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Alzheimer’s disease patients have deficits in specific cognitive domains, and susceptibility genes for this disease may influence
human cognition in nondemented individuals. To evaluate the role of Alzheimer’s disease-linked genetic variation on cognition
and normal cognitive ageing, we investigated two Scottish cohorts for which assessments in major cognitive domains are available:
the Lothian Birth Cohort of 1921 and the Lothian Birth Cohort of 1936, consisting of 505 and 998 individuals, respectively.
158 SNPs from eleven genes were evaluated. Single SNP analyses did not reveal any statistical association after correction for
multiple testing. One haplotype from TRAPPC6A was associated with nonverbal reasoning in both cohorts and combined data
sets. This haplotype explains a small proportion of the phenotypic variability (1.8%). These findings warrant further investigation
as biological modifiers of cognitive ageing.

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease, and it is predicted to affect over a million
people in the UK by 2025 (Dementia UK 2007 report). AD
is characterised initially by impaired episodic memory [1]
and, as the disease progresses, other cognitive deficits appear,
particularly in attention and executive functions, semantic
memory, language, and spatial orientation [2, 3].

AD is a genetically heterogeneous disease. Mutations in
three genes (the amyloid precursor protein, APP; presenilin
1, PS1; presenilin 2, PS2) are known to cause a rare early-
onset form of AD [4–6]. The most common form of AD
occurs sporadically and with a late age at onset. Until
recently, the only well-replicated risk factor for this form
of AD was the ε4 allele of the apolipoprotein E (APOE)

gene [7]. However, three recent genome-wide association
studies (GWASs) have identified four new candidate genes
for sporadic AD—BIN1, CLU, CR1, and PICALM—and one
new genomic region near BLOC1S3/EXOC3L2/MARK4 [8–
10]. Associations with CLU, CR1, and PICALM have been
replicated [11–13].

Nonpathological age-related cognitive decline is a major
and growing concern in developed societies [14]. General
cognitive ability is an important predictor of life outcomes,
including in old age. The determinants of normal cognitive
ageing are not fully understood, but are likely to include
both genetic and environmental influences [14]. Genetic
influences on cognitive ability increase from about 30% in
childhood to as much as 80% in later adulthood, and these
decrease slightly in very old-age when, probably, stochastic
effects become relatively more important [15]. As is still
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Table 1: Details of the Lothian Birth Cohorts of 1921 and 1936.

LBC1921 LBC1936

Total 505 998

Females (%) 296 (58.7) 494 (49.5)

Males (%) 209 (41.3) 504 (50.5)

Mean age in years1 (± s.d) 10.9 ± 0.28 10.9 ± 0.28

Mean age in years2 (± s.d) 79.11 ± 0.57 69.58 ± 0.83

≥1 APOE ε4 allele 135 287

no APOE ε4 allele 370 672
1
Mean age at original test date, 2Mean age when revisited.

true for many complex phenotypes, there are few replicated
genotype-phenotype associations with cognitive ageing [15,
16]. There is suggestive evidence for genes such as BDNF and
COMT but, to date, APOE is the only gene that has been
consistently shown to have a significant, but small, influence
on age-related cognitive decline [17]. We hypothesise that
other genes involved in AD may play a role in normal
cognitive ageing. Indeed, a recent study has described the
association of variants in the CLU and PICALM genes with
cognitive function [18].

Here, we examine genetic variants from the APP, PS1,
PS2, BIN1, CLU, CR1, PICALM genes, and the region
surrounding the BLOC1S3/EXOC3L2/MARK4 genes on
chromosome 19 in two large, phenotypically well-defined
cohorts, the Lothian Birth Cohorts of 1921 and 1936 [19, 20].
The individuals in these cohorts took a general mental ability
test in childhood and then took a range of mental tests in old
age. They are, therefore, unusually useful in understanding
the genetic contributions to cognitive change across most
of the human life course. The APOE gene has previously
been investigated in these cohorts and shown to explain a
small percentage (0.005–0.01) of the variance associated with
the general cognitive factor, two nonverbal tests, and choice
reaction time variability [21–24].

