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PROCESSING-SPEED theory proposes that much of the 
age-related decline observed in measures of fluid cogni-

tion can be accounted for by age-related slowing in the 
speed of elementary cognitive operations (Salthouse, 1996). 
A large body of research shows that both behavioral and 
brain measures of processing speed can account for a sub-
stantial proportion of age-related variance in fluid cognitive 
abilities (e.g., Birren & Fisher, 1995; Bucur et al., 2008; 
Kwong See & Ryan, 1995; Lindenberger, Mayr, & Kliegl, 
1993; Salthouse, 1991; Taylor, O’Hara, Mumenthaler, 
Rosen, & Yesavage, 2005; Walhovd et al., 2005). Recently, 
a large study of twins confirmed that genetic variance for 
processing speed was a leading indicator of variation in a 
number of age-related cognitive changes (Finkel, Reynolds, 
McArdle, Hamagami, & Pedersen, 2009).

Nonetheless, a processing speed model alone does not 
necessarily explain certain aspects of normal age-related 
decline in fluid abilities (Bugg, Zook, DeLosh, Davalos, & 
Davis, 2006; Schaie, 1989; Schretlen et al., 2000). In partic-
ular, decline in executive function has been proposed as a 
second mechanism underlying age-related decline in fluid 
cognition (Buckner, 2004; Dempster, 1992; Hasher & 
Zacks, 1988; Hasher, Zacks, & May, 1999; West, 1996). 

Although the best way to measure executive function re-
mains a challenge, it has been suggested that executive 
function be characterized as a collection of related cognitive 
control processes, in particular, “updating” working mem-
ory representations, “shifting” mental set, “inhibiting” auto-
matic or prepotent response to irrelevant information, and 
“coordinating” complex, sequential behaviors to reach a 
goal (Friedman et al., 2008). A number of behavioral and 
neuroimaging studies have demonstrated links among ex-
ecutive control processes and age-related differences in per-
formance of working memory and episodic memory tasks 
that stress interference, temporal processing, recollection, 
or contextual binding (Gray, Chabris, & Braver, 2003; 
Gunning-Dixon & Raz, 2003; Head, Kennedy, Rodrigue, & 
Raz, 2009; Hedden & Park, 2001; Kwong See & Ryan, 
1995; Taylor et al., 2005). Together the results of these stud-
ies imply that when examining the explanatory power of 
processing speed, it may be advantageous to also examine 
other cognitive abilities, such as executive function.

Relatively few studies have examined the processing-
speed theory from a longitudinal perspective (Hertzog, 
Dixon, Hultsch, & MacDonald, 2003; Schaie, 1989; 
Zimprich & Martin, 2002). A processing speed measure 
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collected at entry into a longitudinal study could predict in 
whom decline is more likely to occur. This prediction is 
based on the proposition that entry scores carry some rate-
of-decline information. (That is, a person’s score at study 
entry reflects the combination of the young-adult level plus 
an individual variation in the rate of decline, or growth, over 
time.) Lower processing speed scores at study entry may 
indicate risk for continued faster decline. Prior findings 
from the Religious Orders Study lend some support to the 
hypothesis that initial speed predicts subsequent cognitive 
decline (Wilson et al., 2002). First, substantial individual 
differences in rate of change were observed for several 
ability measures that involve fluid cognition (specifically, 
composite measures of “perceptual” speed, working mem-
ory, visuospatial ability, and memory retention). Second, 
initial level of performance on the speed measure correlated 
modestly with rate of decline in speed. Third, participants’ 
rates of change on these ability measures were correlated 
(Wilson et al., 2002). Taken together, these findings suggest 
that assessing processing speed at study entry might carry 
enough rate-of-decline information to predict change in 
other measures that involve fluid cognitive abilities. Longi-
tudinal work such as this provided the rationale and feasi-
bility for our hypothesis that initial speed will predict 
longitudinal aviation performance.

