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Abstract
In this paper, we investigate the performance of time-of-flight (TOF) PET in improving lesion
detectability. We present a theoretical approach to compare lesion detectability of TOF versus
non-TOF systems and perform computer simulations to validate the theoretical prediction. A
single-ring TOF PET tomograph is simulated using the SimSET software and images are
reconstructed in 2D from list-mode data using a maximum a posteriori (MAP) method. We use a
channelized Hotelling observer (CHO) to assess the detection performance. Both the receiver
operating characteristic (ROC) and localization ROC (LROC) curves are compared for the TOF
and non-TOF PET systems. We first studied the SNR gains for TOF PET with different scatter
and random fractions, system timing resolutions, and object sizes. We found that the TOF
information improves the lesion detectability and the improvement is greater with larger fractions
of randoms, better timing resolution, and bigger objects. The scatters by themselves have little
impact on the SNR gain after correction. Since the true system timing resolution may not be
known precisely in practice, we investigated the effect of mismatched timing kernels and showed
that using a mismatched kernel during reconstruction always degrades the detection performance,
no matter whether it is narrower or wider than the real value. Using the proposed theoretical
framework, we also studied the effect of lumpy backgrounds on the detection performance. Our
results indicated that with lumpy backgrounds, the TOF PET still outperforms the non-TOF PET,
but the improvement is smaller compared with the uniform background case. More specifically,
with the same correlation length, the SNR gain reduces with bigger number of lumpy patches and
greater lumpy amplitudes. With the same variance, the SNR gain reaches the minimum when the
width of the Gaussian lumps is close to the size of the tumor.
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1. Introduction
In recent years, there has been renewed interest in the time-of-flight (TOF) positron
emission tomography (PET) with the introduction of fast and efficient scintillator materials
such as lutetium oxy-orthosilicate (LSO), lutetium-yttrium oxy-orthosilicate (LYSO), and
lanthanum bromide (LaBr3), high-performance photomultiplier tubes (PMT), and better
electronics designs [1,2,3,4,5]. In TOF PET, the time difference between the detection of
two coincidence photons is used to reduce the uncertainty of the annihilation positions. With
a timing resolution Tr, where Tr denotes the full-width-at-half-maximum (FWHM) value, the
localization uncertainty along a line of response (LOR) is reduced from the length of the
LOR to Δdr = cTr/2, where c denotes the speed of light. Thus, TOF PET can achieve noise
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reduction without increasing the number of events (i.e., increasing the dose or imaging
time). Early work of Snyder et al. [6] showed that for a uniform cylinder with a diameter D
and a back-projection reconstruction algorithm, the SNR gain of TOF PET over non-TOF
PET is proportional to . Similar relationship was also derived by Tomitani [7] by
comparing an infinite uniform source for TOF PET to a finite source with diameter D for
non-TOF PET. More recently, Harrison et al. [8] demonstrated using Monte Carlo
simulations that the SNR improves with TOF but the improvement is less than theoretically
predicted. Kimdom et al. [9] studied the effect of random and scatter fraction in the variance
reduction of TOF PET using a simple scatter model, and they showed that the TOF gain
increases with higher fraction of scatters and randoms. Conti [10] theoretically modified the
traditional estimate for the SNR gain by incorporating the random fraction. Karp et al. [5]
and Lois et al. [11] showed using both phantom and clinical measurements that TOF PET
provides improved contrast recovery versus noise trade-off as well as faster convergence of
contrast recovery in hot lesions. Vunckx et al. [15] used an analytic Fisher information
based approach to evaluate the image variance of the TOF PET and showed that less benefit
of TOF was seen in eccentric and hot regions.

In this paper, we present a theoretical approach to evaluate the performance of TOF PET in
lesion detectability. We assess the detection performance by using a channelized Hotelling
observer (CHO) and present a theoretical expression of the SNR of the CHO. Computer
simulations were performed to validate the theoretical predictions. We used the Monte Carlo
simulation package SimSET (Simulation System for Emission Tomography) to model a
single-ring TOF PET tomograph [12], and images were reconstructed in 2D using a list-
mode maximum a posteriori (MAP) method. Both the receiver operating characteristic
(ROC) and localization ROC (LROC) curves were compared for the TOF and non-TOF
cases. We first considered detection of a known lesion in a uniform background and studied
the SNR gains for TOF PET with different scatter and random fractions, system timing
resolutions, object sizes, and tumor sizes. We also studied the effect of mismatched timing
kernels, since the real system timing resolution may not be known precisely. In the end, we
investigated the effect of lumpy backgrounds on the SNR gains using the theoretical
framework alone.