2. Materials and Methods

2.1. Sample. The samples examined were the Lothian Birth
Cohort of 1921 (LBC1921) and the Lothian Birth Cohort
of 1936 (LBC1936). They were born in 1921 and 1936,
respectively and, at a mean age of 11 years, they were tested
on general cognitive ability by means of the Scottish Mental
Survey of 1932 (SMS1932) or the Scottish Mental Survey
of 1947 (SMS1947) (each cohort has a mean age = 10.9 ±
0.28 years). Since 1999 for LBC1921 and 2004 for LBC1936,
a number of the original Surveys’ participants who were
living in the Edinburgh area of Scotland have been revisited.
Participants from LBC1921 were tested for a variety of
cognitive phenotypes at approximately 79 years of age (mean
age = 79.11 ± 0.57 years), whereas participants from the
LBC1936 were tested at approximately 70 years of age (mean
age = 69.58 ± 0.83 years) (Table 1) [19, 20].

Individuals were excluded from this study if there was
a personal history of dementia, if they had an MMSE score
of less than 24, or if they did not have GWAS data. Four

individuals were removed from the LBC1921 due to a family
history of dementia, and eight were removed due to MMSE
< 24. Seven individuals were removed from the LBC1936
with MMSE < 24. The total number of participants included
from the LBC1921 was 505 (41.3% male: 58.7% female), and
the total number of participants from the LBC1936 was 998
(50.5% male: 49.5% female) (Table 1).

The LBC1936 was used as the discovery cohort. Sig-
nificant results meeting the chosen statistical criteria were
carried forward and investigated using the LBC1921.

2.2. Cognitive Tests. Individuals from the LBC1936 were
tested on the Moray House Test (MHT) no. 12 at age 11
(10.9 ± 0.28 years) and subsequently at age 70 (69.58 ± 0.83
years) [19]. At age 70, they were also tested for a variety of
cognitive phenotypes, with the ones of interest to this study
being verbal fluency (a test of executive function using the
letters C, F, and L) [25], matrix reasoning (a subtest from
the Wechsler Adult Intelligence Scale-IIIUK used to assess
nonverbal reasoning) [26], and logical memory (a test of
immediate and delayed verbal declarative memory from the
Wechsler Memory Scale-IIIUK) [27].

Individuals from the LBC1921 were tested on the MHT
no. 12 at age 11 (10.9 ± 0.28 years) and subsequently at age
79 (79.11 ± 0.57 years) [20]. This cohort’s participants were
tested for three cognitive phenotypes; verbal fluency (exactly
as applied in the LBC1936), Raven’s Standard Progressive
Matrices (a test of non-verbal reasoning) [28], and logical
memory (a test of immediate and delayed verbal declarative
memory from the Wechsler Memory Scale-Revised [29].

From this point forward, age 11 for both cohorts
indicates 10.9 ± 0.28; age 70 for the LBC1936 cohort
indicates 69.58 ± 0.83 years; age 79 for the LBC1921 cohort
indicates 79.11 ± 0.57 years.

