
good estimate of the optimal threshold for a specific sequence-based clustering approach.

First, we used the criteria described above to assess the agreement between structure and
sequence-based clusters calculated using two different methods of normalizing sequence
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identity values. Then, we compared clustering performed with three sequence alignment
methods: Blast12, PSI-Blast13, and FFAS14. These programs use sequence-sequence, profile-
sequence and profile-profile alignment algorithms, respectively. The results of these
comparisons performed for five CATH topologies included in Clustering benchmark
described in the Methods section are shown in Figure 1 and discussed in detail in the next
two sections.

Normalizing sequence identity
The standard Blast algorithm calculates sequence identity as the number of identical
residues pairs divided by the length of the alignment. In this method, very short alignments
with only a few identical residues may have very high values of sequence identity. These
values may indicate short and accurate alignments, but not necessarily global similarity.
Thus, alignment completeness requirement is usually added to the sequence identity cutoff.
For instance, an often-used threshold for accurate homology model requires the Blast
alignment to have sequence identity higher than 30% and to cover more than 50% of the
sequence. However, for predicting structural clusters, it may be better to use a clustering
procedure based on a single similarity measure that can be tested for several cutoff values.
We have used a simple method of normalizing sequence identity by the length of the query
sequence (which we term ‘globally normalized’ or ‘normalized’ sequence identity). Short
alignments with only a few identical residues are scored very low when using such
normalization. As illustrated by graphs shown in the ‘Blast’ column of Figure 1, sequence
clustering with normalized sequence identity (without any additional criterion related to
alignment completeness) led to better agreement with structure-based clusters than
clustering by standard sequence identity. In four out of five CATH topology groups used in
our tests, the number of ‘split’ and ‘merged’ clusters based on normalized sequence identity
was lower at the intersection than the analogous number for clusters obtained with the
standard sequence identity provided by Blast. The numbers were comparable in Alpha-Beta
Pleat CATH topology (3.30.70). Therefore, we decided to use normalized sequence identity
for clustering by Blast, PSI-Blast, and FFAS.

Profile-based alignment methods allow more accurate prediction of structure-based
clusters

It has been shown that profile-based algorithms surpass sequence-based methods in
predicting remote similarities and in the accuracy of the alignment14,30. However, this does
not automatically mean that these algorithms would allow more accurate prediction of the
closest structural similarities (i.e., clusters of similar structures) between proteins from the
same family, superfamily, or topology (fold)).

A comparison of three sequence alignment methods (Figure 1) clearly shows that sequence
clusters calculated with PSI-Blast and FFAS more accurately reproduce structural clusters
than clusters based on Blast sequence alignments, and that clustering based on profile-
profile FFAS performs better than clustering based on PSI-Blast. In addition, the identity
values corresponding to the intersection of FFAS ‘split’ and ‘merged’ graphs are lower than
analogous values for PSI-Blast and Blast, suggesting that the traditional and widely used
25%-30% limit of ‘twilight zone’ similarity for sequence-sequence alignments may be
lowered for profile-sequence or profile-profile alignments. This result opens the possibility
of improving modeling coverage of the proteins in the ‘twilight zone’ of sequence
similarities.

Improving modeling coverage in twilight zone
One can expect that more sensitive and accurate alignment methods can extend the limits of
accurate comparative modeling beyond the “traditional” threshold of 25%-30% sequence
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identity. To test this notion, we used the Benchmark of alignment accuracy described in the
Methods section to find sequence identity cutoffs for PSI-Blast and FFAS such that the
alignments (and the corresponding models) with sequence identities above these cutoffs
would be as accurate as the alignments (and the models) calculated by Blast and fulfilling
standard criteria (normalized sequence identity higher than 30% and more than 50% of
residues covered by the alignment - see Methods section for details). This procedure yielded
cutoffs of 26% and 20% for normalized sequence identity for PSI-Blast and FFAS,
respectively (for all three methods, only alignments with completeness higher than 50%
were taken into account). The suggestion that sequence identity threshold defining strong
structural similarity may be lower than 25%-30% has been made earlier31. Interestingly, the
author also concluded that “no sound structure similarity is statistically expected below 20%
identity”, which is close to the threshold estimated for FFAS in this study.

We assessed differences in the percentage of proteins that can be accurately modeled with
different methods using two benchmarks of modeling coverage (see Methods section) which
included: proteomes representing four different Kingdoms of life and selected superfamilies
from CATH database.

As expected, profile based methods provide higher modeling coverage than sequence based
methods but there are significant differences between different sets of proteins (see Figure
2). Modeling coverage of eukaryotic proteomes with accurate models is about two times
lower than prokaryotic proteomes (25% versus 50%). This big difference is partly an effect
of higher percentage of structural disorder in eukaryotic proteins. For instance, “long (>30
residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial
and 33.0% of eukaryotic proteins” 32. The differences in modeling coverage of
representative proteomes provided by three methods were quite large with FFAS enabling
modeling of 20% to 50% more proteins as compared to Blast (see Figure 2A).