In [13], Surti and Karp reported their experimental evaluation of a simple lesion detection
task with a Philips Gemini TF PET/CT scanner using a non-prewhitening matched filter and
a list-mode OSEM reconstruction method. In [14], LROC studies were performed on a
prototype TOF PET/CT scanner (Siemens Medical Solutions) to detect focal warm lesions.
A channelized non-prewhitened observer was used and images were reconstructed using
OSEM. Comparing with their work, our work focuses on the theoretical framework for
evaluating the lesion detection performance for TOF PET. In addition, we use Monte Carlo
simulations to quantify the effects of randoms and scatters on the TOF detectability
improvement.

This paper is organized as follows. In Section 2, we describe the system model and the
Bayesian framework we used for image reconstruction. In Section 3, we present methods for
lesion detection using the CHO and the theoretical expression of the SNR of CHO.
Computer simulations and results are given in Section 4 to study the advantage of TOF in
lesion detection. Conclusions are drawn in Section 5.

2. System Model and Image Reconstruction
PET data are modelled as a set of independent Poisson random variables where the
expectation of the measurements, ȳ ∈ ℛM×1, relates to the unknown tracer distribution x ∈
ℛN×1 through an affine transformation
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(1)

where y ∈ ℛM×1 is the measured sinogram data, P ∈ ℛM×N the system matrix with the (i,
j)th element representing the probability of detecting an event from the jth voxel at the ith
line of response (LOR), and r ∈ ℛM×1 the expectation of the background data (scatters and
randoms). In this work, the elements in P incorporate the effect of object attenuation, crystal
penetration, and scanner geometry (solid angle formulation). They are computed using the
multiray-tracing technique that was proposed in [16], and for each TOF LOR modified by a
Gaussian TOF kernel

(2)

where Δt− and Δt+ denote the lower and upper limits of the time difference of the TOF LOR,
 with Δdr being the FWHM value of the localization uncertainty, and s is

the distance of a voxel from the center of the LOR.

We reconstruct images using a Bayesian approach which regularizes the image through the
use of a prior distribution p(x) on the unknown image. We consider a Gibbs prior of the
form

(3)

where

(4)

is the prior energy function, β the regularization parameter controlling the resolution of the
reconstructed image, and Z a normalization constant. Nj represents the set of neighborhood
of voxel j, klj the inverse of the Euclidean distance between voxel l and j, and V a pair-wise
potential function. For quadratic priors, we have

(5)

and ϕ can be expressed as  with R being a positive semi-definite matrix and ‘′’
denoting vector (or matrix) transpose. Combining the likelihood function and the image
prior, the maximum a posteriori (MAP) estimate is given by

(6)
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(7)

where

(8)

is the log-likelihood function.

3. Detection Performance Analysis
In this section, we first describe the channelized Hotelling observer (CHO) and then the
theoretical expressions of the SNR for the CHO under the MAP reconstruction framework.

3.1. Channelized Hotelling Observer and Observer Performance
For a given reconstructed image x̂, a linear numerical observer computes a test statistic η(x̂)
by

(9)

where t ∈ ℛN×1 is the observer template. In this work, we use the channelized Hotelling
observer (CHO) which has been shown to have a good correlation with human performances
[17]. The test statistic of the CHO is

(10)

where z = E[x̂|H1]−E[x̂|H0] represents the expected profile of the reconstructed lesion with
H0 being the null hypothesis representing lesion absent and H1 the alternative hypothesis
representing lesion present. The term U ∈ ℛL×N denotes frequency-selective channels that
mimic the human visual system, L the number of channels, n ∈ ℛL×1 the internal channel
noise that models the uncertainty in the human detection process, and Σ ∈ ℛL×L the
covariance of the channel outputs. If we assume that n is zero-mean Gaussian with a
covariance matrix ΣN ∈ ℛL×L, Σ can be expressed as

(11)

where Σx̂|H1 ∈ ℛN×N and Σx̂|H0 ∈ ℛN×N denote the covariance matrices of x̂ under H1 and
H0, respectively. Here we assumed equal probability for the signal to be present or absent.
We used the differences of four Gaussian (DOG) functions with standard deviations σ =
2.653, 1.592, 0.995, 0.573 as our channel function (corresponding to an L = 3) [18]. The
SNR of the CHO is given as

(12)

Observers (human or numerical) make a decision by comparing the test statistic η with a
preset threshold γ0. If η > γ0, we refer to it as a positive decision. A plot of the true positive
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(TP) rate versus the false positive (FP) rate as γ0 varies is called an ROC curve. One figure
of merit for the detection performance is the area under the curve (AUC). When η(x̂) is
normally distributed, the AUC is related to the SNR by

(13)

where  is the error function.

