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Abstract
From flocking birds, to organ generation, to swarming bacterial colonies, biological systems often
exhibit collective behaviors. Here, we review recent advances in our understanding of collective
dynamics in cell populations. We argue that understanding population-level oscillations requires
examining the system under consideration at three different levels of complexity: at the level of
isolated cells, homogenous populations, and spatially structured populations. We discuss the
experimental and theoretical challenges this poses and highlight how new experimental
techniques, when combined with conceptual tools adapted from physics, may help us overcome
these challenges.

Introduction
Collective behaviors are ubiquitous in biological systems. At the molecular level, proteins
often aggregate into self-organized structures such as spindles [1]. At the cellular level,
unicellular organisms often form structured communities composed of many individuals [2–
4]. At the level of organisms, birds and fish colonies exhibit dramatic emergent behaviors
such as flocking [5–7] and schooling [8–10] (see Figure). Our understanding of collective
behaviors in biological systems, however, is still in its infancy, highlighting the crucial need
to study systems where the link between macroscopic behavior and the microscopic
components that make up the system can be probed directly through experiments. This
review focuses on one class of systems where such an approach is possible: the collective
dynamics in cellular populations.

In their natural environments, cells often undertake complex collective behaviors in
response to environmental and population cues [11,12]. Thus, understanding how cells
behave in the wild requires characterizing not only the behavior of isolated cells but also
how environmental signals combine with cell-to-cell communication (such as quorum
sensing [13] and autocrine signaling [14]) to give rise to observed behaviors at the
population level. Doing so requires us to examine how the cooperative behaviors of cell
colonies differ from those of isolated cells and conversely, how the properties of single cells
generate and explain the observed communal behavior.
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The challenges inherent in this research program are summarized by Phil Anderson’s
famous declaration “More is Different” [15] - namely, systems composed of many
interacting components will exhibit new emergent behaviors that cannot be understood
simply by looking at the behavior of the individual components that make up the system.
Whereas Anderson largely had in mind physical systems, biological systems pose additional
challenges not encountered in physics. The collective behavior of cellular populations often
require cells to integrate information from a wide variety of sources in order to perform a
desired task such as cellular aggregation or cellular differentiation [16,17]. These challenges
highlight the critical need to simultaneously observe the behavior of individual cells within a
population, the behavior of the population as a whole, and to measure the relevant signaling
and environment induced interactions between cells.

Oscillations in communicating cell populations
A particularly attractive system to study collective behaviors is provided by communicating
cell populations that display rhythmic activities in the form of intracellular oscillations of
signaling molecules or gene expression. Collective cellular oscillations play an important
role in a wide variety of biological systems [18], ranging from neural systems [19] to the
social amoebae Dictyostelium discoideum, where synchronized oscillations lead starved
cells to aggregate [20–25], to glycolytic and non-glycolytic oscillations in yeast populations
[26–32], to oscillations in the pancreatic islets which control insulin secretion [33,34].
Recently, even bacteria have been synthetically engineered to exhibit collective oscillations
[35]. Oscillations represent an especially tractable example of collective behavior because
the link between macroscopic behavior and molecular interactions can be readily
experimentally tested. Oscillations are easy to observe experimentally, can be unmasked
even in noisy data using analytical tools such as Fourier transforms, and there exist a large
body of theoretical work to help interpret existing and guide new experiments. In addition,
such systems are amenable to theoretical analysis using ideas from theory of dynamical
systems [36–38].

Understanding collective oscillations requires disentangling behaviors at three different
levels of complexity (see Figure). At the cellular level, it is necessary to characterize how
cellular networks of genes and proteins allow single cells to respond to external signals
(such as environmental cues and signaling molecules) as well as how these signals control
the production of secreted molecules that are involved in cell-to-cell communication. The
behavior of single cells must then be related to the behavior of cellular populations by
exploring how system parameters, such as cell-density, change the collective dynamics.
Finally, one must understand the spatial dynamics of these cellular oscillation processes.
The main challenge faced when studying such systems is to understand how behaviors at
lower levels of complexity shape and give rise to the behaviors seen at higher levels of
complexity [15].

Recently, this program has been carried out with some success in two systems, one natural
and the other synthetic. Gregor et al. [25] used a FRET-sensor to measure internal levels of
the signaling molecule cAMP [39,40]. They showed that isolated Dictoystelium amoeba
behave like an excitable system, with individual cells capable of generating sustained
oscillations in response to elevated levels of external cAMP. They then related these single-
cell oscillations to the synchronized, cell-density-dependent oscillations exhibited by
homogeneous cell populations and mapped out a phase diagram indicating under what
conditions collective oscillations occur. The external cAMP level was identified as the
control parameter that determines the oscillatory state of the system. Finally, they observed
small populations of Dictoystelium cells on agar where they showed that the first cell that
randomly pulses entrains the rest of the population in rhythmic activity. The ensuing
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synchronized oscillations gave rise to spatial, concentric waves, with cells eventually
aggregating at the wave origin, the spatial center from which the first oscillation pulse was
emitted. What was notable about these series of experiments was that Gregor et al. were able
to show that the system undergoes a collective transition from a non-oscillatory state where
all cells are quiescent to a state where all cells oscillate synchronously. Furthermore, they
showed that the transition does not result from specialized pacemaker cells, but is a direct
consequence of the excitable nature of individual cells.