2.3. Genotyping. Genomic DNA from the LBC1936 cohort
was isolated from whole blood by standard procedures at the
Wellcome Trust Clinical Research Facility (WTCRF), Genet-
ics Core, Western General Hospital, Edinburgh. Genomic
DNA from the LBC1921 cohort was isolated from whole
blood by standard procedures at Medical Research Council
(MRC) Technology, Western General Hospital, Edinburgh.
All samples were genotyped at the WTCRF Genetics Core
with the Illumina Human 610-Quadv1 chip as part of a
larger study [30]. SNPs were included in the analyses if
they met the following conditions: call rate ≥ 0.98, minor
allele frequency ≥ 0.01, and Hardy-Weinberg Equilibrium
test with P ≥ .001 [30]. For this study, specific SNPs
were selected from the GWAS data set. Genomic regions
approximately 5 kb upstream to 5 kb downstream of each
candidate gene were identified using positional information
from the Santa Cruz Genome Browser, March 2006 Assembly
(NCBI36) (http://genome.ucsc.edu/) [31]. All SNPs with
available genotype data from each region were used in this
study. A further five SNPs that showed association with
sporadic AD were included: four that were outside the above
genomic regions and one that was within the genomic region
but that had not been genotyped. This SNP (rs6656401)
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was imputed using the HapMap phase II CEU data (NCBI
build 36 (UCSC hg18)) as the reference sample and MACH
software. The imputation quality score for this SNP was
high (r2 = 0.92). A total of 158 SNPs were selected; 66
from APP, 9 from PS1, 6 from PS2, 17 from BIN1, 6 from
CLU, 9 from CR1, 29 from PICALM, and 16 from the
BLOC1S3/EXOC3L2/MARK4 region, which included three
SNPs from the 5′ end of TRAPPC6A gene (Table S1). APOE
haplotype data were available for all samples.

2.4. Statistical Analysis

2.4.1. Significance Threshold. To determine the correct level
of significance for regression and haplotype analyses of
the LBC1936 cohort, a spectral decomposition program,
SNPSpD, was used [9]. SNPSpD calculates an approximate
estimate of the effective number of independent SNPs using a
previously described method [32]. A Bonferroni calculation
using this number of SNPs was used to determine the
appropriate level of significance for regression and haplotype
analysis. A significance level for pairwise interaction analyses
of the LBC1936 cohort was determined using α = 0.05/x,
where x = n(n − 1)/2 (n = effective number of independent
SNPs) [33].

2.4.2. Cognitive Phenotypes. Standardized residual scores
were calculated for each cognitive phenotype to incorporate
age at time of testing and gender, using linear regression in
SPSS, v14.0.

2.4.3. Association Analysis. Unless otherwise noted, all sta-
tistical analyses were carried out using PLINK v1.07 (http://
pngu.mgh.harvard.edu/purcell/plink) [34]. Three approach-
es to association analysis were used.

The first approach examined all SNPs in relation to
the selected cognitive phenotypes and applied a stringent
Bonferonni threshold to the P values. Linear regression
analysis was performed under an additive model in PLINK.
Additional analyses included two covariates; (i) the presence
or absence of an APOE ε4 allele and (ii) general cognitive
ability at age 11 (MHT score adjusted for age) to adjust
for prior cognitive ability. Using general cognitive ability
at age 11 as a covariate enables the role of each SNP in
cognitive ageing to be explored. Two stratified data sets,
with or without the APOE ε4 allele, were analysed similarly.
Adaptive permutation analysis was carried out on all linear
regression analyses.

The second approach was haplotype analysis. Each gene
was examined for association with cognitive phenotypes
using a sliding window of three SNPs, shifting one SNP at
a time. Two stratified data sets, with or without the APOE
ε4 allele, were analysed similarly. In the haplotype analysis,
the presence or absence of an APOE ε4 allele and general
cognitive ability at age 11 (MHT score adjusted for age) were
not used as covariates. SNP regions meeting the significance
threshold were analysed using max(T), a label swapping-
based permutation method.

The third and final approach used pairwise interaction
analysis to determine any effect of gene-gene interaction on
the association with cognitive phenotypes. The full data set
and two stratified data sets, with or without the APOE ε4
allele, were analysed similarly. In the pairwise interaction
analysis, the presence or absence of an APOE ε4 allele and
general cognitive ability at age 11 (MHT score adjusted
for age) were not used as covariates. The results file was
controlled so that only associations having P ≤ .0001
were reported. Additionally, only where SNPs were located
in different genes are the pairwise interactions described
here. Significant interactions were analysed using a one-way
ANOVA in SPSS v14.0. To examine each interaction, both the
cognitive mean of each genotype (aabb, aaBB, aaBb, AAbb,
Aabb, AABB, AABb, AaBB, AaBb) and the cognitive mean
of the groups representing the presence or absence of each
minor allele (aabb, aaB-, A-bb, A-B-) were compared (where
a and b represent the minor allele of each SNP).

