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Ambiphilic aromatic synthons—compounds possessing both electrophilic and nucleophilic
centers in the same molecule—are important building blocks that are widely used for a
modular construction of complex molecules in organic synthesis, medicinal chemistry, and
materials science.[1] Traditionally, they are accessed through multistep syntheses. One of the
most efficient strategies toward 1,2-ambiphilic structures involves directed ortho-metalation
(DOM) approach.[2] Our research group has recently developed the palladium-catalyzed
directed ortho-acyloxylation of pyridyldiisopropylsilyl (PyDipSi) arenes B[3] [Eq. (1)] based
on a C–H activation process.[4] Most importantly, we have shown that the PyDipSi directing
group[5] could efficiently participate in a variety of reactions as a nucleophilic entity.
Because the acyloxy group is known to serve as an electrophilic coupling partner,[6] the o-
acyloxylated PyDipSi-arenes can be formally considered as 1,2-ambiphiles. Taking into
account the immense synthetic potential of aryl halides as electrophilic reagents, we aimed
at the development of a general strategy for the synthesis of ortho-halogenated aryl silanes
C, which are much more powerful 1,2-ambiphiles. Herein, we report the palladium-
catalyzed ortho-halogenation reaction of easily accessible PyDipSi-arenes B into 1,2-
ambiphiles C and their further transformations to a variety of valuable building blocks.

(1)

First, we tested PyDipSi-arene 1a under a variety of halogenation reaction conditions in the
presence of 10 mol% of Pd(OAc)2 (Table 1).[4a,7] Initially, the palladium-catalyzed
bromination with 2 equivalents of NBS (N-bromosuccinimide) in PrCN at 80°C afforded
50% of the desired product 2 (Table 1, entry 1; Hal =Br). Further increase of temperature to
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100°C led to a slight improvement of the reaction outcome (Table 1, entry 2). Addition of 50
equivalents of acetic acid[7a,b] resulted in significant decrease of the reaction yield (Table 1,
entry 3). The employment of a stoichiometric amount of Cu(OAc)2 additive gave only traces
of brominated product (Table 1, entry 4). Remarkably, addition of 1.5 equivalents of
PhI(OAc)2 dramatically improved the reaction, and provided the bromination product in
80% yield (Table 1, entry 5). Performing the reaction at the elevated temperature (100°C),
however, gave a lower yield of 2 (Table 1, entry 6). Gratifyingly, switching solvent to 1,2-
dichloroethane allowed for a better reaction yield (85%) at lower temperature (60°C; Table
1, entry 7). Employment of NIS (N-iodosuccinimide) as a halogen source under these
reaction conditions produced iodinated aryl silane 2 in 95% yield (Table 1, entry 8; Hal =I).
On the other hand, employment of NCS (N-chlorosuccinimide) gave the chlorinated product
in a moderate yield only (Table 1, entry 9; Hal =Cl).

Next, the generality of the palladium-catalyzed ortho-halogenation of PyDipSi-arenes 1 was
examined. The iodination reaction with NIS in the presence of 1.5 equivalents of PhI(OAc)2
was studied first. We found this transformation to be efficient for a wide range of substrates,
which allowed for the synthesis of monoiodinated aryl silanes 2a–w in good to excellent
yields (Scheme 1). It was found that a variety of groups, including OMe (2b, 2k), F (2d, 2n),
Cl (2e), Br (2 f, 2l), ester (2g), and amide (2h) were perfectly tolerated under the
halogenation reaction conditions. Iodination of para-substituted aryl silanes possessing both
electron-donating (2b) and electron-withdrawing (2d–h) substituents proceeded with equal
efficiency. meta-Substituted substrates displayed excellent site selectivity in the iodination
reaction, and provided monoiodinated compounds as single regioisomers (2i–l). In addition,
ortho-iodination of m-, p-disubstituted aryl silanes (2m,n), and 2-naphthyl derivative (2o)
occurred uneventfully and furnished the desired products as sole regioisomers in high yields.
Next, the bromination reaction of 1 allowed for efficient synthesis of o-bromo aryl silanes
2p–r. Notably, chlorination of electron-rich aryl silane, possessing an OMe group para to
the functionalization site, was found to be more efficient than that of electron-neutral 1a
(Table 1, entry 9), thus producing chloro-derivative 2s in 69% yield. Finally, PyDipSi
derivatives of various heterocycles, such as benzofuran (2t), carbazole (2u), indole (2v), and
benzoxazole (2w), were monoiodinated in good yields. We find these results remarkable, as
6-halo derivatives of most of these heterocycles are not readily available and require
multistep preparation. These derivatives now can be accessed from the 5-haloprecursors of
the corresponding PyDipSi-heterocycles, which are either commercially available or can be
easily synthesized in one step.