The ROC curve measures the ability of the observer to differentiate whether an image
contains a target (e.g., lesion). In order to take into account whether the observer identifies
the location of the actual lesion, a localization ROC (LROC) study should be performed.
The LROC curve measures the joint ability to detect and correctly localize the lesion in the
images. It is a plot of the TP rate with correct localization against the FP rate [25]. Similar
with ROC, the AUC value can be used as a figure of merit for LROC.

3.2. Lesion Detectability in MAP Reconstruction
Even though the size of Σ is manageable for the CHO, evaluating equation (12) involves
image reconstruction for a large number of data sets, which is time consuming and may not
be practically feasible. In the following, we show a theoretical expression of the detection
SNR, which can be computed directly without resorting to reconstructed images.

Consider small lesion and low noise situations, we can apply the first-order Taylor series
expansion to the MAP estimation x̂(y) around the point y̿ = PE[x] + r and obtain [19,20]

(14)

(15)

where F = P′diag[1/ȳi]P is the Fisher information matrix (F ∈ ℛN×N) with P′ representing
the backprojection kernel and P the forward projection kernel, x̄1 = E[x|H1] − E[x|H0] the
expected lesion profile, and Σx|Hk ∈ ℛN×N the covariance of the image under Hk (k = 0, 1).
Direct computation of equation (14) and (15) is time consuming due to the inversion of a
large matrix F + βR. Following previous work [20, 21, 22, 23], we approximate F and R as
locally stationary, i.e., if we view the jth column of F (and R) as an image associated with
the jth voxel, the intensity of the image concentrates in a local region and varies slowly as
we move between the columns associated with neighboring voxels. Then equation (14) and
(15) can be computed “locally” using a fast Fourier transform (FFT). Consider voxel j1
where the lesion exists, equation (12) can be approximated as

(16)

where B ∈ ℛL×L is defined as
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(17)

(18)

and w ∈ ℛL×1 is a column vector with its lth element defined as

(19)

{λj, j = 1,…,N} and {μj, j = 1,…,N} are the Fourier coefficients of fj1 and rj1, respectively,
with

(20)

(21)

representing the column vector corresponding to the lesion location of F and R, respectively.
ej denotes a unit vector with 1 on its jth element and 0 otherwise, {ξj, j = 1,…,N} the Fourier
transform of x̄1, and Ũ = UQ′ the Fourier coefficients of the channel functions. Q and Q′
represent the Kronecker form of the Fourier transform and its inverse, respectively [24].
More details on the computation of λj and μj can be found in [20].

Equation (16) allows fast evaluation of lesion detectability under various conditions because
no image reconstruction is involved. We define the TOF SNR gain in lesion detectability as

(22)

The theoretical expression shows that the TOF SNR gain depends on the Fisher information
matrix F, prior parameters (β and μj), and channel noise. When β = 0, ΣN = 0, and Σx = 0, the
TOF SNR gain for detecting a lesion at the center of a large object is about proportional to
the object size because the Poisson noise in non-TOF data increases as the object size
increases, while the noise in TOF data that affect the point of interest remains unchanged.
However, the linear relationship is no longer valid when we consider object variation and/or
observer internal noise.

3.2.1. Effect of a Mismatched Timing Kernel—In TOF reconstruction, the system
timing resolution is usually assumed to be known accurately in advance and is modeled in
the system matrix. However, this is hardly true in reality. While the timing resolution of the
current TOF PET systems is fairly stable, it has been shown that it can change significantly
with count rate [4]. Therefore, it would be of practical interest to study the effect of using a
mismatched timing kernels during reconstruction when the real system resolution is not
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known precisely. The theoretical SNR for mismatched timing kernels can be easily derived
by examining equations (14) and (15). With a mismatched timing kernel, these two
equations become

(23)

(24)

where Fmis = P′diag[1/ȳi]Ptrue and F = P′diag[1/ȳi]P with P being the system matrix used
in reconstruction and Ptrue the true system matrix in data generation. Note that the first term
in equation (24) is caused by Poisson noise in PET data and thus is independent of Ptrue
once ȳ is given. The corresponding CHO SNR is

(25)

where Bmis is given by

(26)

and wmis is a column vector with its lth element defined as

(27)

{λmis,j, j = 1,…,N} are the Fourier coefficients of the column vector corresponding to the
lesion location of Fmis.

4. Computer Simulations
In this section, we present computer simulation results to evaluate the detection performance
of TOF and non-TOF PET systems under different conditions. We first consider a lesion in a
uniform background and perform Monte Carlo simulations to validate the theoretical
prediction. We considered the effects of scatter and random fractions, system timing
resolutions, object sizes, and mismatched timing kernels. We then use the theoretical
framework to study the effects of tumor sizes and lumpy backgrounds on the TOF SNR
gains.

