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Abstract
Background—Current biomarkers for breast cancer have little potential for detection. We
determined if breast cancer subtypes influence circulating protein biomarkers.

Methods—A sandwich-ELISA microarray platform was used to evaluate 23 candidate
biomarkers in plasma samples that were obtained from subjects with either benign breast disease
or invasive breast cancer. All plasma samples were collected at the time of biopsy, after a referral
due to a suspicious screen (e.g., mammography). Cancer samples were evaluated based on breast
cancer subtypes, as defined by the HER2 and estrogen receptor statuses.

Results—Ten proteins were statistically altered in at least one breast cancer subtype, including
four epidermal growth factor receptor ligands, two matrix metalloproteases, two cytokines, and
two angiogenic factors. Only one cytokine, RANTES, was significantly increased (P<0.01 for
each analysis) in all four subtypes, with areas under receiver operating characteristic curves
(AUC) that ranged from 0.76 to 0.82, depending on cancer subtype. The best AUC values were
observed for analyses that combined data from multiple biomarkers, with values ranging from
0.70 to 0.99, depending on the cancer subtype. Although the results for RANTES are consistent
with previous publications, the multi-assay results need to be validated in independent sample sets.

Conclusions—Different breast cancer subtypes produce distinct biomarker profiles, and
circulating protein biomarkers have potential to differentiate between true and false positive
screens for breast cancer. Impact: Subtype-specific biomarker panels may be useful for detecting
breast cancer or as an adjunct assay to improve the accuracy of current screening methods.

Introduction
Breast cancer is responsible for more than 40,000 deaths per year in the United States. Early
detection appears to be the best method to increase survival rates (1,2), and considerable
effort has been directed towards improving mammography and other imaging tools to
improve detection of small tumors (3,4). Even so, early detection of breast cancer remains
problematic. In the case of mammography, the area under the curve (AUC) values for
receiver operating characteristic (ROC) curves has been estimated to range from 0.76 to 0.82
(5,6). The limitations of existing screening methods suggest a need for alternative tests to
assist in the early detection of breast cancer. This need has emphasized the potential value of
circulating biomarkers for early detection. However, established breast cancer biomarkers
have not proven useful for this purpose (7).

One reason for the lack of good markers for early detection may be the phenotypic diversity
of breast cancer, which would be expected to complicate biomarker identification. Five
major subtypes of breast cancer have been identified based on gene-expression or protein
profiles in tumor tissue (8-12). These subtype expression patterns closely align with
traditional histological classifiers related to the overexpression of estrogen receptor (ER+)
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and/or the HER2 receptor (HER2+) (10,13). Results from the current study suggest that
patterns of circulating biomarkers also show breast-cancer subtype dependence.

Materials and Methods
Samples

All samples were obtained and analyzed in accordance with the human subjects institutional
review boards at Duke University Medical Center, Durham, NC, and the Pacific Northwest
National Laboratory, Richland, WA. All blood samples were collected after a positive
mammogram or breast exam that led to referral for image-guided biopsy. All samples were
collected at the time of biopsy, such that the benign controls and cancer patients were not
defined until later, after pathology. It is unknown if the samples were collected before or
after the biopsy, but all samples were collected during the same visit. Therefore, there was
concurrent collection of both benign and malignant cases in the same clinical venue using
identical methods, with both the patient and the phlebotomist ignorant of the presence or
absence of breast cancer. This sample-collection design eliminates the possibility of some
potentially confounding factors, including systematic differences in sample acquisition,
handling, and storage, and patient-specific confounders, such as pre-surgery fasting and
elevated stress levels that could result from knowing that cancer is present. Benign controls
were patients with a positive screen but without breast cancer, including ductal carcinoma in
situ, as determined by pathology evaluation of the biopsy.

The human plasma samples (both benign and invasive) were collected at Duke University
Medical Center from 2000-2005. 125 samples were selected such that the different groups
were age-matched and each group contained equal numbers of women younger than 50 and
older than 50 years. The cancer groups were also selected based on receptor status and
analyzed in two sets.

The first group contained 20 estrogen receptor positive/HER2 negative (ER+/HER2-)
tumors, 19 HER2 positive/estrogen receptor negative tumors (ER-/HER2+), and 20 benign
controls. The second group contained 22 estrogen receptor positive/HER2 positive (ER+/
HER2+) tumors, 24 estrogen receptor negative/HER2 negative (ER-/HER2-) tumors, and 21
benign controls. The patients for both tumor sets were between the ages of 19 and 78, with a
median age of 56 years. After collection, samples were aliquoted and stored at -80 °C until
analyzed.

