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Abstract
Bronchopulmonary dysplasia (BPD) is characterized by arrested alveolar development and
complicated by pulmonary hypertension (PH). Nitric oxide (NO) promotes alveolar growth.
Inhaled NO (iNO) ameliorates the BPD phenotype in experimental models and in some premature
infants. Arginosuccinate synthetase (ASS) and arginosuccinate lyase (ASL) convert L-citrulline to
L-arginine; L-citrulline is regenerated during NO synthesis from L-arginine. Plasma levels of
these NO precursors are low in PH. We hypothesized that L-citrulline prevents experimental O2-
induced BPD in newborn rats. Rat pups were assigned from birth through postnatal day 14 (P14)
to room air (RA), RA+L-citrulline, 95% hyperoxia (BPD model), and 95%O2+L-citrulline. Rat
pups exposed to hyperoxia had fewer and enlarged air spaces and decreased capillary density,
mimicking human BPD. This was associated with decreased plasma L-arginine and L-citrulline
concentrations on P7. L-Citrulline treatment significantly increased plasma L-arginine and L-
citrulline concentrations and increased ASL protein expression in hyperoxia. L-Citrulline
preserved alveolar and vascular growth in O2-exposed pups and decreased pulmonary arterial
medial wall thickness and right ventricular hypertrophy. Increased lung arginase activity in O2-
exposed pups was reversed by L-citrulline treatment. L-Citrulline supplementation prevents
hyperoxia-induced lung injury and PH in newborn rats. L-citrulline may represent a novel
therapeutic alternative to iNO for prevention of BPD.

Introduction
Bronchopulmonary dysplasia (BPD), the chronic lung disease that follows acute respiratory
failure after premature birth, is the most common complication in premature infants born<28
weeks gestation, with an incidence of 30–50%(1). BPD currently lacks specific treatment or
prevention strategies. BPD interrupts normal lung development and results in arrested
alveolar and vascular growth(2, 3). The extent to which the disruption of lung growth leads
to an earlier or more severe decline in respiratory function in later life is unknown(4). Case
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reports are emerging describing arrested alveolar growth in older children(5) and early onset
emphysema in young adults(6) who were diagnosed with BPD.

Evidence suggests that NO promotes lung growth (7, 8). Lungs of endothelial NO synthase
(eNOS)-deficient mice have a paucity of distal arteries and reduced alveolarization(9), and
are more susceptible to disrupted lung growth after exposure to mild hypoxia and
hyperoxia(10). Arrested alveolar growth in newborn rats after VEGF inhibition and in the
chronically ventilated premature sheep and baboon models of BPD are associated with
decreased lung eNOS protein and NO production. Inhaled NO (iNO) improves vascular and
alveolar growth in these animal models(11–13). These data suggest that NO deficiency
contributes to the decreased alveolarization in experimental BPD. Most recent randomized
human trials suggest that iNO decreases the incidence of BPD in subsets of premature
babies(14–16). Inconsistent efficacy, complexity of iNO delivery in non-intubated patients
and high cost provide rationales for efficacious alternatives to iNO.

Endogenous NO is produced from the metabolism of L-arginine to L-citrulline, two amino
acids generated by the urea cycle (17). L-Citrulline to L-arginine recycling in endothelial
cells by the enzymes arginosuccinate synthetase (ASS) and arginosuccinate lyase (ASL) is
proposed to be the principal mechanism for sustaining local L-arginine availability for
eNOS-catalyzed NO production(18) (Figure 1). Polymorphisms in the gene encoding
carbamoyl-phosphate synthetase 1, the mitochondrial enzyme catalyzing the rate-limiting
step in hepatic L-citrulline formation via the urea cycle, influences NO metabolite
concentrations and NO-mediated vasodilation in humans(19). Infants with persistent
pulmonary hypertension of the newborn (PPHN) or after bypass surgery for congenital heart
disease have low plasma concentrations of arginine, citrulline and NO metabolites(20, 21)
and this can be reversed by oral citrulline supplementation(22, 23). In addition to NO
production, an adequate supply of precursor molecule is necessary to maintain the NOS
complex in its “coupled” state(24). Uncoupling of NOS results in free radical oxygen
production which may potentiate vascular damage and dysfunction(24). Thus, decreased
concentrations of NO precursors and breakdown products suggest that inadequate NO
production contributes to PPHN and abnormal vascular function.

