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Abstract
Background—Assessing the volume of mammographic density might more accurately reflect
the amount of breast volume at risk of malignant transformation and provide a stronger indication
of risk of breast cancer than methods based on qualitative scores or dense breast area.

Methods—We prospectively collected mammograms for women undergoing screening
mammography. We determined the diagnosis of subsequent invasive or ductal carcinoma in situ
(DCIS) for 275 cases, selected 825 controls matched for age, ethnicity, and mammography
system, and assessed three measures of breast density: percent dense area, fibroglandular volume,
and percent fibroglandular volume.

Results—After adjustment for familial breast cancer history, body mass index, history of breast
biopsy, and age at first live birth, the odds ratios for breast cancer risk in the highest versus lowest
measurement quintiles were 2.5 (95% CI: 1.5, 4.3) for percent dense area, 2.9 (95% CI: 1.7, 4.9)
for fibroglandular volume, and 4.1 (95% CI: 2.3, 7.2) for percent fibroglandular volume. Net
reclassification indexes for density measures plus risk factors versus risk factors alone were 9.6%
(P=0.07) for percent dense area, 21.1% (P=0.0001) for fibroglandular volume, and 14.8%
(P=0.004) for percent fibroglandular volume. Fibroglandular volume improved the categorical risk
classification of 1 in 5 women for both women with and without breast cancer.

Conclusion—Volumetric measures of breast density are more accurate predictors of breast
cancer risk than risk factors alone and than percent dense area.

Impact—Risk models including dense fibroglandular volume may more accurately predict breast
cancer risk than current risk models.

INTRODUCTION
Breast density has been recognized as a risk factor for breast cancer for over 30 years but
there is neither a single definition of breast density nor quantitative measurement method
used in clinical practice. Wolfe’s classification and BI-RADS breast density score are both
qualitative categorical estimates. Ideally, the best definition and best method for measuring
breast density would have the strongest association with risk of breast cancer. Risk estimates
from various methods for assessing breast density vary substantially depending on the study
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population, technical features, reproducibility of the method, and reporting method. Wolfe
first reported that there was a 22-fold increase in risk between lowest density category, N1
(normal for age, breast almost completely made of fat with a few fibrous connective tissue
strands), and highest risk category, DY (extremely dense parenchyma which usually denotes
connective tissue hyperplasia) (1) using a 5-year time period and a population of 5284
women. The Breast Imaging Reporting and Data System (BI-RADS) provides a 4-category
ranking of the amount of mammographically dense (white in image) relative to the total
projected breast area and is correlated with a 3 to 4-fold subsequent risk of breast cancer
when comparing lowest to highest risk categories (2). Percent dense area, defined as the
ratio of the projected area of dense breast tissue divided by area of the entire breast, is a
computerized method that has been extensively used in clinical studies using digitized film
mammograms. Percent dense area also provides an absolute measure of dense area, which
has been shown to be a strong predictor of breast cancer risk (3-8). In a prospective study,
Boyd et al. reported a 4-fold two-year relative risk of breast cancer between women with the
highest and lowest over six categories of percent dense area (9). In a meta-analysis of 42
studies and aggregate data of more than 14,000 women with breast cancer (cases) and
26,000 women without breast cancer (controls), McCormack et al. (10) showed percent
dense area was more strongly associated with breast cancer than BI-RADS categories.
However, BI-RADS is more widely used in clinical practice because it is easier to determine
and report.

Both BI-RADS and percent dense area have several limitations. They are two-dimensional
estimations that impose distinct borders between dense and non-dense (fat) regions. They
may vary as a function of the compression forced used when performing mammography,
and they rely on skilled readers to manually determine dense and nondense areas. In
addition, two-dimensional methods are not sensitive to breast thickness and may
underestimate the true amount of fibroglandular tissue for large breasted women.