Differences in modeling coverage of very large protein families which contain several
known structures were evaluated on 56 CATH superfamilies targeted by PSI (see
Benchmark of modeling coverage in the Methods section). Overall, 45% proteins from these
56 CATH superfamilies were covered by accurate BLAST alignments and models as
measured by the standard criteria of 30% sequence identity and 50% completeness of
alignment. Using PSI-Blast resulted in the coverage of 58% of proteins, whereas FFAS
allowed modeling coverage of 70% of proteins from these superfamilies (Figure 2B).

In summary, the largest improvement of modeling coverage resulting from using profile
based methods is observed for large protein families. It translates into relatively large
differences observed for full proteomes which usually contain several representatives of
large protein superfamilies.

The significant improvement in accurate modeling coverage described above could be
anticipated, since both a higher accuracy of the alignments and a better selection of
structural template contribute to lower sequence identity cutoffs in profile-based methods
and, thus, enable significantly higher modeling coverage.

Besides calculating current modeling coverage of protein families, it is also possible to
estimate how many structures still need to be solved to reach certain percent of modeling
coverage. We calculated such projections of modeling leverage for the six largest families
from our set of 56 assuming an optimal scenario where the structure providing most
coverage is solved first. As it can be expected, modeling coverage increases faster with each
solved structure if one uses FFAS or PSI-Blast alignments as a base for modeling, instead of
Blast (Figure 3).
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It is important to note that, while profile methods are now already widely used in
comparative modeling, estimates of modeling coverage of protein families in literature 33,34

typically still rely on simple sequence-sequence and, sometimes, profile-sequence alignment
methods. This is easily understood because of the higher computational cost, time and effort
involved in applications of profile-based methods but, nevertheless, it leads to large
overestimates of the number of structures that still need to be solved to provide accurate
homology models for many protein families.

Limits of accurate comparative modeling depend on the models' completeness and
accuracy that can be adjusted by algorithm parameters

In the previous sections, we discussed the problem of the accuracy of predicting structural
clusters from sequence clusters where sequence clusters were defined by an identity cutoff.
The problem of predicting structural similarity from sequence similarity is related (albeit,
not equivalent) to the problem of the accuracy of comparative modeling. However, the
question of the accuracy of models is not one-dimensional, despite the fact that it is often
addressed by a single sequence identity cutoff. In fact, in most cases, even for the same
query-template pair, one can choose between greater coverage, but less accurate alignment
(and the resulting model), or shorter coverage, but more accurate alignment. Such shorter
alignment (and corresponding model) would cover only the most conserved structural core
of a family, and would have lower errors as measured by CαRMSD and higher sequence
identity. We show that the balance between a model's completeness and its accuracy can be
adjusted by changing the ‘base level’ (or average value) of the matrix used to calculate the
alignment with dynamic programming. This method has been used previously to adjust
average length of FFAS profile-profile alignments to enable direct comparison with PSI-
Blast alignments30. The Benchmark of alignment accuracy described in the Methods section
makes it possible to calculate average coverage and CαRMSD for any alignment method or
set of parameters. For instance, Figure 4A illustrates the balance between model
completeness and accuracy for two popular alignment methods, Blast and PSI-Blast, and for
the FFAS algorithm with a wide range of values of the base level parameter. The figure
shows the average values of model completeness and CαRMSD calculated over all pairs of
proteins from the Benchmark of alignment accuracy. The figure clearly indicates that one
can improve model completeness at the cost of lowering accuracy by using lower values of
the base level or one can increase modeling accuracy at the cost of completeness by
increasing the base level. It also confirms that, at the same modeling coverage as Blast or
PSI-Blast, FFAS alignments reach higher accuracy and, at the same average modeling
accuracy as Blast or PSI-Blast, FFAS would produce more complete models.

In Figure 4B, the percentages of alignments (and corresponding models) from the alignment
accuracy benchmark fulfilling different completeness and accuracy criteria are shown as
function of the ‘base level’ parameter of FFAS. The fact that percentages of models
fulfilling specific completeness and accuracy criteria reach maxima for different base level
values indicates that there is no single ‘optimal set’ of parameters for FFAS alignments. As
expected, the percentage of highly accurate, but shorter alignments can be improved by
using higher base level values and the percentage of less accurate, but longer alignments is
maximized by using lower base level values. We expect that similar ‘calibration’ can be
done for other alignment algorithms.