We hypothesized that L-citrulline supplementation preserves alveolar growth and prevents
pulmonary hypertension (PH) in a model of chronic oxygen-induced BPD in newborn rats.

Materials and Methods
All procedures and protocols were approved by the Animal Health Care Committee of the
University of Alberta. Expanded methods are available in the online-Supplement.

Animal Model
Experimental BPD was induced as previously described(25, 26). Sprague-Dawley rats
(Charles River, Saint Constant, QC, Canada) were exposed to normoxia (21% O2; n=90) or
hyperoxia (95% O2, BPD model; n=90) from birth to postnatal day (P) 7, 10 or 14 in sealed
plexiglass chambers with continuous O2 monitoring (BioSpherix, Redfield, NY)
(Supplemental methods, http://links.lww.com/PDR/XXX).

Experimental Protocol
Newborn rat pups were randomized to four groups: 1-normoxia (21%, control group; n=45),
2-normoxia+L-citrulline (n=45), 3-hyperoxia (95% O2, BPD model; n=45), and 4-hyperoxia
+L-citrulline (n=45). L-citrulline was administered daily from P4 to P14 via subcutaneous
injection. The dose (8 g/m2/day) was based on the effective L-citrulline dosage reported in
the literature(22). Controls received normal saline vehicle. From P14-P21, rat pups were
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allowed to recover in 21% oxygen. Amongst animals housed in hyperoxia for 14 days, 26 of
the 30 untreated rats in the O2-induced BPD group survived; all 30 citrulline treated rats in
the O2-induced BPD group survived the study protocol.

Plasma amino acid levels
Amino acids (citrulline, arginine, ornithine) were analyzed using a Hitachi 8800 (Hitachi
USA) amino acid analyzer and NO metabolites (NOx) were measured using a Sievers 280i
instrument (GE Analytical Instruments, USA) as previously described (Supplemental
methods, http://links.lww.com/PDR/XXX).(23).

Lung morphometry
Lungs were inflated and fixed via the trachea with a 4% formaldehyde solution at a constant
pressure of 20 cm H2O(25, 26). Lungs were paraffin embedded, cut in 4 µm thick serial
sections and lung sections were stained with hematoxylin and eosin. Alveolar structures
were quantified using the mean linear intercept as described (Supplemental methods,
http://links.lww.com/PDR/XXX).(26).

Barium-Gelatin Angiograms
Barium was instilled into the pulmonary vasculature as previously described (Supplemental
methods, http://links.lww.com/PDR/XXX).(25, 26). Barium-filled pulmonary arteries were
counted per high-powered field (×100 magnification). Lungs of five animals/group, five
sections/lung, and 10 high-power fields/section were counted.

Right Ventricular Hypertrophy (RVH) and Pulmonary Artery Remodeling
Right and left ventricles including the septum were weighed separately to determine the
right ventricle to left ventricle+septum ratio (RV/LV+S) as an index of RVH(25). To assess
pulmonary artery remodeling, the percent medial wall thickness (MWT) was calculated as (2
× wall thickness/external diameter) ×100%(25).

Western blot analysis
Whole rat lungs were used to determine eNOS, ASS, ASL and arginase II (ARG II) protein
expression by western blot using a modification of our previously published methods
(Supplemental methods, http://links.lww.com/PDR/XXX) (27).

Arginase activity
Arginase activity in frozen lung tissue was measured by determining the amount of urea
generated by the enzyme (Supplemental methods, http://links.lww.com/PDR/XXX) (28).