If increased risk of breast cancer associated with high ‘mammographic density’ reflects a
greater amount of cellular and interstitial tissues, then measures of dense mammographic
volume should more accurately classify risk than measures of dense mammographic area.
We prospectively collected film mammograms with calibration phantoms for assessment of
percent dense area and accurate estimation of the volumes of dense tissue and the whole
breast and examined the association of these measures with incident breast cancer. The
purpose of our study was to determine whether percent dense area, absolute fibroglandular
volume, or percent fibroglandular volume is most accurate predictor of breast cancer risk.

METHODS
Study population

We included women aged 18 years or older undergoing screening mammography between
January 7, 2004, and April 8, 2006 at the California Pacific Medical Center Breast Health
Center, a participant in the San Francisco Mammography Registry (11). As part of routine
clinical care, film mammograms were digitized with the Image Checker computer aided
diagnostic tool (R2, Inc., Sunnyvale, CA). A calibration phantom that has been described
elsewhere (12) was imaged in the unused corner of all screening film mammograms. We
excluded women who either did not have a phantom present in the film mammogram, a film
mammogram was not digitized, or had poor placement of the calibration phantom. We also
excluded women who had prior diagnosis of breast cancer, breast augmentation, reduction,
reconstruction, or mastectomy. The study was approved by the University of California at
San Francisco Institutional Review Boards for consenting processes, enrollment of
participants, and ongoing data linkages for research purposes and has a Federal Certificate
of Confidentiality that protect the identities of research subjects.
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Cases and controls
Cases were women with invasive breast cancer or ductal carcinoma in situ, who had a
screening examination a year or more prior to their breast cancer diagnosis. Three women
without breast cancer (control subjects) were randomly selected for each case and matched
by age, ethnicity, and mammography system (see definition below). Examinations for
controls were selected to have occurred within one year of case screening examinations.
Breast cancers were identified annually linking women in the SFMR to the California
Cancer Registry, which consists of the Northern and Southern California Surveillance
Epidemiology and End Results (SEER) programs that collect population-based cancer data.

Risk Factor Questionnaire
Demographic and breast health history information were obtained on a self-administered
questionnaire at the time of screening mammography that included questions about race/
ethnicity, family history of breast cancer, menopausal status, age at first live birth, current
postmenopausal hormone therapy (HT) use, height and weight and history of breast biopsy
(13).

We categorized women as non-Hispanic White, non-Hispanic black, Hispanic, Asian/Native
Hawaiian/Pacific Islander, Native American/Native Alaskan or other/mixed race. Women
were considered to have a family history of breast cancer if they reported having at least one
first-degree relative (mother, sister, or daughter) with breast cancer. “Current HT users”
were those who reported using prescription HT at the time of a screening examination.
Postmenopausal women were defined as those with both ovaries removed, reported their
periods had stopped naturally, currently using postmenopausal HT, or age 55 or older. Self-
reported height and weight were used to calculate body mass index (BMI) by dividing
weight in kilograms by height in meters squared (kg/m2). Age at first live birth was
dichotomized into those whose first live birth was before age 30 years versus those whose
first live birth was at age 30 years or older or nulliparous. This is based on the previous
observations that a woman who has her first child around age 30 has approximately the same
lifetime risk of developing breast cancer as a woman who has never given birth (14). History
of breast biopsy was dichotomized as either previous or no previous breast biopsies.

Breast Density Measurements
Screening film mammograms were acquired on seven film mammography systems, either
GE Healthcare DMR (GE Healthcare, Madison, WI) or Lorad M-IV (Hologic, Inc. Bedford,
Ma). The mammograms consisted of Kodak MIN-R 2000 Film and MIN-R 2190 screen
combination. As is typical for screening mammograms, the X-ray technique was set to
“autocontrast” and each breast was compressed to the maximum pressure the patient could
tolerate. Craniocaudal (CC) film mammograms were selected to calculate all density
measures after being digitized to 16-bit resolution and 169-μm pixel sizes using an R2
ImageChecker digitizers (Hologic, Inc. Sunnyvale, CA). All density measures reported here
were averages of left and right breasts.