Naturally, after the development of efficient palladium-catalyzed halogenation of aryl
silanes, we investigated possible transformations of the PyDipSi directing group (Scheme
2).[8] First, the reaction of 2c with AgF/H2O (2:3) in THF resulted in efficient removal of
the directing group, thus affording m-iodobiphenyl (6) in 97% yield.[9] Interestingly, the
overall three-step transformation of p-bromobi-phenyl into m-iodobiphenyl constitutes an
example of a formal Finkelstein/“1,2-halogen dance” reaction. Next, the iododesilylation
reaction of chlorobromoaryl silane 2e with NIS in the presence of AgF in THF allowed for
efficient preparation of 1-cloro-3-bromo-4-iodobenzene (3), which is a synthetically useful
and versatile building block for modular functionalization of the benzene ring. Furthermore,
iodoaryl silane 2i was efficiently converted into o-iodoaryl boronate 4,[10] which is another
powerful 1,2-ambiphile, in 87% yield by a one-pot sequence involving borodesilylation with
BCl3, and subsequent protection with pinacol.[11,12] Furthermore, borodesilylation of 2i and
subsequent oxidation with H2O2/NaOH afforded o-iodophenol 5 in 80% yield.

Further utility of o-halogenated PyDipSi-arene derivatives was demonstrated by a
convergent synthesis of unsymmetrically substituted benzo[b]silole 10 and dibenzosilole 15
(Scheme 3). First, treatment of 2i with HF at room temperature led to selective substitution
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of the pyridine group with fluoride,[13] thus providing fluorosilane 7 in excellent yield. Next,
o-iodoaryl fluorosilane 7 was alkynylated with potassium phenylethynyltrifluoroborate
under Suzuki reaction conditions[14] and produced 8 in 66% yield. Alternatively,
alkynylated aryl silane 8 can be accessed from 2i through a sequence involving Sonogashira
reaction[15] with phenylacetylene and subsequent substitution of the pyridine group with
fluoride. A subsequent reduction of silylfluoride 8 with LiAlH4 furnished silylhydride 9. 5-
Endo-dig cyclization of the latter in the presence of KH in DME[16] provided 10 in 72%
yield. En route to dibenzosilole derivative 15, o-iodoaryl silane 2i was subjected to Suzuki
coupling[17] with 4-methoxyphenylboronic acid and gave biphenylsilane 12 in 89% yield.
Next, substitution of the pyridine group in 12 with fluoride produced silylfluoride 13
quantitatively. Smooth reduction of 13 into hydride 14 and its subsequent electrophilic
cyclization reaction with trityl tetrakis(pentafluorophenyl)borate[18] resulted in formation of
dibenzosilole 15 in 71% yield (Scheme 3).

Definitely, o-benzyne is one of the most synthetically attractive 1,2-ambiphiles.[19] Because
o-silylphenyliodonium triflates are known to efficiently generate benzynes in the presence of
TBAF,[20,21] we decided to convert the iodide functionality in PyDipSi-arenes 2 into a better
leaving iodonium group. Accordingly, substrate 2e, after exchange of the pyridine group to
fluoride, was smoothly converted into the corresponding iodonium tetrafluoroborate 16
(Scheme 4).[22] Treatment of the latter with TBAF in CH2Cl2 allowed for the efficient
generation of benzyne 17, trapping of which with furan provided 1,4-
epoxydihydronaphthalene 18 in 89% yield. To the best of our knowledge, the above
sequence, taken together with the o-iodination of PyDipSi-arenes, represents the first
example of benzyne synthesis featuring C–H activation strategy.