Profile-based alignment methods allow more accurate prediction of functional categories
The problem of the agreement between function and sequence-based clustering of large
protein families can be addressed in a similar way as the question about predicting structural
clusters from sequence-based clusters. However this issue is complicated by the fact that
there are no universally accepted measures of function similarity between proteins.
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Therefore here we use a specific, curated set of protein families as a proxy for functional
clustering of proteins. The Pfam database22 is the oldest and most used collection of
annotated protein families. We used the Pfam database to assign functional categories to
sequences from five large CATH topology groups and then compared these functional
groupings with sequence clusters calculated as described in the previous section.

We observed a tendency similar to one observed for structural clustering - the accuracy of
predicting functional categories from sequence clusters was also improved when we moved
from sequence-based to profile-based alignment methods. At the intersection of these two
graphs, i.e. the number of ‘split’ and ‘merged’ functional categories in PSI-Blast and FFAS
clusters, is lower than the corresponding number from Blast clustering; the corresponding
number for FFAS is also slightly lower than for PSI-Blast. The sequence identity value
corresponding to the intersection of the two graphs is also lower for FFAS compared to PSI-
Blast or Blast (see Figure 5).

Conclusions
The general problem of understanding the evolution of proteins and, specifically, the issue
of structural and functional similarity of homologous proteins, is very important for
interpreting massive amounts of data from sequencing projects. We can often classify a new
protein into an already known protein family, but we cannot reliably predict how its
structure and function would differ from that of the already characterized members of this
family. Here we address this question by looking at the internal structure of very large
protein families and, in particular, we asked to what extent can sequence only information
be used to predict clusters based on similarity of experimentally determined three-
dimensional structures. This question also translates into the practical problems of
estimating the quality of protein models and predicting protein function. We show that
profile-based alignment methods are not only more sensitive and produce more accurate
alignments, but also allow more accurate prediction of structural and functional sub-groups
in large protein families. Moreover, a higher accuracy of alignments produced by these
methods makes it possible to lower the sequence identity threshold for accurate comparative
modeling while maintaining the same average accuracy of models as those based on
‘traditional’ criteria of 30% sequence identity and 50% completeness. Higher alignment
accuracy and better prediction of structural clusters increases the accuracy of the resulting
models and the application of comparative modeling. In other words, a researcher who in the
past may have been discouraged from using comparative modeling to seek structural
insights for specific question because of low sequence identity to a potential modeling
template, may now reconsider doing so. A big impact of profile based methods on modeling
coverage of very large protein families translates into significant improvement of modeling
coverage of proteomes from different Kingdoms of life which contain large number of
representatives of such families.

Our analysis showed that approximate threshold of accurate modeling (30% seq id) can be
lowered if one uses profile based alignment methods instead of direct sequence similarity
based ones. At the same time, it also confirms that the relationship between protein
sequences and protein structures is not uniform and, thus, the approximation of using a
single criterion of accurate modeling for all protein families can be improved. The solution
to that problem is suggested by analyses illustrated by Figures 1 and 5. The intersection
points in graphs shown in these figures for different CATH topologies correspond to
‘balanced’ clustering level where the number of structural (or functional) clusters
unnecessarily ‘split’ between two sequence clusters and the number of distinct structural (or
functional) clusters ‘merged’ into the same sequence clusters are comparable. These
thresholds vary substantially between different topologies ranging approximately from
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sequence identity of 10% to sequence identity of 30%. For most protein superfamilies and
topologies we still don't have enough structural data to propose statistically valid
‘customized’ thresholds of accurate homology modeling but we are planning to explore this
direction in the future.

Additional analysis suggests that the problem of accuracy of comparative modeling is better
described as a balance between expected model's completeness and its accuracy. This
balance varies among popular alignment methods and can be controlled by changing
parameters of alignment algorithms to obtain less accurate, but more complete models, or
vice versa.