Percent dense area was quantified using custom software comparable to that described by
Byng (15). The software automatically detects and delineates the skin edge to define the
total breast area. An expert reader defines the dense tissue area by moving a histogram
threshold slider such that all pixels with values above the slider were labeled as dense. The
ratio of the dense pixels to the total breast pixels times 100 was defined as percent dense
area. One expert reader read all films and was trained against a local radiologist (16) and
then underwent additional training at the University of Toronto by Drs. Yaffe and Boyd
using a similar software tool (Cumulus) as our custom software to measure percent dense
area. To test for accuracy, the reader reread 100 films previously read by a reader at the

Shepherd et al. Page 3

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mayo clinic using the Cumulus software (9) and having similar training. Their inter-reader
intraclass correlation was 0.94.

Fibroglandular volume and percent fibroglandular volume were defined using a fully-
automated technique called single-X-ray absorptiometry (SXA). A complete description of
the method is found elsewhere (12). Briefly, the breast is modeled as a continuous mixture
of two materials, fat and fibroglandular tissue. Percent fibroglandular volume is found for
each pixel volume by interpolating image pixel grey-scale value between the phantom grey-
scales values corresponding to 100% adipose and 80% fibroglandular volume at the same
tissue thickness. Breast compression thickness was accurately determined, even in the
presence of tilt of the compression surfaces, by the unique nature of the compressible
phantom. Using the raw unprocessed images, the breast area is identified through an
automated multistep algorithm that first segments between breast/non-breast regions using
an automatically chosen threshold and then models the breast edge using polynomial fit.
Each image in the case-control set was manually reviewed to remove potential error sources
such as failure of the automated breast/non-breast segmentation routine and image artifacts.
The reproducibility of the percent dense volume measured using SXA is better than 2.5%.
The SXA method was used on all clinical screening mammograms during the study period,
was easy to install, and did not require modifications to the clinical screening protocol.

An additional quality control phantom was scanned weekly on each mammography system
to monitor calibration stability. The quality control phantom was custom designed and
consisted of seven 4-cm thick regions with percent fibroglandular volume densities that
ranged from 0 to 100%. No calibration changes were observed during the study period.

Statistical analysis
All statistical analyses were performed using SAS Version 9.2 (SAS Institute, Cary, North
Carolina) and Stata Version 11 (Stata Corp, College Station, Texas). Normalized histograms
of the case and control groups were generated to help visualize the distributions for percent
dense area, percent fibroglandular volume, and fibroglandular volume. Baseline clinical and
demographic characteristics of the cases and controls were compared by t-test or the Mann-
Whitney U test for continuous variables and Chi-square test for categorical data. Conditional
logistic regression was used to estimate the association between breast density and risk of
breast cancer to take account of the matched study design. Breast density measurements
were categorized into quintiles based on their distributions among control subjects. Crude
odds ratios (conditional logistic model without adjustment for confounding variables) and
corresponding adjusted odds ratios (adjusted for family history of breast cancer, BMI,
history of breast biopsy, and age at first live birth) were calculated respectively. To test for
trends, models also were fit using quintile medians. All statistical tests were two-sided and
P<0.05 were considered to be statistically significant. The density measurements were
studied using a variety of other scaling factors including continuous variable, log
transformed, quartile and cubic splines with adjustments for the other risk factors using the
concordance index (c-index) (17 1996). The c-index is a measure of the ability of these
models to separate women who developed breast cancer from those women who did not.
The c-index can range in value from 0.5 (random chance) to 1 (women with breast cancer
consistently had risk scores higher than those who remained disease free.)