In conclusion, we have developed a general and efficient strategy for the synthesis of 1,2-
ambiphilic aromatic and heteroannulated aromatic synthons. This method features
installation of the removable/modifiable PyDipSi directing group on haloarenes and
subsequent palladium-catalyzed directed ortho-halogenation reaction to give the o-
halogenated PyDipSi-arene derivatives. Synthetic usefulness of these 1,2-ambiphilic
building blocks was demonstrated in a variety of transformations, involving participation of
both nucleophilic aryl silane and electrophilic aryl iodide moieties. These transformations
include protio-, halo-, borodesilylations, and conversion of the PyDipSi group into the OH
functionality, as well as Suzuki and Sonogashira cross-coupling reactions of the aryl iodide
unit. Finally, the unique reactivity of these 1,2-ambiphiles was illustrated in convergent
syntheses of benzannulated silole derivatives, as well as in the efficient generation of o-
benzyne.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Palladium-catalyzed ortho-halogenation of aryl silanes. [a] Yield of isolated product. [b] See
Supporting Information for experimental details. [c] Reaction was performed in PrCN at
100°C. [d] Reaction was performed without PhI(OAc)2 and with 1 equivalent of NIS. Boc =
tert-butoxycarbonyl.
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Scheme 2.
Transformations of the PyDipSi group in haloarene derivatives. Reagents and conditions: a)
AgF (4 equiv), H2O (6 equiv), THF, RT, 12 h; b) AgF (4 equiv), NIS (4 equiv), THF, RT,
12 h; c) 1. BCl3 (4.4 equiv), DCM, 0 °C, RT, 6 h; 2. 30 wt% H2O2/3 wt % NaOH (excess),
H2O, RT, 12 h; d) 1. BCl3 (4.4 equiv), DCM, 0 °C, RT, 6 h; 2. pinacol (excess), Et3N/DCM
(1:1), RT, 12 h. THF = tetrahydrofuran.
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Scheme 3.
Synthesis of benzannulated siloles 10 and 15. Reagents and conditions: a) HF, THF, RT, 1
h; b) PhCCH, [{Pd(CH3CN)2}Cl2] (3 mol%), tBu3P (6 mol%), CuI (2 mol%), iPr2NH, 1,2-
dioxane, 60 °C, 12 h; c) PhCCBF3K, [{Pd(dppf)}Cl2]·DCM (10 mol%), Cs2CO3, THF,
reflux, 48 h; d) LiAlH4 (2.5 equiv), THF, reflux, 12 h; e) KH (1.4 equiv), DME, 5 h; f) 4-
MeO-C6H4B(OH)2 (1.2 equiv), [Pd2(dba)3] (5 mol%), tBu3P (10 mol%), K3PO4, 1,2-
dioxane, 70°C, 12 h; g) Ph3CB(C6F5)4, 1,6-lutidine, CH2Cl2, RT, 1 h. dba = trans,trans-
dibenzylideneacetone, DME = 1,2-dimethoxyethane, dppf =1,1′-
bis(diphenylphosphanyl)ferrocene, Py =pyridine.
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Scheme 4.
Conversion of PyDipSi-iodoarenes into benzyne. Reagents and conditions: a) 1. 48 wt % HF
(excess), THF, RT, 1 h; 2. m-CPBA (1.2 equiv), DCM, then BF3·Et2O (2.5 equiv), RT, 1 h;
3. PhB(OH)2 (1.1 equiv), 0°C, RT, 30 min ; b) TBAF (1.2 equiv), furan (5 equiv), DCM,
RT, 1 h. m-CPBA =meta-chloroperbenzoic acid, TBAF =tetra-n-butylammonium fluoride.
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