ELISA microarray assay—The protocols and reagents used in the ELISA microarray
have been previously described in detail (14). The sandwich ELISA microarray platform,
when employing the same set of reagents and assays as used in this study, has been shown to
lack any assay cross-reactivity and to be able to quantitatively measure purified antigens
spiked into human serum (15). All reagents have been previously described in detail,
including commercial sources and concentrations used (15). Capture antibodies were printed
on aminosilanated glass slides (Erie Scientific, Portsmouth, NH) that were stamped by the
manufacturer with a hydrophobic barrier to create 16 identical wells (1 chip per well) on
each slide. A sandwich ELISA for green fluorescent protein, which was spiked into the
samples and standards at 100 pg/ml, was used for quality evaluation and data normalization
across chips, as previously described (16). Each reagent was printed four times per chip,
once in each of four identical quadrants. Successful printing of the capture antibodies was
confirmed using the Red Reflect option on a ScanArray ExpressHT microarray laser scanner
(PerkinElmer, Santa Clara, CA). Standard curves for the ELISAs were generated as
described previously (14). Fifteen microliters of each diluted sample or standard mixture
were placed on each of three replicate chips. Thus, each sample was analyzed on three chips,
and each chip contained quadruplicates spots for each assay, for a total of 12 replicates per
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sample for each ELISA analysis. Sample positioning was blocked by study group, and each
of the three sample replicates was analyzed on a different slide. The data from a single
dilution of the plasma was used for each of the 23 ELISAs (Table S1), with the selected
dilution being the one that produced the most signal intensities for the samples that were
within the optimal range of the standard curve.

Data, Statistics and ROC analyses—Standard curves from the ELISA microarray
analyses were generated using the Protein Microarray Analysis Tool (ProMAT), a custom
software program that we developed specifically for this use (17). This software is freely
available at (18). Mann-Whitney nonparametric tests (P ≤0.05) were used to compare the
protein concentrations in the human plasma samples across groups (19). The Mann-Whitney
rank sum and Spearman correlation P-values were calculated using SigmaPlot (SYSTAT;
Chicago, IL). Cancer/no cancer evaluations were quantified and visualized using receiver
operator characteristic (ROC) curves (20). These curves were generated using R (21). The
empirical “stepped” ROC curves, and the AUC values that were derived from these curves,
were estimated with the ROCR library (22). Smooth ROC curves and approximate 90%
confidence bounds were estimated using Monte Carlo simulation. For these analyses, the
data was log transformed to produce normally distributed values. The success of the log
transformation was evaluated with Kolomogorov-Smirnov and Shapiro-Wilk Normality
tests (23). Twenty samples were simulated with draws from an estimated normal distribution
representing each of the cancer/no cancer classes, and an empirical ROC curve was
constructed and stored. This was repeated 500 times. The 5%, 50%, and 95% quantiles of
the point-wise distribution of the 500 ROC curves were calculated and then smoothed with a
moving average to estimate the mid-ROC curve with approximate 90% confidence interval
bounds. Smooth ROC curves complementing their empirical ROC counterparts were
accepted for assays with admissible Normality tests (P < 0.10) and empirical ROC curves
contained within the ROC confidence envelope.

A linear combination of assay scores was used to estimate a composite assay score from
multiple assays. A composite multivariate assay score was calculated using a linear
discriminant algorithm. The ability of the multivariate assay test to discriminate between
cancer and no cancer was evaluated using the previously described ROC method on the
composite multivariate assay scores

Results
EGFR ligands produce a unique signature in plasma from women whose tumors are either
singly positive for the ER or for HER2

We compared plasma protein profiles between women with breast cancer and age-matched
controls with benign disease. This initial sample set was comprised of individual plasma
samples from 20 women with ER+/HER2-, 18 with ER-/HER2+ breast cancer, and 18 with
benign breast disease. The individual biomarkers that were significantly increased in plasma
from the ER+/HER2- cases compared to the benign controls were AmR (P= 0.015), HB-
EGF (P= 0.03), RANTES (P= 0.002), and TGFα (P= 0.01) (Fig. 1; see Table S1 for assay
abbreviations). For Her2+/ER- group: EGF (P= 0.02), HB-EGF (P= 0.001), RANTES (P=
0.002), and TGFα (P= 0.001) were significantly increased compared to subjects with benign
breast disease. Only one analyte, MMP9, was significantly decreased (P=0.009), and this
decrease was only observed in patients with ER+/HER2- tumors.