Aviation is an ideal performance domain for examining 
the trade-off between age-related decline in basic cognitive 
abilities and the accumulation of experience. Concerns about 
age-related declines have favored mandatory age-based re-
tirement of commercial airline pilots since 1960. The bal-
ance tipped slightly toward experience in 2007 when H.R. 
4343–110th Congress: Fair Treatment for Experienced Pi-
lots Act (2007) was signed into law, which increased the re-
tirement age from 60 to 65 in the United States. The benefits 
of aviation expertise (variously defined) have been docu-
mented in many cross-sectional studies. These include 
laboratory studies of scanning cockpit instruments (Bellenkes, 
Wickens, & Kramer, 1997; Kasarskis, Stehwien, Hickox, 
Aretz, & Wickens, 2001), processing air-traffic control com-
munications (Morrow, Leirer, Altieri, & Fitzsimmons, 1994; 
Morrow, Menard, Stine-Morrow, Teller, & Bryant, 2001; 
Morrow et al., 2003, 2005; Taylor et al., 2005), making avi-
ation-related decisions (Doane, Sohn, & Jodlowski, 2004; 
Schriver, Morrow, Wickens, & Talleur, 2008; Wiggins & 
O’Hare, 1995), performing instrument flight maneuvers 
(Kennedy, Taylor, Reade, & Yesavage, 2010), and timeshar-
ing (Lassiter, Morrow, Hinson, Miller, & Hambrick, 1996; 
Tsang & Shaner, 1998). In studies that examined age differ-
ences, several found evidence that expertise moderated  
(reduced) age differences (Kennedy et al., 2010; Lassiter 
et al., 1996; Morrow et al., 1994, 2003; Tsang & Shaner, 
1998), particularly when demands on memory encoding and 
storage were relatively low, or when vastly different levels of 
expertise were compared (e.g., pilots vs. nonpilots). All 
found that expertise benefited aviation performance.

For over 10 years, we have studied a cohort of aviators 
aged 40–70 years and more to better understand how their 
flight simulator performance changes as they approach and 
pass through their 60s (e.g., Taylor, Kennedy, Noda, & 
Yesavage, 2007; Yesavage, Taylor, Mumenthaler, Noda, & 
O’Hara, 1999). The purpose of the present work was to test 
the hypothesis that baseline cognitive processing speed and 
pilot expertise predict age-related change in aviator perfor-
mance. However, there are other cognitive abilities such as 
executive function that are relevant for flight performance 
and decline with age (Morrow et al., 2001; Taylor, O’Hara, 
Mumenthaler, & Yesavage, 2000; Taylor et al., 2005). Be-
cause we have a rich data set that includes measures of other 
cognitive abilities, as an exploratory analysis, we used sig-
nal detection analysis (Kraemer, 1992) to identify addi-
tional cognitive predictors.

Method

Participants
Participants (N = 276) were part of the ongoing longitu-

dinal Stanford/VA Aviation Study approved by the Stan-
ford University Institutional Review Board. Enrollment 
criteria were age between 40 and 69 years, current Federal 
Aviation Administration (FAA) medical certificate, and to-
tal lifetime flying activity between 300 and 15,000 hours of 
flight time. All participants gave written informed consent 
to participate in the study, with the right to withdraw at any 
time. At entry, each participant was classified into one of 
the three levels of aviation expertise depending on which 
FAA pilot proficiency ratings they had previously attained: 
(a) least expertise: VFR (rated for flying under visual flight 
rules only); (b) moderate expertise: IFR (rated for instru-
ment flight); and (c) high expertise: CFII and/or ATP (cer-
tified flight instructor of IFR students and/or certified to fly 
air-transport planes). Each rating requires progressively 
more advanced training and more hours of flight experi-
ence. All of the VFR pilots were recreational pilots, al-
though a small minority was employed in aviation-related 
jobs such as aircraft sales or mechanics. The majority of the 
IFR group were recreational pilots, but approximately one 
tenth of the IFR group were certified flight instructors of 
VFR student pilots, aviation analysts, or had been aviators 
during military service. Approximately one half of the 
CFII/ATP participants were either air-transport pilots, 
CFIIs, or had job duties that included aircraft piloting.  
Table 1 lists demographic and flight expertise characteris-
tics of the sample. Stepwise logistic regression modeling 
did not show indications of selective attrition by age, ex-
pertise, or cognitive measures at study entry (a level = 
0.05). Pilots completed flight simulation and cognitive as-
sessments yearly. There were an average of 4.3 data points 
per participant (± 2.7; range 1–13), spanning an average of 
3.8 years (± 3.2; range 1–13).
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Equipment
Pilots “flew” in a FAA-approved Frasca 141 flight simu-