Statistics
Values are expressed as the mean±SEM. Statistical comparisons were made with the use of
ANOVA. Post hoc analysis used a Fisher’s probable least significant difference test
(Statview 5.1, Abacus Concepts). A value of P<0.05 was considered statistically significant.

Results
Plasma concentrations of NO precursors are decreased in O2-induced BPD in newborn
rats

L-Citrulline and L-arginine plasma levels were significantly decreased in hyperoxic-exposed
animals on P7 compared to room air controls (Figure 2A inset and Figure 2B). L-Citrulline
supplementation significantly increased the plasma amino acids concentrations (Figure 2A–
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C). Plasma NOx levels were not significantly different between untreated room air and
hyperoxic-exposed animals. L-Citrulline supplementation significantly increased P7 plasma
NOx levels in both normoxia- and hyperoxia-exposed rat pups (Figure 2D).

L-Citrulline prevents alveolar simplification in O2-induced BPD in newborn rats
Hyperoxic-exposed rat pups displayed the characteristic features of alveolar simplification,
with larger and fewer alveoli and decreased septation compared with normoxic animals
(Figure 3A). L-Citrulline preserved alveolar growth in hyperoxic rats as quantified by the
mean linear intercept and septal counts (Figure 3B) measured on P21. No effect of L-
citrulline was observed in control rats.

L-Citrulline preserves lung vascular growth in O2-induced BPD in newborn rats
Hyperoxic-exposed rat pups showed a significant decrease in pulmonary arterial density
compared to normoxic rat pups as demonstrated by barium angiograms performed on P21
(Figure 4). Hyperoxia-exposed rat pups treated with L-citrulline exhibited increased arterial
density when compared to untreated hyperoxic rat pups (Figure 4). L-Citrulline had no
effect on normoxic rats.

L-Citrulline prevents PH in O2-induced BPD in newborn rats
Chronic exposure to hyperoxia for 14 days was associated with a significant increase in
RVH (Figure 5A) and %MWT of small pulmonary arteries measured on P21 (Figure 5B). L-
Citrulline attenuated these structural features of PH as indicated by a reduction in RV/LV+S
and %MWT (Figures 5A and 5B).

Hyperoxia alters the expression of proteins involved in the citrulline-arginine-NO cycle in a
postnatal age-dependent manner

eNOS expression was not statistically different between control and hyperoxic rat lungs on
P7 or P14 but was transiently increased on P10 in lungs from hyperoxia-exposed rats. There
was a significant increase in protein abundance of ASL throughout the 14 days exposure to
hyperoxia; ASS protein expression was also significantly increased in hypoxic rat lungs on
P7 and P10, but not on P14 (Figures 6A–B).

L-Citrulline increases protein expression of ASL in hyperoxia-exposed rat lungs
L-citrulline treatment did not alter eNOS or ASS lung protein abundances in normoxia- or
hyperoxia-exposed rat lungs on P7 or P10 (Figure 7). However, under hyperoxic conditions,
L-citrulline increased ASL protein expression at both time points. Unexpecedly, L-citrulline
treatment induced arginase II expression in normoxic and hyperoxic lungs on P7 and P10
(Figures 7A–7D).

Hyperoxia and L-citrulline treatment synergistically increase arginase II protein expression
in newborn rat lungs

Chronic exposure to hyperoxia caused a significant increase in pulmonary arginase II
expression (Figure 8A, B); the elevated arginase II protein abundance in hyperoxic lungs
was further increased by L-citrulline therapy (Figures 8A, B).

Chronic exposure to hyperoxia was associated with a significant increase in lung arginase
activity on P7 (Figure 8C). L-Citrulline administration normalized lung arginase activity.
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Discussion
We demonstrate that L-citrulline preserves alveolar and lung vascular development and
prevents PH in an experimental O2-induced BPD model in newborn rats. Our results suggest
a pivotal role for the L-citrulline-NO pathway in the developing lung. This pathway may be
an effective target to protect the lung from impaired alveolar development.