2.4.4. Linkage Disequilibrium Analysis. Linkage disequilib-
rium (LD) values were generated and visualised using
Haploview [35].

3. Results

3.1. Significance Threshold. 158 SNPs in total were selected
for analysis in this study (Table S1 in Supplementary
Material available online at doi:10.4061/2011/505984). The
LBC1936 cohort was used as a discovery sample and the
LBC1921 cohort as a replication cohort. Different signifi-
cance thresholds were applied to each cohort. To determine
an appropriate threshold for analyses of the discovery cohort,
two methods were used. Spectral decomposition analysis
calculated that the approximate estimate of the effective
number of independent SNPs was 89.24. Therefore, in
our regression and haplotype analyses, only where P ≤
.00056 (α = 0.05/89.24), were results considered significant
associations. For pairwise interaction analysis, only where
P ≤ .000013 (α = 0.05/x, x = [89.24 (89.24-1)]/2) were
results considered significant associations. max(T) permuta-
tion analysis was carried out on significant haplotype results,
and a significance threshold of P ≤ .05 was applied to the
results. Results with P ≤ .05 were considered significant in
our replication cohort.

3.2. Association of AD SNPs with Cognitive Phenotypes. No
individual SNP in the LBC1936 was associated with any
cognitive phenotype in the overall or APOE stratified sample
at P ≤ .00056 (Table S2, Table S3).

3.3. Association of AD Gene Blocks with Cognitive Phenotypes.
Tables S4, S5, and S6 detail the effect of each 3-SNP window
on each cognitive phenotype in the complete LBC1936 data
set and in the LBC1936 data sets stratified for presence or
absence of the APOE ε4 allele.

Two 3-SNP windows, comprising four adjacent SNPs
from BIN1, reached our corrected P value level (P ≤ .00056)
with general cognitive ability at age 11 (MHT adjusted) in
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the overall LBC1936 sample (Table 2). These results were not
replicated in the LBC1921 and were nonsignificant following
permutation analysis of both the LBC1936 and the combined
data set.

Two separate 3-SNP windows from the APP locus
reached significance with logical memory in the APOE
ε4 positive subgroup (Table 2). These SNP windows were
not significant postpermutation analysis of the LBC1936.
Further, this result was not replicated in the LBC1921 or
following permutation analysis of the combined sample.

One 3-SNP window from the TRAPPC6A locus reached
significance with matrix reasoning in the APOE ε4 negative
subgroup (Table 2). Though not significant postpermutation
analysis in the LBC1936, this finding was replicated in the
LBC1921 and in post permutation analysis of the combined
cohort.

3.4. Gene-Gene Interaction Analysis. Tables S7 11 detail the
results obtained in the pairwise interaction analyses with
each cognitive phenotype in the LBC1936. Data were extra-
cted for interactions if P ≤ .0001. Results were considered
significant if P ≤ .000013.

One SNP-SNP interaction from the chromosome 19
locus (MARK4, rs344807) and APP (rs12482753) was sig-
nificantly associated with general cognitive ability at age 70
(MHT adjusted for age) in the APOE ε4 negative LBC1936
subset (Figure 1; Table 3). However, analysis of the cognitive
means for each genotype group indicated that the association
was due to the low score of a single individual who expressed
the aaBb genotype. Analysis of the cognitive means of the
four groups representing the presence or absence of the
minor alleles showed no significant difference, and following
the removal of the aaBb individual the genotype result was no
longer significant (results not shown). This interaction was
not replicated in the LBC1921.