lator (Urbana, IL). Motion, vibration, and sound elements 
were not incorporated into the simulator protocol. This sim-
ulator was similar to a Cessna 172 fixed-wing aircraft. It 
was linked to a computer designed for graphics (Dell Preci-
sion Workstation and custom C++ OpenGL Linux software, 
Red Hat, Raleigh, NC) that generated a “through-the-window” 
visual environment and continuously collected data con-
cerning the aircraft’s position and communication frequen-
cies. The simulator was located in a quiet darkened room 
kept at a comfortable temperature. The cockpit was illumi-
nated by independent lighting separate from the light of the 
projector display. The visual display was projected on a 
screen 15 feet in front of the pilot, which allows a normal 
view of objects to be seen at a distance. Previous work in 
our laboratory supports the validity of the simulator as a 
method for measuring piloting performance because it has 
distinguished between novice and expert aviators, and between 
younger and older aviators (Taylor et al., 2007).

Measures

Flight simulator performance (dependent measure).—
The scoring system of the flight simulator-computer system 
produces 23 variables that measure deviations from ideal 
positions or assigned values (e.g., altitude in feet, heading 
in degrees, airspeed in knots), or reaction time (in seconds). 
Because these individual variables have different units of 
measurement, the raw scores for each variable were con-
verted to z-scores, using the initial visit mean and standard 
deviation (the scores of the two flights pilots flew each test 
day were averaged). The z-scores for the individual mea-
sures were aggregated on the basis of previous principal 
component analyses into four component measures: (a) ac-
curacy of executing the air traffic control (ATC) communi-
cations regarding the heading, altitude, radio frequency, and 
transponder code (correct vs incorrect); (b) ability to avoid 

traffic that appears 1200′ in front of the aircraft either 25′ 
above or below flight past and 25′ left or right of flight path 
where the pilot is expected to deviate to the opposing quad-
rant from the traffic as measured by distance from the traffic 
and correctness of the maneuver; (c) scanning cockpit in-
struments to detect engine emergencies for carburetor icing 
and oil pressure drop as measured by stopwatch seconds 
until observed; and (d) executing a visual approach to land-
ing in terms of equally weighted left/right and above/below 
deviations from an ideal flight path. In addition, an overall 
flight performance summary score was computed as the 
mean of the four component scores.

Cognitive testing (predictor measures).—The cognitive 
predictors were seven composite scores derived from Cog-
Screen-AE (Kay, 1995), a computer-administered battery of 
13 subtests designed for screening and monitoring the per-
ceptual and cognitive abilities relevant to flying. Over sev-
eral years, factor structures have been proposed for the 
battery’s 24 scores; the composite scores used in this study 
are a slight modification of those used in our prior work 
(Taylor et al., 2000). The composite scores for the baseline 
visit are presented in Table 2. Full descriptions of the sub-
tests are available online (http://www.cogscreen.com/) and 
in the CogScreen-AE manual (Kay, 1995).

Procedure
Before the baseline visit, participants had six practice 

flights in the simulator to gain familiarity with the flight 
scenario used throughout the study. Participants typically 
completed their familiarization flights during a 1- to 3-week 
period, after which they had a 3-week break before return-
ing for the baseline visit. At the baseline visit and each an-
nual time point thereafter, the participant flew a 75-min 
flight in the morning and a 75-min flight in the afternoon. 
Each flight was followed by a 40- to 60-min battery of cog-
nitive testing, including the CogScreen-AE. The entire test 

Table 1. Participants’ Demographic and Flight Experience Characteristics at Study Entry by Pilot Expertise Level

Pilot expertise level

Least (n = 70) Moderate (n = 151) High (n = 55) Total (N = 276)