The availability of intracellular arginine is potentially a rate-limiting factor in the production
of endogenous NO. Oral supplementation with L-arginine has been used in a variety of
clinical conditions to improve NO-mediated vascular function(29). Experimental and human
studies suggest that after oral administration, L-arginine is extensively metabolized by
arginase in the gut wall and liver(30, 31). This may limit its bioavailability as a substrate for
NOS and subsequent effects on vascular function. In addition, supplemental L-arginine
enhances arginase expression and activity, thus reducing the effectiveness of L-arginine
therapy. In contrast, L-citrulline is not metabolized in the intestine or liver and does not
induce tissue arginase I, but rather inhibits its activity and is more effective in maintaining
plasma L-arginine concentrations than L-arginine itself in healthy volunteers(32). The
physical relationship of the enzymes in cycling citrulline, arginine and producing NO (ASS,
ASL, eNOS) may also make L-citrulline a more effective extracellular supplement to
improve NO production(33–36).

L-citrulline has no recognized toxicity and is used clinically as replacement therapy for
children with certain types of urea cycle defects(37). Furthermore, oral L-citrulline, as a
precursor to L-arginine and NO, improves sickle cell disease symptoms in children(38) and
decreases PH following surgery for congenital heart disease(22, 23).

Our data suggest that plasma L-citrulline and L-arginine concentrations can be markedly
increased by supplemental L-citrulline (Figure 2). This limitation in metabolic precursors
could contributeto low NO production and thus to arrested alveolar growth and PH in the
O2-induced BPD model. Our data parallel findings in human infants with PPHN and in
infants and children with PH after congenital heart disease surgery(20, 21). Our data also
suggest that L-Citrulline increases expression of ASL in the O2-injured lungs (Figure 7). L-
Citrulline exhibits good bioavailability with ease of movement across cellular membranes.
The cytosolic portion of the urea cycle which includes ASS and ASL enables localized,
intracellular production of L-arginine from citrulline within the pulmonary endothelium.
This recycling pathway might be important in sustaining the production of NO in endothelial
cells, especially when availability of L-arginine for NO synthesis becomes limiting.
Although total eNOS protein expression did not change with citrulline treatment, the data
suggest that eNOS function was enhanced. This is supported by the finding of increased NO
metabolites (NOx) on day 7 in normoxic and hyperoxic rats (Fig 2D) which is a reflection of
increased NOS activity and NO production. Although plasma levels of NOx were only
transiently increased by L-citrulline treatment, local pulmonary production of NO may be
inferred from the improved lung architecture and attenuated PH. L-citrulline’s efficacy in
this study mirrored those obtained with inhaled NO in experimental BPD models(11–13).

PH contributes to morbidity and mortality in human BPD(39). The hyperoxic BPD model in
rats also exhibits PH characterized by RVH and pulmonary artery medial wall thickening. L-
citrulline attenuated RVH and pulmonary artery remodeling in this model (Figures 4 and 5).
These findings are consistent with a recent study of L-citrulline administration in a neonatal
piglet model of chronic hypoxia-induced PH(40).