Using tools from synthetic biology, Danino et al. [35] engineered a genetic circuit in E. coli
capable of generating synchronized oscillations in growing populations. One of the unique
features of the system is that a population of cells, that in isolation is incapable of
oscillating, exhibits collective oscillations when coupled using a quorum-sensing molecule.
The genetic circuits utilized components of the naturally occurring quorum-sensing
machinery in other bacterial species to induce a global coupling between cells [41,42].
Using cleverly designed microfluidic chambers (networks of micro-channels that house cells
in fluid flow) that allow bacteria to grow naturally while simultaneously holding the cell
density fixed, Danino et al were able to control the density of cells, and consequently the
external concentration of signaling molecules, to induce synchronized oscillations in cell
colonies. The experiments were then repeated in larger microfluidic chambers where spatial
inhomogeneities resulted in a multitude of fascinating phenomena such as traveling waves
and front propagation. What is groundbreaking about this work is that it provides proof of
principle that one can engineer the properties of a system at the level of a single cell to
control behavior at the level of cellular populations.

Both systems discussed above exhibit a cell-density dependent transition to collective
oscillations that has been termed “dynamical quorum sensing” [43,44]. This phenomenon
was first explicated in the context of glycolytic oscillations in yeast through a successful
combination of theory and experiment [43]. Dynamical quorum sensing relies on the mutual
synchronization of cells through the exchange of chemicals (metabolites in yeast, cAMP in
Dictyostelium, quorum sensing molecules for the engineered circuits discussed above).
Since the cells themselves produce the chemicals, the external concentration of the
chemicals reflects the local cell-density of the population. Collective oscillations emerge
when the external concentration, or equivalently cell-density, exceeds some critical
threshold. Thus, in dynamical quorum sensing, cell density information is encoded in the
collective intracellular dynamical state of the entire population. Finally, it is worth noting
that the term “dynamical quorum sensing” is used by various authors to refer to qualitatively
different types of density-dependent transitions. This highlights the need for a better
theoretical understanding of the qualitatively different ways that density-dependent
transitions to synchronized oscillations can occur.

Challenges in understanding collective behaviors
Understanding and manipulating collective behaviors in cellular systems poses a number of
new experimental and theoretical challenges. On the experimental side, the advent of
fluorescent markers has resulted in tremendous progress [45–47]. These markers include
derivatives of various fluorescent proteins that can be genetically encoded and directly tag
signaling proteins [48–53], as well as reporter constructs for smaller signaling molecules
such as ions (Ca2+) [54,55] and nucleotides (ATP, cAMP, cGMP) [56,57]. These markers
and sensors work very well inside cells where they are synthesized. However, understanding
the signaling that underlies collective behavior also requires measuring signaling molecule
concentrations in the extracellular space. This is particularly challenging when the
individual cells are not packed together but free floating in solution. Possible techniques that
may allow for the measurement of the extracellular, spatio-temporal dynamics of signaling

Mehta and Gregor Page 3

Curr Opin Genet Dev. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



molecules include engineering cells to artificially release sensors into the environment, as
well as tagging the outside of the cell membranes with sensor molecules. For example in
cortical astrocytes extracellular ATP release has been reported by both real-time imaging
using bioluminescence [58] as well as using chemiluminescence with cell surface-tagged
beads [59]. Extreme care has to be taken with these methods because genetically altering
cells, generally, can simply give rise to collective behaviors that differ from those exhibited
by wild-type cells. Alternatively, the experimenter could supply sensors externally by
coating the walls of the experimental setup or by continuous flow in solution. Both require
the highly controllable environments of miniature size provided by microfluidics [60–63].
Microfluidics refers to fluid flow in a network of micro-channels that houses cells and can
be integrated on disposable, low-cost Lab-on-a-Chip cartridges [64,65]. Cells can survive in
these environments, be easily tracked and still retain most of the natural characteristics
necessary to probe collective behaviors. The ability to perform live-cell imaging while
simultaneously measuring the spatio-temporal dynamics of both intra- and extra-cellular
signaling molecules is likely to greatly expand our understanding of collective behaviors in
cellular colonies over the next decade.