A single SNP-SNP interaction from PS1 (rs214260) and
APP (rs440666) was significantly associated with verbal
fluency in the APOE ε4 negative LBC1936 subset (Figure 1;
Table 3). Analysis of the cognitive means for each genotype
group indicated that the association was due to the lower
verbal fluency scores of the group expressing the Aabb
genotype; however, analysis of the cognitive means of the
four groups representing the presence or absence of the
minor alleles showed no significant difference (results not
shown). This interaction was not replicated in the LBC1921.

One SNP-SNP interaction from BIN1 (rs10200967) and
APP (rs2830036) was significantly associated with verbal
declarative memory in the APOE ε4 positive LBC1936 subset
(Figure 1; Table 3). Analysis of the cognitive means for each
genotype and for the four groups representing the presence
or absence of the minor alleles indicated that this association
was due to the low logical memory scores of two individuals
homozygous for each minor allele (Figure 2). Although not
a direct replication of the result observed in the LBC1936
cohort, two BIN1-APP interactions approached significance
in the LBC1921 cohort. The associations were observed
with the BIN1 SNP (rs10200967) that was associated in the
LBC1936 APOE ε4 positive sample set, but with two different

APP SNPs: rs396969 and rs383700 (Table 3). The two APP
SNPS were in complete LD (Figure 1). Both interactions
were associated with higher logical memory scores, with
the opposite of that observed in the LBC1936. Analysis
of the cognitive means for each genotype indicated that
both associations were due to the high logical memory
score of one individual homozygous for each minor allele.
Following the removal of this individual, this result was no
longer significant (results not shown). No BIN1-APP SNP
interactions were observed in the APOE ε4 positive samples
in LBC1921, and there was no significant interaction when
the samples were combined.

A single SNP-SNP interaction from PS2 (rs1150895) and
PICALM (rs3851179) was significantly associated with verbal
declarative memory in the APOE ε4 negative LBC1936 subset
(Figure 1; Table 3). Analysis of the cognitive means for each
genotype group indicated that the association was due to
the higher logical memory scores of the groups expressing
either the AAbb or aaBB genotype compared to the AABB
genotype. Further analysis of the cognitive means of the four
groups representing the presence or absence of the minor
alleles showed that aaBB and aaBb individuals had higher
logical memory scores than other allele groups (results not
shown). This interaction was not replicated in the LBC1921.

4. Discussion

In this study, we have screened polymorphisms from three
causal and five putative risk genes for Alzheimer’s disease in
two cohorts with extensive and unique cognitive phenotypes
available. Evidence was found to suggest a role for variation
in a gene at the chromosome 19 locus, APP and BIN1 in
cognitive ability.

Each gene will be discussed individually.

4.1. Chromosome 19 Locus. A genomic locus on chromosome
19 was recently implicated in a single LOAD-GWAS [10]. It
identified a locus distal to and not in linkage disequilibrium
with APOE. The SNPs chosen in this study span the 5′

end of the TRAPPC6A gene and cover BLOC1S3, EXOC3L2,
MARK4, and the 3′ end of the CKM gene.