ROC curves were generated for the biomarkers that were statistically different (see above)
between the singly receptor-positive cases and the benign controls. The RANTES ROC
curves were similar (Fig. 2) for ER-/HER2+ and ER+/HER2- groups, each having an AUC
value of 0.82 (Table S2). AmR concentrations, which were significantly altered for the ER+/
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HER2- group but not the ER-/HER2+, produced AUC values of 0.73 and 0.53, respectively
(Figs. 1 and 2). Differences were also observed for EGF (AUC values of 0.67, 0.75,
respectively), HB-EGF (0.73, 0.85), TGFα (0.84, 0.77) and MMP9 (0.79, 0.63). We
evaluated the effect of combining multiple assays using Linear Discriminant Analysis (Fig.
3). Based on the AUC values, the multi-assay tests (Fig. 3) generally had higher sensitivity
and specificity than the single-analyte tests (Fig.2). Of the paired biomarker analyses,
MMP9 and TGFα yielded the best AUC value of 0.96 for the ER+/Her2- versus benign
control comparison (Table S2).

The clinical utility of combinations of different candidate biomarkers might be greater if the
individual biomarkers were independent indicators of the presence of cancer. We therefore
compared biomarker concentrations across groups using the Spearman correlation test for
those biomarkers that showed significant differences between study groups. We also
determined if the concentrations of these biomarkers correlated with age. These tests
demonstrated that plasma concentrations of the four EGFR ligands, AmR, EGF, HB-EGF,
and TGFα were generally significantly correlated, with the sole exception of AmR and
TGFα (Table S3). In addition, RANTES significantly correlated with EGF (P ≤ 0.001), HB-
EGF (P = 0.022) and TGFα (P ≤ 0.001). Age did not correlate with the levels of the different
biomarkers. Overall, subsets of the biomarkers are correlated, but not all of the biomarkers
are. Thus, these results suggest that multiple biological processes may be regulating
concentrations of these circulating proteins.

RANTES and angiogenic factors PDGF and VEGF are increased in ER-/HER2- and/or ER+/
HER2+ tumors

In order to better determine the effects of breast cancer subtypes on biomarker profiles, we
analyzed a second set of plasma samples that were obtained from 22 ER-/HER2- cases, 24
ER+/HER2+ cases, and 21 aged-matched benign controls. Plasma from ER-/HER2- patients
had significantly increased concentrations of VEGF (P = 0.006) and RANTES (P = 0.009)
relative to the benign controls (Fig. 4). In plasma samples from patients with ER+/HER2+
tumors, PDGF (P = 0.001) and RANTES (P = 0.002) were significantly increased relative to
plasma samples from benign controls (Fig. 4). In contrast to the first set of data, the EGFR
ligand HB-EGF was decreased (P = 0.044) in the plasma from subjects with ER+/HER2+
tumors compared to the benign disease. In addition, TNFα (P = 0.006) and MMP1 (P =
0.048) were significantly decreased in plasma samples from ER+/HER2+ (Fig.4). None of
the proteins we assayed were significantly decreased in the ER-/HER2- patients. Single-
assay ROC curves for either PDGF, RANTES or VEGF produced AUC values of 0.67, 0.76,
and 0.76, respectively, for ER-/HER2- and 0.81, 0.80 and 0.67, respectively, for ER+/
HER2+ (Fig. 5). When results from PDGF, RANTES, and VEGF assays were combined, the
AUC values for each of the breast-cancer subtypes improved to 0.82 (Fig. 6). The highest
AUC value was 0.88, and was observed for the ER+/HER2+ plasma set using RANTES,
PDGF, VEGF and TNFα (Table S4).

We determined if these biomarkers in this second sample set correlated with each other or
age (Table S5). Plasma concentrations of RANTES were significantly correlated with PDGF
and VEGF (P ≤ 0.001); however, PDGF and VEGF levels were not significantly correlated
with each other. Of the three proteins that decreased significantly in this sample set, only
HB-EGF and MMP1 levels were correlated (P < 0.001). Age did not correlate with any of
the ELISA data except for a negative correlation with MMP1 (P < 0.001).