Although the c-index is considered to be the standard metric to test models, new
classification methods have been developed in the past 15 years. To determine whether
adding breast density measures to risk factors alone improves risk classification for both
cases and controls, we calculated Pencina’s net reclassification improvement (NRI) (18).
NRI assesses the degree to which cases are reclassified by the more inclusive model into
higher risk categories, and controls reclassified into lower risk categories. The risk
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categories are those used to guide decisions about clinical care. NRI for risk assessment for
risk assessment for breast cancer reflects how effectively the new risk marker might help
clinicians focus more intensive surveillance and primary prevention on the higher risk
women, and avoid unnecessarily frequent screening for the lowest risk. In this study we used
mutually-exclusive categories for breast cancer 5-year risk stratification centered around the
1.67% risk threshold used with the Gail model: low (<1%), average (1% to 1.66%),
intermediate (1.67% to 2.49%), high (2.5%-3.99%), and very high ≥ 4% (19).

RESULTS
There were 48,477 women with screening visits during the study period. Of these, 45,120
women were eligible and 3,357 (6.9% of population) were excluded based on either opting
out of the SFMR or having a history of one of the following: mastectomy, breast
augmentation, reconstruction, reduction or breast cancer. Of the 45,120 eligible women,
26,787 had available digitized film mammograms. Mammograms were unavailable for a
multitude of reasons including digitizer being out of service, communication errors between
the digitizer and study workstation, and poor digitization quality. Of the 26,787 women with
digitized film mammograms, 16,105 women had valid SXA measures on one craniocaudal
examination. Reasons for not having a valid SXA measure included missing SXA phantom
in the image and compressed breast thickness out of range (over 6.7 cm or below 2 cm.) To
insure that no bias was associated with study exclusions of cases due to known age and
ethnic/racial associations to cancer risk, we compared cases with a valid SXA measure to the
cases without either a valid SXA measure or without a digitized mammogram. Our major
concern was whether cases with available digital mammograms differ from cases without
available digital mammograms since breast cancer occurs more frequently in certain age and
ethnic/racial groups. We found that the study and non-study cases did not differ in terms of
their demographic and clinical characteristics (P>0.10). After testing the representativeness
of cases, controls were compared against the whole study population (regardless of the
availability of SXA digital images) throughout the matching process and found not to be
different than the study population.

Baseline and mammographic characteristics of participants are presented in Table 1. BMI
was higher for the cases than controls by 0.9 kg/m2. Percent dense area and percent
fibroglandular volume were negatively associated with BMI (R = -0.35 and -0.27
respectively). Fibroglandular volume was positively associated with BMI (R = 0.44). Both
measures of fibroglandular volume and percent dense area were significantly higher for
cases than controls. The largest fractional difference between cases and controls was for
fibroglandular volume; mean fibroglandular volumes were 242cm3 for cases and 194cm3 for
controls or 25% higher for cases than for controls. In Figure 1, percent dense area and the
volumetric measures are plotted against each other. The percent dense area had a strong
linear relationship to percent fibroglandular volume, R2 = 0.59, while fibroglandular volume
had a weak linear relationship to percent dense area, R2 = 0.01. Relative frequency
histograms of the cases and controls for fibroglandular volume, percent fibroglandular
volume, and percent dense area are represented in Figure 2. The histograms demonstrate
better separation for cases from controls with fibroglandular volume than percent dense area.

Table 1 shows the univariate determinants of risk known to be associated with breast cancer.
Older age at 1st live birth or nulliparity and having a first degree relative with breast cancer
was more common in cases than controls (P-value < 0.05).

All three breast density measurements were significantly positively associated with risk of
breast cancer (P-value for trends <0.0001 for all three measurements). Quintile odds ratios
are found in Table 2. In adjusted models, the odds ratios for breast cancer in the highest
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versus lowest quintiles 2.5 (1.5-4.3), 4.1 (2.3-7.2), and 2.9 (1.7-4.9) for percent dense area,
fibroglandular volume, and percent fibroglandular volume. Adjustment for BMI
strengthened the associations of percent dense area and percent fibroglandular volume with
risk of breast cancer, but lessened the association of fibroglandular volume with risk of
breast cancer.