One 3-SNP window located at the 5′ end of the
BLOC1S3/EXOC3L2/MARK4 region was significantly asso-
ciated with non-verbal reasoning in individuals lacking an
APOE ε4 gene in the LBC1936 data set. This SNP window
consisted of the SNPs (rs7247764, rs28555639, rs12460041)
located at the 5′ end of the TRAPPC6A gene. They span a
genomic region of 1442 bp and are in complete LD (D′ =
1). The genotype of this associated haplotype was TTT,
and it was the most common haplotype ( f = 0.70). This
haplotype was associated with a small decrease in Wechsler
matrix reasoning scores (β = −0.21) and explained 1.8%
of the variation in the LBC1936. This was replicated in the
LBC1921 cohort (β = −0.18), where it explained 1.3% of
the variation in Raven’s Standard Progressive Matrices scores.
Permutation analysis of the combined data set confirmed this
result.
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Figure 1: Genomic structure of positively associated genes. (a) Genomic structure of APP, BIN1, and chromosome 19. Highlighted are the
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Figure 2: The interaction of an SNP pair from BIN1 and APP is likely to influence logical memory in the APOE ε4 positive subset of
LBC1936. Analysis of both the (a) genotype cognitive means and (b) the allele specific means shows that the initial positive result is due to
two individuals carrying both minor alleles, aabb. Genotype legend; 11 = AaBb, 10 = AaBB, 01 = AABb, 00 = AABB, 12 = Aabb, 01 = AAbb,
21 = aaBb, 20 = aaBB, 22 = aabb. Allele legend; 1 = aabb, 2 = aaB-, 3 = A-bb, 4 = A-B-.

The SNP associated with LOAD in the recent GWAS
study [10], rs597668, is located in an intergenic region
between TRAPPC6A and EXOC3L2. This SNP was included
in our study although we did not observe an association
with any cognitive phenotype. The TRAPPC6A haplotype is
located 31573 bp from the GWAS SNP, and analysis of the
LD in this region shows that SNPs from the haplotype were
not in the same LD block as the GWAS SNP (D′ = 0.22),
so it is unclear whether our results are detecting the same
effect. Replication of the TRAPPC6A haplotype is required
in a larger cohort.

4.2. APP. APP was the first disease gene identified in familial
AD [4]. It is a transmembrane protein, and sequential
cleavage by β- and γ-secretase releases the β-amyloid peptide.
Although the exact role of the APP protein is unknown, it is
considered central to AD pathogenesis.

Two 3-SNP windows at the APP locus, each consisting of
three SNPs, were associated with verbal declarative memory
in individuals carrying at least one APOE ε4 allele in the
LBC1936. These results correspond to two genomic regions
located at the 3’ end of the APP gene. The first region
consisted of three SNPs, rs2829997, rs440666, and rs2014146,
and spanned 8163 bp. These SNPs were in high LD (D′ > 0.7)
and constituted a haplotype block. The associated haplotype,
with genotype GTG, was rare, with a frequency of 0.013.
This haplotype, APP Hap1, was associated with a decrease in
logical memory scores (β = −1.312) and explained 4.3% of
the variation. The second genomic region spanned 7326 bp
and consisted of three SNPs, rs1783025, rs380417, and
rs1787438. These SNPs are located near known pathogenic

AD mutations, in sites encoding the α, β, and γ-secretase
sites. The latter two SNPs were in complete LD (D′ = 1);
however, rs1783025 was not (D′ 0.48, 0.64 with rs380417,
rs1787438, respectively). The associated genotype, TTG, was
rare, with a frequency of 0.053. This genotype was associated
with an increase in logical memory scores (β = 0.72)
and explained 4.8% of the variation. These two genotypes
explain a small, but important, amount of the variance, 4.3%
and 4.8% respectively, especially considering that APOE ε4
contributes 0.5–1% to variance in cognitive traits. However,
these results were not replicated following permutation
analysis. Further, this effect was not observed in the LBC1921
or in the combined data set.

These results may not have been replicated in the
LBC1921 cohort for a couple of reasons: the replication
cohort contains fewer individuals and the logical memory
test used with the LBC1921 cohort differed slightly from that
used with the LBC1936 cohort. Nonetheless, the haplotype
frequencies are consistent between cohorts and, although
not significant, LBC1921 individuals with APP Hap1 (GTG)
have lower logical memory scores while individuals with
the second associated genotype (TTG) have higher logical
memory scores in the LBC1921.

Further evidence of a role for APP in logical memory
was obtained in our gene-gene interaction analysis. SNPs
at the APP locus were observed to statistically interact
with polymorphisms at the BIN1 locus to influence verbal
declarative memory.