Discussion
We used a custom ELISA microarray platform to evaluate 23 candidate biomarkers in
plasma samples from women with newly diagnosed breast cancer. Data from these analyses
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were compared to data from plasma samples from women with benign breast disease who
were also undergoing image-guided biopsy over the same time period and using the same
collection and processing methods as the breast cancer cases. We found that ten analytes
(AmR, EGF, HB-EGF, MMP1, MMP9, PDGF, RANTES, TGFα, TNFα, and VEGF) were
significantly altered in at least one of the four breast cancer subtypes, which were defined by
ER and HER2 tumor expression levels. With the exception of RANTES, significant changes
in biomarker expression were subtype dependent. This observation is consistent with gene
and protein expression studies that show unique expression patterns in tumors based on
cancer subtypes (8-13). All ten proteins that we found to be altered in the circulation have
previously been reported to have altered expression in breast cancer tissue at the mRNA or
protein level (12,24-28), suggesting that altered protein secretion by the breast tumors may
be responsible for the changes we observe in the circulating proteins. However, when levels
of a biomarker are decreased, it is unlikely that this effect is due to tumor secretion of the
biomarker. Rather, indirect effects of the tumor on biomarker levels are likely to be
important. For example, tumor-dependent secretion of proteolytic enzymes could be a
factor.

RANTES has been previously reported to be increased in the plasma of women with breast
cancer (29,30). Our results not only verify these prior studies, but we extend these results by
demonstrating that circulating levels of RANTES are increased in at least four subtypes of
breast cancer. Notably, single-assay analysis of RANTES produced AUC values that ranged
from 0.76 to 0.82, and RANTES consistently improved accuracy when included in subtype-
specific panels of biomarkers. Plasma levels of RANTES correlated with levels of three
EGFR ligands, EGF, HB-EGF, and TGFα, in the first sample set (Table S3). We have
observed that RANTES secretion is increased upon EGFR activation in cultured human
mammary epithelial cells (31), suggesting that the correlation of RANTES and the EGFR
ligand levels in the plasma may also reflect EGFR regulation of RANTES secretion in
humans. RANTES is an inflammatory cytokine and circulating levels of this protein are
altered in a variety of diseases besides breast cancer, suggesting that RANTES alone will not
be a specific marker for early detection of breast cancer. Even so, our data suggest that
RANTES may be useful in discerning between mammographic true and false positives, and
that RANTES may provide other useful data when included in a panel of biomarkers. The
combination of biomarkers may potentially prove more specific for breast cancer than any
individual marker.

Previous studies have shown that overexpression of individual HER receptors or their
ligands in breast tumors promotes survival and resistance to chemotherapy (32-36). AmR,
EGF, and TGFα also have important roles in normal mouse mammary gland development,
and each of these EGFR ligands apparently has a different role in this process (37). In the
current study, these EGFR ligands were commonly increased in plasma from women with
breast cancer. In addition, we observed subtype-dependent differences in the EGFR ligands,
suggesting that, as in mammary development, expression of the individual ligands may
reflect differential tumor characteristics. Furthermore, it has been demonstrated that normal
serum levels of EGFR ligands are sufficient to stimulate EGFR activity in cultured cells
(38), further supporting the concept that an increase in circulating EGFR ligands may
directly affect tumor biology. That is, a further increase in circulating levels of EGFR
ligands in breast cancer patients could further activate the EGFR and thereby facilitate
mammary cell growth and tumor development. Thus, these results suggest that circulating
levels of EGFR ligands may be an important etiological factor in the development of breast
cancer.

MMP9 is synthesized as a “pro” form that is proteolytically cleaved to produce a smaller,
but catalytically active, protease (reviewed in (39)). The ELISA analysis we use only detects
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the activated (i.e., proteolytically truncated) form of MMP9, which was decreased in ER+/
HER2- breast cancer. A variety of proteases can activate MMP9 in artificial systems
employing purified proteins, but it is unclear what protease(s) activates MMP9 in vivo (39).
Our data are consistent with a previous report that circulating levels of truncated MMP9 are
decreased in breast cancer patients (40). Even so, this prior study also found that the
proMMP9 form is increased in the same subjects. Given the opposite effects of breast cancer
on the precursor and processed forms of MMP9 (40), we speculate that the activity of other
protease(s) that process MMP9 may be more important than MMP9 secretion in altering the
circulating levels of MMP9 in breast cancer subjects. This concept is supported by evidence
that cancer cells secrete a variety of proteases (41).