The c-index for risk factors alone (no breast density measure) was 0.609. A variety of
modeling schemes were investigated as listed in the statistics section to include breast
density. Each model improved the c-index from 0.609 to between 0.638 (percent
fibroglandular volume as a continuous variable) and 0.652 (fibroglandular volume as cubic
splines). Although all models that included density of some form were significantly different
than the model using risk factors alone (P-values > 0.01), none of the c-index values were
statistically different from one another. The c-indexes for the fully-adjusted models shown
in Table 2 are 0.642 (percent dense area), 0.646 (fibroglandular volume), and 0.645 (percent
fibroglandular volume). Interestingly, adding log percent dense area (as a continuous
variable) to the fully adjusted model with log fibroglandular volume (as a continuous
variable) modestly but significantly increased the c-index from 0.651 to 0.667 (P-value =
0.031).

Net reclassification tables are shown comparing risk classifications based on risk factors
alone compared to classifications also using percent dense area (Table 3), log fibroglandular
volume (Table 4), and percent fibroglandular volume (Table 5), and. The natural log of
fibroglandular volume was used to normalize its distribution. In these comparisons, NRIs
were significant and high for log fibroglandular volume (21.1%, 95% CI: 10.6%, 31.6%, P-
value < 0.0001) and percent fibroglandular volume (14.8%, 95% CI: 4.8%, 24.7%, P-value
= 0.0036). Interestingly, the model including risk factors and fibroglandular volume had
significant reclassifications over risk factors alone for both the cases and controls while the
model including percent fibroglandular volume reached significance for the cases only. The
reclassification index for cases and controls, and the NRI for the risk factors and percent
dense area all failed to reach statistical significance (NRI 9.6%, 95% CI: -0.7%, 19.9%, P-
value = 0.062). There were also no statistically significant reclassifications when risk factors
plus log fibroglandular volume was compared to risk factor plus log fibroglandular volume
plus percent dense area (NRI 3.4%, 95% CI: -2.7%, 9.5%, P-value = 0.27).

DISCUSSION
Volumetric breast density has long been thought to hold the promise of stronger breast
cancer risk prediction due to its accuracy in quantifying the true cellular composition of the
breast. We found that volumetric breast density measured as either fibroglandular volume or
percent fibroglandular volume was strongly associated with risk of breast cancer. Both
statistical methods (c-index and NRI) used compare models that include breast density with
clinical risk factors showed that either fibroglandular volume measure significantly
improved the accuracy of risk assessment over risk factors alone. However, the c-index was
not statistically different between models that included any measure of breast density.

Our study used a novel method for accurately measuring volumetric breast density, called
SXA that derives fibroglandular volume and percent fibroglandular volume from a
calibration phantom and screening single X-ray tube voltage images (12). The use of a
reference sample in each mammogram minimized the assumptions made in calculating
breast density related to changes in X-ray tube and film sensitivity and allowed automated
determination of accurate and precise measures of mammographically dense volume. The
use of an in-image phantom allows physically-calibrated cross-comparison over time and
between different makes and models of mammography systems. Longitudinal cross-
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calibration is particularly important in studies that monitor changes in breast density
resulting from treatment. In addition, all SXA measures for this study were performed in a
fully automated mode while the percent dense area measures were made manually by a
skilled reader. Thus, there are strong advantages of the SXA method in terms training/labor
costs and pooling ability compared to percent dense area.