In summary, significant progress in homology detection and alignment methods makes it
possible to assess the internal structure of protein families from sequence data and could
lead to significant changes in the strategy of applying comparative modeling to answer
specific questions about proteins from a given family. It is important to stress that the results
presented here do not focus on improving modeling or function predictions methods, but
rather, on the estimates of what level of accuracy can be expected using standard and other
available methods. Further improvements could come from improving the modeling
methods, a field that is undergoing continuous development35-37.
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Figure 1.
Predicting structure-based clusters from sequence-based clustering in five large topologies
defined in the CATH database. The number of structure-based clusters ‘split’ between
different sequence-based clusters and the number of structure-based clusters ‘merged’ into
the same sequence-based clusters (Y-axes) are shown as function of sequence identity cutoff
used in sequence clustering (X-axes). The number of ‘merged’ structure-based clusters is
decreasing with increasing sequence identity cutoff and the number of ‘split’ structure-based
clusters is increasing. The intersection of these two curves corresponds to the most accurate
prediction of structure-based clusters by sequence-based clusters. Y coordinate of this point
provides an assessment of the agreement between sequence-based clusters and structure-
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based clusters and allows comparison of the accuracy of different sequence clustering
algorithms. The corresponding X coordinate gives an optimal sequence identity cutoff for
this protein topology (see Methods section for more details). The analysis was performed for
Blast, PSI-Blast and FFAS methods. In case of Blast method we tested two ways of
normalizing sequence identity. Results obtained with sequence identity normalized by query
sequence length (globally normalized sequence identity) and by alignment length (standard
sequence identity) are shown as continuous and dashed curves, respectively. The name of
CATH topology used in calculations is shown on the left side for each set of graphs.
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Figure 2.
Modeling coverage of representative sets of proteins calculated with three methods: Blast
(white), PSI-Blast (grey), and FFAS (black). Sequence identity cutoffs used to determine the
percent of accurately modeled proteins or protein domains were selected to provide the same
average model accuracy of 2.6Å (these thresholds are 30%, 26% and 20% for Blast, PSI-
Blast and FFAS, respectively; see Methods section).
A) Modeling coverage of proteomes representing Archaea, Bacteria, Plants, and Animals.
B) Modeling coverage of 56 protein superfamilies targeted by the PSI. Horizontal axis on
each chart corresponds to 56 protein superfamilies sorted by size.
Columns:
ICB30: globally normalized sequence identity cutoff for each method giving average
CαRMSD of 2.6Å in alignments covering at least 50% residues in the Benchmark of
alignment accuracy (see Methods section for benchmark description). MC: percent of
proteins from superfamilies targeted by the PSI where more than 50% residues are included
in the alignment and sequence identity is above the ICB30 cutoff. MCD: distribution of
modeling coverage in large protein superfamilies targeted by the PSI.
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Figure 3.
The “modeling coverage graphs” calculated for the six largest protein superfamilies
systematically targeted by the PSI. Each curve shows the percentage of sequences from a
superfamily with available models (Y-axis) as a function of the number of proteins whose
structures would have to be determined experimentally (X-axis). The graphs were extended
only to 100 potential targets for structure determination. Dotted curves represent modeling
coverage based on Blast results with 30% sequence identity cutoff, dashed curves represent
modeling coverage with PSI-Blast with 26% normalized identity cutoff, and solid curves
represent modeling coverage based on FFAS results with 20% normalized identity cutoff
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(all three thresholds correspond to average models’ accuracy of 2.6Å as calculated using the
Benchmark of modeling accuracy).
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Figure 4.
A) Balance between model completeness and accuracy for different alignment methods.
Average completeness and accuracy of Blast and PSI-Blast algorithms with standard
parameters are represented as blue and green circles, respectively, while FFAS results are
shown as a curve representing a wide range of ‘base level’ values used in the dynamic
programming algorithm (‘base level’ values are shown as labels below the curve describing
FFAS results). The results were obtained using a comprehensive Benchmark for alignment
accuracy (see Methods section for more details). B) The percentage of models from the
alignment accuracy benchmark fulfilling different criteria of completeness and accuracy
depending as a function of the ‘base level’ parameter of FFAS (see Methods). Green curve
shows the percentage of models with completeness higher than 60% and CαRMSD to the
real structure below 3.0Å, blue - models with completeness > 60% and CαRMSD < 2.0Å,
orange - models with completeness > 80% and CαRMSD < 3.0Å, and red - models with
completeness > 80% and CαRMSD < 2.0Å.
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Figure 5.
Predicting functional categories (based on Pfam database) by sequence-based clustering in
five large topologies defined by CATH database. Blast, PSI-Blast and FFAS were used to
perform all-to-all alignment of sequences and then clusters were calculated with single
linkage algorithm using different sequence identity cutoffs. The resulting clusters were
compared with Pfam families. The number of Pfam families ‘split’ between different
sequence-based clusters and the number of Pfam families clusters ‘merged’ into the same
sequence-based clusters (Y-axes) are shown as function of sequence identity cutoff used in
calculations (X-axes). The number of ‘merged’ Pfam families is decreasing with increasing
sequence identity cutoff and the number of ‘split’ Pfam families is increasing. The
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intersection of these two curves corresponds to the most accurate prediction of Pfam
families by sequence-based clusters. Y coordinate of this point provides an assessment of
the agreement between sequence-based clusters and Pfam families and allows comparison of
the accuracy of different sequence clustering algorithms (see Methods section for more
details). Results obtained with sequence identity normalized by query sequence length
(globally normalized sequence identity) and by alignment length (standard sequence
identity) were shown as continuous and dashed curves, respectively.
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