Age in years
 M (SD) 56.7 (7.3) 58.5 (6.3) 55.5 (6.5) 57.5 (6.7)
 Range 43–69 41–69 44–68 41–69
Years of education
 M (SD) 16.7 (2.2) 17.1 (1.9) 17.2 (1.9) 17.0 (2.0)
Women
 n (%) 12 (17.1) 22 (14.6) 4 (7.3) 38 (13.8)
White, non-Hispanic % 86 99 93 95
Total log hours
 M (SD) 980 (1,288) 1,876 (1,881) 5,260 (2,926) 2,323 (2,514)
Log hours in past month
 M (SD) 5.7 (7.1) 8.7 (10.1) 15.4 (17.3) 9.3 (11.7)

Note: Log hours are the flight hours pilots document in their log books, that is, a measure of experience.
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day lasted approximately 6 hr, including a 30- to 50-min 
lunch break. The simulation was scheduled during normal 
working hours from 9:00 a.m. to 4:00 p.m. Test days were 
repeated annually.

Each flight began with ATC takeoff clearance. The first 
ATC message was presented 3 min later, after participants 
had lifted off the runway and climbed to 1,200 ft (365.76 
m). During the flight, pilots heard 16 ATC messages, pre-
sented at the rate of one message every 3 min, directing the 
pilot to fly a new heading, a new altitude, dial in a new radio 
frequency, and in 50% of the legs, dial in a new transponder 
code. Participants were instructed to read back the ATC 
messages and then execute them in order, according to FAA 
standards. To further increase workload, pilots were con-
fronted with randomly presented emergency situations: en-
gine malfunctions (i.e., carburetor icing, drop of engine oil 
pressure) on 8 of 16 flight legs, and/or suddenly approach-
ing air traffic on 10 of 16 flight legs. Pilots were to report 
engine malfunctions immediately and to avoid conflicting 
air traffic by veering quickly, yet safely, in the direction di-
agonal to the path of the oncoming plane. Pilots flew in 
moderate turbulence throughout the flight and also encoun-
tered a 15-knot crosswind during landing approach and ac-
tual landing. Crosswinds were always from the right side of 
the aircraft. The form of the scenarios was very consistent 
(ATC instructions were recorded by trained controllers), but 
the scenarios themselves were computer controlled. Several 
components were randomly varied (e.g. radio frequencies, 
headings, and altitudes).

Data Analytic Approach
The a priori hypothesis of the study was that an initial 

measure of processing speed would predict age-related 
change in aviator performance. However, given the wide va-
riety of cognitive abilities assessed by the CogScreen bat-
tery and the large sample size of this study, we broadened 
the analyses to examine all seven composite measures in the 
battery. We used a two-step data analytic approach.

First, we performed an exploratory signal detection anal-
ysis including all cognitive predictors on two third of the 
participants to identify potential predictors of age-related 
change. Second, we conducted a confirmatory mixed effects 
model analysis (growth curve analysis) using the remaining 
one third of the participants to examine whether the predic-

tors identified from the first step in fact predict the change. 
Specifically, in the first step, we employed a receiver operat-
ing characteristic (ROC) curve analysis (Kraemer, 1992). In 
the second step, we employed a random-effect linear growth 
model (Caselli et al., 2009; Fitzmaurice, Laird, & Ware, 
2004; Singer & Willett, 2003), confirming the ROC find-
ings. In this two-step approach, we benefit from integrating 
the nonparametric ROC approach, which helps identify po-
tential predictors of change without limiting the pool of 
candidate variables, and the parametric mixed effects 
growth curve modeling, which is a flexible and efficient tool 
for modeling change over time. The latter approach is par-
ticularly valuable when most subjects in the sample do not 
have complete data for the entire age span under study, as in 
our case. This approach allowed us to determine if, as hy-
pothesized, processing speed predicted age-related longitu-
dinal change in flight performance. It also allowed us to 
determine if other cognitive measures or their interaction 
with processing speed augments the ability to predict longi-
tudinal change.