In conclusion, identifying useful circulating markers for the detection of breast cancer has
remained problematic. Our results suggest that the discovery of biomarker panels for the
early detection of breast cancer may be complicated by the heterogeneity of this disease.
However, results from two independent sample sets confirm that plasma levels of RANTES
are commonly increased in breast cancer. Furthermore, the use of non-specific biomarkers
such as RANTES in combination with breast-cancer or breast-cancer-subtype specific
biomarkers may produce a superior assay that may prove useful as an adjuvant to current
screening methods. We also identify two panels of biomarkers that are able to discriminate
between benign breast disease and the most common receptor statuses found in breast
cancer, which are ER+ (about 60 to 67% of all breast cancers) and HER2+ (about 20%)
(42). These biomarker panels are very promising, but the data are novel and need to be
replicated in an independent sample set. Intriguingly, these panels contain several EGFR
ligands. Given the central role of the EGFR in regulating mammary cell growth and
migration, these data suggest that circulating levels of these ligands could be a factor in
breast cancer development and/or progression.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Protein concentrations in plasma, as determined by ELISA microarray analysis of 18 benign
(B), 19 estrogen receptor positive/HER2 receptor negative (ER+/HER2-), and 20 estrogen
receptor negative/HER2 receptor positive (ER-/HER2+) patients. Plasma concentrations are
graphed for all assays that showed a statistically significant difference between groups,
including amphiregulin (AmR), epidermal growth factor (EGF), heparin binding-epidermal
growth factor (HB-EGF), matrix metalloproteinase 9 (MMP9), RANTES and transforming
growth factor alpha (TGFα). The center line, box and crossbars indicate the group median
and 75th and 90th percentiles, respectively. *Significantly different at p<0.05.
**Significantly different at p<0.01. Values shown in the table are the mean, minimal (Min)
and maximal (Max) concentration values and the standard error (SE) for each assay.
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Figure 2.
Receiver operator characteristic (ROC) curves from single assays for amphiregulin (AmR),
epidermal growth factor (EGF), heparin binding epidermal growth factor (HB-EGF), matrix
metalloprotease 9 (MMP9), and RANTES, all of which are significantly altered in patients
with breast cancer in subjects with either ER+/HER2- tumors (left column) or ER-/HER2+
tumors (right column). Each graph contains step (empirical) and smooth (fitted, parametric)
ROC curves, and a grey shaded area that presents the 90% confidence intervals of the fitted
curve, as generated by Monte Carlo analysis.
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Figure 3.
Multiple-assay ROC curves for patients with either ER+/HER2- tumors (left column) or
ER-/HER2+ tumors (right column) versus controls with benign breast disease. Each graph
contains step (empirical) and smooth (fitted, parametric) ROC curves, and a grey shaded
area that presents the 90% confidence intervals of the fitted curve, as generated by Monte
Carlo analysis.
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Figure 4.
Plasma protein concentration determined by ELISA microarray analysis for 20 benign (B),
22 estrogen receptor negative/HER2 receptor negative (E-/H2-), and 24 estrogen receptor
positive/HER2 receptor positive (E+/H2+) patients. The center line, box and crossbar
represent the group median and 75th and 90th percentiles, respectively. Values in the table
are the mean, minimal (Min), and maximum (Max) concentration values, and the standard
error (SE) for each assay. *significantly different at p<0.05. **significantly different at
p<0.001.
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Figure 5.
Receiver operating characteristic (ROC) curves from single assays for heparin binding
epidermal growth factor (HB-EGF), matrix metalloprotease 1 (MMP1), platelet derived
growth factor (PDGF), RANTES, tumor necrosis factor alpha (TNFα), or vascular
endothelial growth factor (VEGF) that are significantly altered in either double-negative
(ER-/Her2-, left column) or double-positive (ER+/Her2+) breast cancer cases. Each graph
contains step (empirical) and smooth (fitted, parametric) ROC curves, and a grey shaded
area that presents the 90% confidence intervals of the fitted curve, as generated by Monte
Carlo analysis.
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Figure 6.
Multi-assay receiver operating characteristic (ROC) curves for ER-/HER2- (left column)
and the ER+/HER2+ (right column) breast cancer groups. Each graph contains step
(empirical) and smooth (fitted, parametric) ROC curves, and a grey shaded area that presents
the 90% confidence intervals of the fitted curve, as generated by Monte Carlo analysis.

Gonzalez et al. Page 14

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