Mathematical and computational modeling will also likely play an important role in
expanding our understanding of cellular oscillations. Mathematical models have helped
shape our current understanding of Dictyostelium by pointing out important connections
with the theory of excitable systems – systems like neurons where a small change in inputs/
parameters can elicit large responses such as a spike [66,67] or the stochastic release of the
second messenger molecule Calcium which can give rise to sustained oscillations [68,69].
Mathematical models have also highlighted the importance of feedback loops and balancing
time scales for oscillations [70] as well as aiding the design of genetic circuits capable of
oscillations [35,71,72].

Despite these considerable achievements, theory has not kept pace with the rapid
experimental advances of the last decade. The need for new conceptual and theoretical
approaches to collective behavior in biological systems becomes even more clear when we
contrast our current level of understanding of biological systems to their physics
counterparts [15,73]. The major theoretical challenge is to understand how the microscopic
details of a system shape collective behaviors at larger scales. Though this theoretical
program seems daunting, we can draw on inspiration from the study of collective behavior
in physics. A unifying theme in the study of collective phenomenon in physics is the idea of
“universality” – the idea that many collective properties depend only on a few “relevant”
microscopic details of the system under consideration [74]. The role of theory is to identify
these relevant details and understand how they give rise to the observed behaviors at
macroscopic scales. Recent work suggests that universality is also likely to be relevant to
biological systems. For example, recent experiments demonstrate that despite its vast
complexity, the yeast cell-cycle network exhibits phase locking in response to a periodic
driving force, much like an idealized oscillator [75].

Another important implication of universality is that, often, there are only a few qualitatively
different collective behaviors a system can exhibit. For example, tools from dynamical
systems such as bifurcation theory allow for a classification of the qualitatively different
behaviors that can be exhibited by a neuron. Theoretical considerations also suggest that
there are likely only a few different ways that cells can undergo a density-dependent,
dynamical quorum sensing transition to synchronized collective oscillations [36,38]. The
accompanying table summarizes four common routes to synchronized oscillations seen in
nature. A key challenge facing researchers studying cellular rhythms is to relate the type of
dynamical quorum sensing transition exhibited by a system to relevant microscopic details
such as cell coupling. For example, Ref. [34] utilized ideas from percolation theory to show
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that altering the gap-junction couplings between cells can qualitatively affect the emergence
of collective calcium oscillations in the pancreatic islet.

A final theoretical challenge is that, in contrast with physical systems, biological systems
often use oscillations to perform a desired task in response to environmental and cellular
signals. The classical example being the aggregation of Dictyostelium cells in response to
starvation [24]. Thus, fully understanding biological rhythms requires integrating conceptual
tools from statistical physics and dynamical systems with tools for understanding signal
processing such as information theory [17,76].

Conclusion and Outlook
Collective oscillations in cellular systems represent a rich avenue of research for both
biology and the physical sciences. It is now clear that the behavior of cellular populations
arises from a complex interplay of components at the molecular and cellular levels.
Understanding this behavior will require us to develop new theoretical and experimental
tools linking the properties of single cells to those of cell populations. Ultimately, this
knowledge should allow us to control the behavior of entire cell populations simply by
manipulating the properties of isolated cells.
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Figure 1. Collective behaviors in biology at different levels of complexity
Top: Collective behaviors in biology exist at the molecular (mitotic spindle formation [1]),
the cellular (social amoebae aggregation [4]) and the organismal (schooling fish [8]) levels.
This review focuses on systems at the cellular level. Cellular organism retain many of the
interesting phenomena found in higher-order organisms such as information processing and
collective decision making, with the added advantage that behavior can be directly linked to
processes at the molecular level.
Bottom: Cellular systems can be analyzed at three different levels of complexity, at the level
of isolated cells, homogenous cell populations, and spatially-structured populations [77].
Understanding behavior requires systematic examination of these systems at all three levels
of complexity. The main challenge faced when examining these systems is to link behavior
at the single cell level to that of populations and vice versa.
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Table 1
Four roads to synchronized oscillations

1. Specialized pacemaker cells such as in the heart [78]. 2. Phase-locking and frequency-locking of
individually oscillating cells [79–82]. 3. Oscillator death in oscillators coupled with time delays [83,84]. 4.
Dynamic quorum sensing such as in the social amoebae [20] and yeast [36]

Type of transition Below the transition Mechanism

Pacemaker Cells are excitable. Pacemakers do not fire. Firing of specialized pacemaker cells trigger
oscillations.

Kuramoto (phase-locking) Individual cells oscillate at their natural frequencies An increase in the coupling strength results in phase
and/or frequency locking.

Oscillator Death Isolated cells oscillate at a wide range of frequencies.
However, when cells are coupled, individual cells do
not oscillate.

A decrease in the strength of the coupling between
oscillators leads to collective oscillations.

Dynamic Quorum Sensing Cells do not oscillate but can become oscillatory in
response to an external signal they themselves
produce.

An increase in cell density leads to a larger
concentration of the external signaling molecules.
When the concentration increases beyond the critical
concentration (i.e. bifurcation point), the cells start
collectively oscillating.
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