ROC curve analysis. —In essence, the ROC searches all 
the predictor variables (in this study, initial cognitive test 
scores) and identifies the predictors with the optimal bal-
ance between sensitivity and specificity for identifying 
those aviators with the outcome of interest. The first step is 
to define the outcome and to choose success/failure criteria. 
In the current study, we defined the outcome as a decline in 
the flight summary score that was faster than the median 
rate of decline. We used a linear mixed model to calculate 
each individual’s rate-of-decline score. Because the pur-
pose of this analysis was to obtain a decline score that would 
be used as an outcome in the ROC analysis, we did not in-
clude any predictor variables in the mixed model. Using the 
estimated decline scores obtained from a linear mixed mod-
el, we conducted an ROC analysis to select the predictor 
variables of interest. Although many characteristics of avia-
tors might be associated with a more rapid change in func-
tion, we focused on the seven CogScreen cognitive 
composite scores (collected at the baseline visit) because 
this battery represents measures considered relevant to avi-
ation and are routinely assessed by FAA aeromedical exam-
iners when evaluating pilots about whom there is concern 
regarding cognitive impairment.

Table 2. CogScreen Composite Scores Used in Exploratory Signal Detection Analysis

Composite score n M SD Minimum Maximum

Processing speed 184 −0.02 0.37 −1.66 1.58
Executive function 174 −0.05 0.52 −2.08 1.35
Symbol-digit recall (% accuracy) 183 75.12 24.02 17.00 100.00
Working memory updating (% accuracy) 182 82.87 14.83 24.00 100.00
Working memory manipulation 184 0.01 0.47 −1.70 2.29
Motor coordination 184 0.40 0.90 −2.22 5.37
Tracking (error score) 184 −0.08 0.50 −1.95 2.45
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We used publicly available software we have developed 
for the ROC analysis (ROC version 4.22; Yesavage & Krae-
mer, 2007). The ROC software searches all the predictor 
variables and their associated cut points (for the cognitive 
test scores) and selects the scores that best identify those 
aviators with more rapid decline. Once the optimal variable 
and associated cut points are identified, the association with 
the success criterion is tested against a stopping rule (p < 
.05); and/or when a subgroup has too small a sample size 
for further analysis (n < 20); and/or when there are no fur-
ther variables selected. If the association passes the rule, the 
sample is divided into two groups according to performance 
on the optimal variable. The ROC analysis is then restarted, 
separately, for each of these two sub-groups. The result is a 
decision tree (Figure 1). As shown in the figure, the signal 
detection approach identified two cognitive predictors: pro-
cessing speed and executive function.

Confirmation of ROC findings with mixed model 
analyses.—To confirm the effects of cognitive processing 
speed and executive function on longitudinal performance, 
we used mixed effects growth curve modeling. We assumed 
a linear trend of performance over time (i.e., age). We also 
conducted the analysis allowing for a nonlinear trend (by 
adding an Age × Age term in the model). However, allowing 
for a nonlinear trend did not improve the fit of the growth 
model (results not reported). In the growth analysis assum-
ing a linear trend, age (at each study visit) was centered on 
60 (which was near the median age of 59.7 years). Three 

potential predictors of the longitudinal trend were included 
in this model: level of expertise, initial processing speed 
scores, and initial executive function scores. The covariates 
were tested in relation to both initial performance and age-
related change (estimated by the fitted intercepts and slopes, 
respectively). Expertise was centered on the middle of the 
three levels of experience, that is, experience was coded as 
−1 (VFR), 0 (IFR) and +1 (CFII/ATP). Processing speed 
and executive function scores were centered at the median 
score at baseline. Centering of these predictor covariates 
(Kraemer & Blasey, 2004) was important because we were 
interested in estimating not only the effects of potential pre-
dictors on the trend, but also the trend itself, which involves 
interpretation of the intercept (initial performance) in this 
analysis. Estimation of our growth curve model was per-
formed using the PROC MIXED procedure in SAS soft-
ware, version 9.1.3 (Cary, NC). Finally, to obtain an 
indication of which, if any, flight components accounted for 
the effects identified by the ROC analysis as predicting per-
formance on the flight summary score, similar mixed model 
analyses were performed on each of the four flight compo-
nents that comprise the summary score.