The odds ratios in our study are comparable to other studies for similar measures and
categories. Barlow et al. reported a BI-RADS-4:BI-RADS-1 odds ratio of 3.93 for
premenopausal and 3.15 for postmenopausal women (2). In the Barlow et al. paper, BI-
RADS-1 contained 4.3% and 10.2% of the pre- and postmenopausal population, and BI-
RADS-4 contained 14.4% and 5.3% respectively. Thus, by percentage of women in the
highest and lowest density categories, BI-RADS compares more extreme spectrums of
density than quintile analysis. Boyd et al. (9) reported an odds ratio of 6.1 between the least
category of “no density” and the ≥ 75% dense area categories using a semiquantitative
method (radiologist manual readings). As with BI-RADS, these categories contained fewer
women at more extreme densities than quintile analysis with only 7% and 18% of the
women respectively in those two extreme categories. Vachon et al. (20) reported an odds
ratios of 2.7 between 4th and 1st quartiles for percent dense area with a 3-year median time
before diagnosis. There are many other examples in the literature with values ranging from 3
to 6 fold increase in risk between the highest and lowest categories of density that vary
depending on the method and median time before diagnosis. A meta-analysis of available
studies (10) showed that the odds ratios were much stronger for percent dense area than for
Wolfe grade or BI-RADS classification. Our odds ratios for percent dense area are similar to
others that have reported on the strength of breast density as a risk factor.

The NRI method of comparing models is relatively new, but is useful to in showing how
models that include fibroglandular volume measures may improve risk prediction. First, the
risk estimate accuracy for women who did not develop breast cancer in the 5 years of the
study was higher when absolute fibroglandular volume was included in the risk model than
without. More accurate identification of women at low risk for breast cancer undergo less
frequent screening mammograms. Models that included either absolute fibroglandular
volume or percent fibroglandular volume were significantly more accurate in their risk
assessment than risk factors alone among women who develop breast cancer. Women at
high breast cancer risk may consider and benefit from more frequent breast imaging, genetic
counseling, or chemoprevention. Thus, is it clear that more accurate risk models that include
a volumetric breast density measure could lead to more women being offered and
undergoing appropriate prevention measures.

There have been other methods proposed for measuring percent fibroglandular volume. The
standard mammographic form (SMF version 2.2β, Siemens Molecular Imaging Limited) is a
method used in film mammograms to quantify the volume of “interesting” dense tissue
(21-22). In this case, density associated with the skin and adipose tissues are estimated and
subtracted off from the percent fibroglandular volume. Aitken et al. (23) compared percent
dense area to the SMF measure and found significant associations for percent dense area
with a 2.19 (95% CI 1.28-3.72) interquartile relative risk, but no significant association to
breast cancer for SMF. Hologic (Hologic, Inc., Bedford, MA) has marketed an adaptation of
the SMF method for digital mammography called Quantra. However, it has yet to be
reported if Quantra differs substantially from SMF regarding it risk association. Pawluczyk
et al. (24) reported on a method for measure of volumetric breast density that relies on the
precise description of the digital mammography system’s geometry, breast thickness, and x-
ray characteristics to derive a volumetric breast density. No associations with risk have been
reported for the Pawluczyk or other volumetric methods using either mammography
(24-25), magnet resonance imaging (26-27), tomosynthesis (28), or ultrasound tomography
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(29). Thus, it is important to note that the results of this study may not be generalizable to all
measures of fibroglandular volume since they vary in the way the dense volume is modeled
(with or without skin, with or without total water, the quality control methods (with absolute
phantom standards or relative standards), and the calibration standards (adipose tissue or
fatty acid for 0 percent fibroglandular volume; parenchymal tissue or water for 100 percent
fibroglandular volume.)

Fibroglandular volume and percent dense area may capture different variations in breast
morphology related to cancer risk. Fibroglandular volume should directly capture risk
related to increasing volumes of stromal tissue and is thereby expected to be positively
associated with BMI. Percent dense area is weakly related to fibroglandular volume and may
capture additional risk related to the distribution of stromal tissue in the breast. Whereas
percent dense area assumes that dark areas of a mammogram are composed of lipid, SXA
directly measures the density of areas that appear to be only fat. Adipose tissue contains
water that contributes to density in the SXA calculations. As shown in Table 1, the percent
fibroglandular volume was higher on average than percent dense area (44.5% versus 27.1%
for controls). This is likely due to the fact that SXA estimates of density includes all lean
tissue, including the density from water in the adipose tissue, whereas percent dense area
does not. As shown in Figure 2, the lower limit of percent dense area is zero percent dense
area but approximately 18% for percent fibroglandular volume because the fatty breast will
still contain approximately 18% water.