Amongst other mechanisms, increased arginase activity may account for abnormal airway
and vascular remodeling in the hyperoxia model of BPD in newborn rats. Arginases mediate
the conversion of L-arginine to urea and ornithine(41) (Figure 1) and compete with NOS for
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L-arginine as substrate. Increased arginase activity in PH and other lung diseases, including
asthma and cystic fibrosis, is believed to result in decreased availability of L-arginine for
constitutive NOSs and consequently diminished NO production(42–44). Interestingly, lung
arginase expression and activity in the rat is developmentally regulated, and expressed at the
highest levels in the fetus and newborn(45), suggesting that arginase contributes to the
maintenance of high pulmonary vascular resistance during fetal life. Hyperoxia upregulates
arginase expression in the adult rat lung(46). Here we show that both arginase II expression
and arginase activity are increased in chronic O2-exposed neonatal rat lungs (Figures 7–8).
This may limit arginine availability to NOS and contribute to decreased NO production in
this model(47). Unexpectedly, we found that L-citrulline increased expression of arginase II,
the isoform expressed in non-hepatic tissue (Figures 7–8). It had been previously reported
that L-citrulline, unlike L-arginine, does not induce tissue arginase(32). Notably, and despite
the increase in protein expression, L-citrulline normalized lung arginase activity in neonatal
oxygen-induced lung injury (Figure 8). An interesting link between increased arginase
activity and BPD has been proposed recently. Ornithine, the downstream product of arginase
activity, is further metabolized into polyamines that are involved in tissue repair and growth,
as well as proline, the precursor for collagen formation(41) (Figure 1). In bleomycin-
induced lung fibrosis, arginase expression and activity are also increased(48, 49), suggesting
that these enzymes contribute to lung remodeling and thus represent a therapeutic target.

In conclusion, this is the first report on the potential therapeutic benefit of L-citrulline in
preventing O2-induced alveolar damage and altered angiogenesis in the developing lung.
The bioavailability, safety and efficacy of L-citrulline, combined with its low cost and ease
of administration, make it an attractive therapeutic option that warrants further studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ARG Arginase

ASL Arginosuccinate lyase

ASS Arginosuccinate synthetase

BPD Bronchopulmonary dysplasia

eNOS endothelial NO synthase

iNO inhaled nitric oxide

MWT Medial wall thickness

NOx NO metabolites

P postnatal day
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PH Pulmonary hypertension

PPHN Persistent pulmonary hypertension of the newborn

RVH Right Ventricular Hypertrophy
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Figure 1. Schematic of the citrulline-arginine-NO pathway in endothelial cells
This cartoon depicts the intracellular enzymes that convert citrulline to arginine (ASS and
ASL) as well as the enzymes eNOS that convert arginine to NO and citrulline, and ARG II,
that converts arginine to ornithine and urea.
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Figure 2. Effect of L-citrulline administration from postnatal days (P) 4 to 14 on amino acid
plasma levels and NOx levels in normoxic control rats and O2-induced BPD rats
Plasma levels of L-citrulline (A), L-arginine (B), ornithine (C) and NOx (D) were measured
on P7, 10 and 14 (N=5/group, *P<0.05 and **P<0.0005, normoxia vs hyperoxia, §P<0.001,
normoxia (■) and hyperoxia (◆) vs normoxia+L-Citrulline (⨯) and hyperoxia+L-Citrulline
(▲). Inset shows plasma levels of L-Citrulline in normoxia (■) and hyperoxia (◆) only
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Figure 3. L-Citrulline prevents alveolar simplification in O2-induced BPD in newborn rats
Representative H&E–stained lung sections show larger and fewer alveoli in hyperoxia-
exposed lungs (A), resulting in a significantly higher mean linear intercept (Lm) (B) and
lower septal counts than in control (normoxia) animals (C). Treatment with L-citrulline
preserved alveolar structure and significantly improved Lm and septal counts as compared
with the experimental BPD model. N=5/group, **P<0.001 hyperoxia vs normoxia, *P<0.01
hyperoxia vs normoxia+L-Citrulline and hyperoxia+L-Citrulline for Lm. For septal counts,
§P<0.0001 hyperoxia vs normoxia, **P<0.001 hyperoxia vs normoxia+L-Citrulline and
hyperoxia vs L-Citrulline, *P<0.01 normoxia vs hyperoxia+L-Citrulline.
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Figure 4. L-Citrulline improves lung angiogenesis in O2-induced BPD in newborn rats
Capillary density, as quantified by the number of barium-filled pulmonary arteries counted
per high-power field, was significantly decreased in hyperoxia-exposed lungs compared
with room air controls. Treatment with L-citrulline preserved lung capillary density in
experimental BPD. N=5/group, §P<0.0001 hyperoxia vs normoxia and normoxia+L-
Citrulline, **P<0.001 hyperoxia vs hyperoxia+L-Citrulline, *P<0.02 normoxia+L-Citrulline
vs hyperoxia+L-Citrulline.