Results
The exploratory ROC analysis suggested that processing 

speed was the best predictor of age-related longitudinal 
change in the summary measure of flight simulator perfor-
mance (k = .25; c2 = 12.77, p < .001). In addition, process-
ing speed and executive function predicted longitudinal 

Figure 1. Exploratory signal detection analysis or receiver operator characteristic (ROC) decision tree for predictors of performance greater than or equal to the 
median rate of decline of summary score on flight simulation task with 184 or two-thirds of all subjects. The analysis starts with 184 pilots, 50% of whom have a rate 
of decline in overall flight performance slower than the median and 50% have a faster rate of decline than the median, that is, the 184 pilots are characterized as hav-
ing (or not) at least the median rate of decline in overall performance. The median split of the rate of decline success criterion and the two-third allocation of all 
subjects allow the maximum possibility of branching of the decision tree in this exploratory analysis. See Results and Discussion for additional explanation.
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flight performance in an interactive manner. As shown in 
Figure 1, the optimal cut point for predicting an above the 
median (slower) rate of decline is a processing speed z-
score of greater than or equal to −0.30 (negative z-scores 
indicate slower cognitive speed). This cut point correctly 
identified 60% of the 121 pilots that scored above the cut 
point as having an above median (slower) rate of decline. In 
contrast, of the 63 pilots that scored lower than this cut 

Table 3. Confirmatory Mixed Effects Growth Curve Analysis of 
Longitudinal Flight Simulator Performance Using Predictors 

Identified by Exploratory Signal Detection

Parameter  
estimate (SE)

p Value

Initial performance (I)
 Intercept (mean, hI) 0.071 (0.042) .095
 Processing speed (bI1) 0.264 (0.074) .0006
 Executive function (bI2) 0.065 (0.049) .188
 Expertise (bI3) 0.247 (0.058) <.0001
 Processing speed × Executive function (bI4) −0.053 (0.074) .476
Change in performance over age (S)
 Intercept (mean, hS) −0.019 (0.004) <.0001
 Processing speed (bS1) 0.021 (0.008) .010
 Executive function (bS2) 0.003 (0.006) .642
 Expertise (bS3) 0.005 (0.006) .351
 Processing speed × Executive Function (bS4) 0.021 (0.008) .008

Notes: Parameter estimates are based on one-third of the sample. Only 86 
subjects were included in this model because six subjects were missing executive 
function scores. The results reported in Table 3 are based on a model assuming a 
linear trend of performance over age. Allowing for a nonlinear age trend did not 
improve the fit of the growth model. The model for the outcome at a given age 
was: Y = I + S (age centered) + e. The model for initial performance was: I = hI 
+ bI1 (processing speed centered) + bI2 (executive function centered) + bI3 (ex-
pertise centered) + bI4 (processing speed centered) (executive function centered) 
+ zI. The model for the longitudinal change (slope) of performance was: S = hS 
+ bS (processing speed centered) + bS2 (executive function centered) + bS3 (ex-
pertise centered) + bS4 (processing speed centered) (executive function centered).

Figure 2. Estimated mean trajectories and observed individual trajectories of flight performance (z-score) for aviators with cognitive processing speed (CPS) 
scores above or below the median baseline for all 276 aviators. Baseline CPS scores above or equal to median, n = 139. Baseline CPS scores below median, n = 137.

point for processing speed, only 32% had above (slower) 
median rates of decline. A second-level branching of those 
who scored faster on processing speed suggested a further 
advantage for those with a z-score better than −.50 on ex-
ecutive function. In other words, slower rate of decline in 
flight simulator performance was predicted by faster pro-
cessing speed and better executive function scores (k = .19; 
c2 = 4.55, p < .05). The other composite CogScreen mea-
sures (assessments of episodic memory, working memory, 
and psychomotor performance) did not predict rate of decline.