4.3. BIN1. BIN1 was identified as a putative risk factor for
LOAD in a recent GWAS study [10]. It encodes several
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isoforms that are expressed in the central nervous system and
may be involved in synaptic vesicle endocytosis.

An interaction between rs10200967 (BIN1) and
rs2830036 (APP) was significantly associated with verbal
declarative memory in the APOE ε4 positive LBC1936
subset. Further analysis showed that this was due to the
low logical memory scores of two individuals expressing
both minor alleles of rs10200967 (C, BIN1) and rs2830036
(T, APP) (Figure 2). This result was not replicated in the
LBC1921 cohort or in the combined analysis.

However, these results are consistent with the association
of APP Hap1, GTG, which is associated with a similar
decrease in logical memory scores in the APOE ε4 positive
subset of LBC1936. The APP SNP involved in the APP-BIN1
interaction (rs2830036) is located 5′ to APP haplotype 1
but there are low levels of LD between them (D′ = 0.34).
Indeed the two individuals contributing to the interaction
association do not carry the APP Hap1 genotype associated
with a decrease in logical memory scores (APP Hap1
genotype, GTG; individual genotypes, both AA-CC-AG).

Although the BIN1-APP interaction was not replicated
in the LBC1921, an association approaching significance
was observed with variants from APP and BIN1 and verbal
declarative memory in the overall LBC1921 cohort. This
was due to the higher logical memory score of a single
individual expressing both minor alleles of the two SNPs
(BIN1, rs10200967; APP, rs396969 and rs383700), so may
not hold up in a replication study. The two APP SNPs
involved in this interaction were in LD (D′ = 0.98) with
the second APP region, genotype TTG, which was associated
with higher logical memory scores in the APOE ε4 positive
subset of LBC1936. Again, the individual responsible for the
interaction result did not carry the haplotype associated with
increased logical memory scores (APP region 2 genotype,
TTG; individual genotype, CT-TT-TT).

The two BIN1 SNPs involved in the association of
APP-BIN1 with verbal declarative memory (rs10200967 and
rs4663098) are located near to the 5′ end of the BIN1 gene.
There is high LD in this region of BIN1, and the SNP
associated with LOAD in the recent GWAS, rs744373, is
located 21580 bp 5′ of rs4663098 (D′ = 0.93). There are
no current reports of an in vivo interaction between BIN1
and APP. However, APP is a transmembrane protein and is
transported through the secretory pathway. It is possible that
through its role in endocytosis, BIN1 may interact with APP.

5. Conclusions

This study indicates that gene specific variation and gene-
gene interactions may influence cognition. Our strongest
results implicate a role for a haplotype at the TRAPPC6A
locus in non-verbal reasoning in individuals lacking the
APOE ε4 allele. A less clear role for APP and BIN1 in influ-
encing verbal declarative memory in individuals carrying at
least one APOE ε4 allele is suggested.

The effect sizes we have observed in this study are small.
Indeed, despite the comparability of genomic LD structure,
the majority of these associations were not replicated in

the LBC1921 cohort. However, it should be noted that the
replication cohort (n = 505) is smaller than the discovery
cohort (n = 998). Particularly, our main results were
observed in the smaller APOE stratified groups. In addition,
the individuals in each cohort were retested at different ages;
the LBC1921 were re-tested at age 79, while the LBC1936
were re-tested at age 70, and not all cognitive tests used were
all identical, although they were similar.

The results presented here were obtained with SNPs
not previously associated with sporadic AD, suggesting
that either allelic heterogeneity or a functional SNP is not
yet identified (Table 4). Nonetheless, the results presented
here identify interactions between recently identified and
previously known AD genes and provide an interesting
insight into potential molecular pathways underlying cog-
nitive traits. They require further investigation in larger
identically phenotyped cohorts.
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