Vadivel et al. Page 13

Pediatr Res. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. L-Citrulline prevents pulmonary hypertension in O2-induced BPD in newborn rats
A. Hyperoxia-exposed rats had significant RVH as indicated by the increase in RV/LV+S
ratio compared with normoxic controls. L-Citrulline reduced RVH. N=5/group, *P<0.05
hyperoxia vs other groups. (B) Representative H&E stained lung sections showing
pulmonary arteries displaying a thickened medial arterial wall in hyperoxic rat lungs
compared with normoxic controls (scale bar is 65μm, original magnification is 4×). (C) L-
Citrulline significantly reduced the %MWT compared with pulmonary arteries from
untreated hyperoxic rat lungs. N=5/group, §P<0.0001 hyperoxia vs normoxia and normoxia
+L-Citrulline, **P<0.002 hyperoxia vs hyperoxia+L-Citrulline, *P<0.05 normoxia vs
hyperoxia+L-Citrulline.
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Figure 6. Effects of hyperoxia and postnatal age on protein abundance in rat lung homogenates
(A) Representative Western blots demonstrating the abundance of eNOS, ASL, ASS and β-
Actin in protein lysates from normoxic (lanes 1–3) and hyperoxic (lanes 4–6) rat lungs on
P7, P10 and P14. Blots are representative of two separate studies performed on a total of 6–8
normoxic and hyperoxic neonatal rat lungs at each postnatal time point.(B). Summary
densitometry data showing the effects of hyperoxia (□) on eNOS, ASS and ASL protein
expression relative to β-actin at each of three postnatal ages. *P<0.05 different from age-
matched normoxic control (■) group.
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Figure 7. Effects of L-citrulline treatment on the abundance of proteins in the citrulline,
arginine, NO regenerating pathway on P7 and P10
(A and C) Representative western blots demonstrating the abundance of eNOS, ASS, ASL,
Arg II and β-actin in protein lysates from L-citrulline-treated and untreated normoxic (left
panel, Lane 1–3: normoxia; Lane 4–6: normoxia+L-Cit) and hyperoxic (right panel, Lane 1–
3: hyperoxia; Lane 4–7: hyperoxia+L-Cit) rat lungs on P7 (7A) and P10 (7C). Blots are
representative of two separate studies performed on a total of 6–8 untreated and citrulline-
treated normoxic and hyperoxic neonatal rat lungs. (B and D) Summary densitometry
showing the effect of L-citrulline (□) on lung protein abundance of eNOS, ASS, ASL and
Arg II on P7 (7B) and P10 (7D). *P<0.05 different from untreated normoxic or hyperoxic
control (■) group.
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Figure 8. Effects of hyperoxia and L-citrulline treatment on protein abundance of arginase II
and arginase activity in P7 rat lung homogenates
(A) Representative western blots of three separate studies performed on a total of 6
untreated (lane 1–2) and citrulline-treated (lane 3–4) normoxic and untreated (lane 5–6) and
citrulline-treated (lane 7–8) hyperoxic neonatal rat lungs. (B) Summary densitometry
showing that both hyperoxia and L-citrulline independently and synergistically increased
arginase II expression in neonatal rat lungs. *P<0.05 different than normoxia; **P<0.05
different from all other groups. (C) L-Citrulline decreases pulmonary arginase activity in
O2-induced BPD in newborn rats. Hyperoxic exposed rats had significantly increased lung
arginase activity on postnatal day 7 (P7). L-Citrulline normalized lung arginase activity in
hyperoxic exposed rats. Arginase activity was unchanged in L-citrulline treated control rats.
N=5/group, *P<0.05.
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