In the confirmatory mixed model of longitudinal flight 
performance, the effects of processing speed and executive 
function were specifically examined because they were 
identified by the ROC analysis as potential predictors of 
change in performance. Results are summarized in Table 3. 
Note that the outcome measure used in this analysis is the 
Flight Performance Summary Score. The upper section of 
Table 3 shows the model’s estimates for initial level of per-
formance and predictors of initial performance. It shows 
that processing speed and expertise significantly influenced 
initial level of performance. The bottom section of Table 3 
shows the relationship between age-related decline in simu-
lator performance and predictors of rate of decline. On av-
erage (intercept: hS), there was a significant decline in 
simulator performance with increasing age (−.019 z-score 
units per year, p < .0001). Importantly, processing speed 
and the interaction between processing speed and executive 
function were significant predictors of age-related decline 
in flight performance. These results can be interpreted as: 
pilots with faster processing speed and higher executive 
function scores at baseline had slower rates of decline in 
flight simulator performance than their same-aged counter-
parts. Figure 2 graphically illustrates the association between 
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processing speed and longitudinal decline in flight perfor-
mance. Shown in the figure are the estimated mean trajec-
tories for pilots with above versus below the median 
processing speed scores.

Expertise was not a significant predictor of age-related 
decline in flight performance (p = .35), although the param-
eter estimate was in the expected direction. Regarding 
which aspects of change in flight performance components 
were predicted by covariates in the model, only change in 
performance on the landing approach component was pre-
dicted by initial processing speed (bS1 = 0.015; SE = 0.007; 
p = .03).

Discussion
Results from the current study suggest that longitudinal 

flight simulator performance can be predicted by initial as-
sessment of cognitive abilities relevant to flying, that is, 
processing speed and executive function. These findings are 
particularly applicable to general aviation such as recrea-
tional flying. The percentage of older general aviators has 
increased in recent years (Nakagawara, Montgomery, & 
Wood, 2004), and older age (as well as inexperience) has 
been associated with increased risk of aviation accidents 
(Li, Baker, Qiang, Grabowski, & McCarthy, 2005). Cross-
sectional studies of aviators have demonstrated that mea-
sures of basic perceptual and cognitive processing abilities 
correlate with same-day performance of flight tasks  
(Kennedy et al., 2010; Morrow et al., 2001; Sohn & Doane, 
2004; Taylor et al., 2000); the present study adds to the 
current literature by demonstrating the feasibility of pre-
dicting future flight simulator performance on the basis of 
initial cognitive measures.

The interaction of processing speed and executive func-
tion as predictors of longitudinal performance is of particu-
lar interest in studies of a complex task such as aviation 
performance. In aviation, adequate executive function in 
terms of “planning ahead” is very important so that the pilot 
does not “get behind” the aircraft, as critical tasks must be 
performed correctly in rapid sequence (Wise, Hopkin, & 
Garland, 2009). Thus, on the types of tasks assessed in the 
simulator, it would be expected that those pilots who could 
plan and best allocate cognitive resources would perform 
well on such tasks.

It may be interesting to contrast the results on the pro-
cessing speed by executive function interaction in the ROC 
analyses versus the confirmatory mixed effects growth 
curve analyses. An advantage of ROC analyses is that they 
may provide more understandable “cutoffs” on scores to in-
terpret results. In the ROC, we note that the relationship 
shows that the best cutoff for executive function testing is 
0.5 SE (z-scores) below mean performance in the group 
with relatively fast speed of processing. This implies that 
the cutoff identifies a subpopulation that despite a relatively 
high level of performance speed of processing testing per-

forms poorly on executive function testing and that an exec-
utive function deficit to this degree predicts poor future 
performance. In other words, fast speed of processing does 
not make up for an executive function deficit. Interpreting a 
parameter estimate for the same interaction from a mixed-
effects growth curve analysis may be more challenging.

These results have implications for other cognitively de-
manding real-world tasks such as driving. It is known that 
slower processing speed predicts a greater likelihood of 
driving cessation within 5 years (Anstey, Windsor, Luszcz, 
& Andrews, 2006; Edwards et al., 2008). Processing speed 
measures such as the Digit Symbol Substitution test 
(Wechsler, 1981) predicted driving cessation, both indepen-
dently and after adjusting for effects of age and self-rated 
health/physical function (Anstey, Windsor, et al., 2006; 
Edwards et al., 2008). Additionally, decline of processing 
speed (as well as general cognitive, verbal, and memory 
abilities) has been linked to increases in rates of falling and 
fall risk in elderly participants (Anstey, von Sanden, & 
Luszcz, 2006; Welmerink, Longstreth, Lyles, & Fitzpatrick, 
2010). Because mobility is such a key part of maintaining 
independence in later life, it would be ideal if brief mea-
sures of cognitive function, including processing speed and 
executive function, were employed to identify individuals at 
risk and to target the most effective and appropriate inter-
vention. Nonetheless, it is unlikely that purely cognitive 
tests could fully replace field testing in determining either 
driving or aviation competency.