Although the inclusion of adipose water in the fibroglandular compartment may limit
dynamic range to some degree, the approach is less noisy than more complicated models
that try to extract only parenchyma tissue since no approximations of skin thickness or
hydration of the fat are used in the calculation of density. Free water in adipose tissue does
vary for individuals and a constant value cannot be used for the general case. In magnetic
resonance imaging studies measuring breast total water content versus either delineated
fibroglandular volume or percent dense area, the adipose %water (at 0, zero percent dense
area) was found to be 14% from Graham et al. (30) and 18% from Boyd et al. (31).

Our study has limitations. First 40% of the participants were excluded due to lack of
phantom calibration that arose from technical issues regarding the position and construction
of the phantom. These issues have since been resolved in later generation phantoms by
placing the phantom on top rather than between compression paddles, and eliminating
moving parts (32). Secondly, our results were based on digitized film data. A majority of
systems in the US are now full-field digital mammography systems that have improved
linearity and dynamic range. Thus these results should be reproducible in newer
mammography systems to a similar if not improved accuracy. Studies using SXA on full-
field digital mammography systems are ongoing. In addition, BI-RADS density scores were
not available and comparisons to this standard clinical measure could not be made.

We conclude that fibroglandular volume and percent fibroglandular volume, estimated with
the SXA method, are strong predictors of breast cancer, and more accurate predictors of
breast cancer risk than percent dense area.
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Figure 1.
Percent fibroglandular volume and fibroglandular volume, plotted as the log value,
compared to percent dense area. Although percent fibroglandular volume was highly
correlated to percent dense area, the log(fibroglandular volume) weakly correlated.
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Figure 2.
Breast density histograms for the cases and controls: (a) percent dense area, (b) percent
fibroglandular volume, (c) fibroglandular volume.
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Table 1

Baseline and mammographic characteristics of the participants*.

Variable Cases N= 275 ** Mean (SD) Controls N= 825 Mean (SD) P-value ‡

Age (yrs) 57.1 (11.3) 57.0 (11.3) 0.95*

BMI (kg/m2) 25.0 (5.0) 24.1 (4.0) 0.004

Percent dense area 31.2 (16.5) 27.3 (16.3) < 10-3

Percent fibroglandular volume 48.6 (17.1) 44.5 (17.0) < 10-3

Fibroglandular volume (ml) 243 (136) 194 (99.1) < 10-4

N (%) N (%)

Age at 1st live birth 0.042

 < 30 yrs 92 (33.5) 333 (40.4)

 None or >= 30yrs 183 (66.5) 492 (59.6)

First degree relative with BC † 0.003

 Yes 65 (23.6) 130 (15.8)

 No 210 (76.4) 695 (84.2)

Menopause 0.912

 Yes 184 (66.9) 555 (67.3)

 No 91 (3.1) 270 (32.7)

Postmenopausal hormone therapy 0.56

 Yes 38 (15.3) 107 (13.8)

 No 211 (84.7) 670 (86.2)

 Unknown 26 48

Race 0.99

 White 174 (63.3) 524 (63.5)

 Asian § 75 (27.3) 227 (27.5)

 Black 7 (2.5) 22 (2.7)

 Other 19 (6.9) 52 (6.3)

*
matched by age, race/ethnicity, and mammography system

**
The median time interval between the mammogram used for the breast density measures and the diagnosis of cancer was 2.3 years.

‡
The P-value was calculated by Chi square for categorical variables and t test or Mann-Whitney U test for continuous variables when appropriate.

†
First-degree relative with breast cancer was defined as mother, sister, or daughter with breast cancer.

§
Chinese, Japanese, Vietnamese, Filipino, or other Asian
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