The results of this study relate to an expanding literature 
that emphasizes expertise (Krampe & Ericsson, 1996), cog-
nitive reserve (Stern, 2006), and enrichment (Hertzog, 
Kramer, Wilson, & Lindenberger, 2009) as factors that 
moderate (reduce) the impact of aging on cognitive perfor-
mance. It might seem surprising that higher level of exper-
tise did not significantly slow the rate of age-related change 
in aviation performance in the current study. However, 
based on an extensive literature review, Salthouse (2006) 
also found no Expertise × Age interactions in performance 
of occupationally relevant cognitive tasks involving individ-
uals in cognitively complex occupations, such as physi-
cians, architects, and college professors. Meinz (2000) 
noted that the largest group of studies not finding evidence 
for an age-moderating effect of expertise were studies in-
volving recent episodic memory, for example, recall or re-
production of meaningfully arranged chess pieces 
(Charness, 1981a, 1981b), musical memory by written re-
call and by piano keyboard execution (Meinz, 2000; Meinz 
& Salthouse, 1998), and immediate memory of simulated 
baseball game broadcasts (Hambrick & Engle, 2002). In 
summary, it appears that expertise seems at most to preserve 
only some realms of competence against the effects of age.

That said, it should be emphasized that enriching expe-
riences have significant benefits for “level” of performance, 
as reported in the present study and other published re-
search. Reaching a higher level of performance in midlife 
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has benefits in that performance is more likely to maintain 
function above a given threshold of competence longer. In 
a similar manner, our results indicate expertise was associ-
ated with higher baseline performance of aviation tasks; 
hence, more expert pilots would maintain a higher level of 
function longer than less expert pilots, even though both 
groups’ performances declined at the same rate. As Wilson 
(2009) pointed out, the robust association of education 
with level of cognitive function primarily accounts for in-
fluence of education on lowering risk of dementia in old 
age. Cognitive training (Hertzog et al., 2009) and contin-
ued maintenance of skills through deliberate “mainte-
nance” practice (Krampe & Ericsson, 1996) in later life has 
been associated with better function in late life. Future lon-
gitudinal research should characterize the extent to which 
an intervention improves level of function and the extent to 
which the intervention alters the rate of age-related change 
in function.

Limitations of this study include the relatively brief span 
of follow-up achieved on average (3.8 years) and subopti-
mal measures of some constructs. Specifically, the mea-
sures of memory and psychomotor ability were based on 
two-item scores. Also, the episodic memory measure is 
prone to ceiling effects because this test has only six paired 
associates (Taylor et al., in press). By comparison, the mea-
sures of processing speed and executive function were com-
posites of at least three items. The three-level ordinal 
measure of expertise based on FAA pilot proficiency rat-
ings is a relatively crude measure. It is possible, for exam-
ple, that certain pilots better manage their cognitive 
resources with a disciplined scan of instruments and the ex-
ternal environment. Thus, eye-tracking measures of scan-
ning behavior (Kasarskis et al., 2001; Sarter, Mumaw, & 
Wickens, 2007; Schriver et al., 2008) may provide a quan-
titative domain-specific measure of expertise that better 
predicts flight performance.

In conclusion, the current study suggests that prediction 
of longitudinal performance of an important real-world ac-
tivity can be improved by inclusion of initial performance 
on a relevant cognitive task. This is not to say that age or 
performance-based criteria should be replaced by a psycho-
metric test. It may suggest that prediction of future perfor-
mance as a pilot could be bolstered not only by evidence of 
current adequate performance, but also by psychometric 
data determining the speed of basic cognitive processes and 
executive function.
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