We used SimSET to model a single-ring TOF PET tomograph that is similar to what is
under development at Lawrence Berkeley National Laboratory. The detector ring has a
diameter of 79.5 cm. It consists of 384 crystals of 6.1 mm in width and 25 mm in radial
length. The axial dimension of the crystal is set to 10 cm to obtain reasonable sensitivity and
scatter fraction, although the axial dimension of the crystal on the prototype system is
actually 6.1 mm. The coincidence window was selected as 3 ns and the energy resolution
was chosen to be 15%. We set the timing resolution at 200 ps, which corresponds to a
FWHM of 30 mm. The time difference of each coincidence pair was first blurred using the
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Gaussian timing kernel and then discretized into 127 timing bins with a width of 50 ps (7.5
mm).

4.1. Validation using Monte Carlo Simulations
We used a 10 cm long elliptical cylinder with uniform activities as the background (Figure
1). The ellipse has a long axis of 30 cm and a short axis of 20 cm. A hot rod of 12 mm in
diameter was placed at the center of the phantom as a lesion. The lesion-to-background
activity ratio is 3:2. The true and scatter coincidences were generated by SimSET directly
with an energy window between 400 keV and 600 keV. For random coincidences, we first
calculated their expectations from the singles rate that was obtained by running the SimSET
in SPECT mode, and then we generated each random coincidence as a Poisson realization.
Each random coincidence was assigned a time difference that is uniformly distributed
among the 127 time bins. We set the initial activity at 100 MBq and obtained an average of
1.06 M prompts in each data set. Each data set took around 1 hour to generate and a total of
200 Monte Carlo simulations were performed. The mean of scatters was computed from
these 200 samples. The random fraction (RF = R/(T + S + R)) is around 24.5% and the
scatter fraction (SF = S/(T + S)) is around 27.8%. All images were reconstructed from list-
mode data using the MAP algorithm with 248×248 3×3×100 mm3 voxels. Scatter and
random events were corrected by including the estimated mean scatter and random sinogram
in the forward model (1). For the CHO, we selected ΣN = 109I3, where In denotes an identify
matrix of dimension n.

Figure 2 shows examples of reconstructed images from different realizations with and
without TOF information. Visually, the lesion is more obvious in the TOF images than the
non-TOF ones. To see the effect of β, Figure 3 shows a set of reconstructed images with the
lesion present for the TOF PET with β ranging from 10−12 to 10−14. We can see that the
image is over-smoothed for β = 10−12 and is very noisy for β = 10−14. In Figure 4(a), we
give the ROC curves for the TOF and non-TOF at β = 10−13 and in Figure 4(b), we show the
AUC values computed both theoretically (from equation (13) with SNR computed from
equation (16)) and from simulation (by numerical integration of the ROC curves). For the
current signal-known-exactly and background-known-exactly (SKE-BKE) case (Σx = 0), the
ROC curves were obtained by applying the CHO to the reconstructed images and
thresholding the resulting test statistics. We can see that the TOF PET (AUCMC = 0.9957)
clearly outperforms the non-TOF PET (AUCMC = 0.8894) in terms of lesion detection, and
the AUC values computed from Monte Carlo reconstructions match well with the theoretical
predictions. In Figure 6, we show the LROC curves for the TOF PET and non-TOF PET at β
= 10−13. In this work, we selected 23 non-overlapping areas in the object (see Figure 5) and
applied the CHO to each area. The numerical observer is unaware of the correct lesion
location and identifies the lesion position by choosing the area with the largest test statistics.
The test statistics (equation 10) was modified to consider the channel covariance of each
area. We can see that the advantage of the TOF PET is more obvious when the localization
ability is considered: the TOF PET has an area of 0.7652 under the LROC curve, whereas
the non-TOF PET only has 0.2878. The probability of correctly localizing the lesion with
the TOF PET is 80%, whereas with the non-TOF PET it is less than 40% in this study.

4.1.1. Effect of the Random and Scatter Fractions—One advantage of using
computer simulations is that we can separate true, scattered, and random events, and study
their effects on the TOF gain separately. In Figure 7, we show the SNRs computed from
theoretical predictions and from Monte Carlo reconstructed images. We considered four
different conditions: true events only (579K), true plus scattered events (801K), true plus
random events (838K), and all prompts (1.06M). We can see that the SNRs for both TOF
and non-TOF are a function of the regularization parameter β, and the values from the
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Monte Carlo simulation match well with theoretical predications for all four cases. To take a
further look at the separate effects of randoms and scatters, in Figure 8, we plot the
theoretically predicted SNR gains as a function of the TOF SNR for different random and
scatter fractions. The different random fractions were achieved by keeping the trues
unchanged and applying a scaling factor to the random distribution. The different scatter
fraction was simulated by varying the axial length of the scanner from 4 cm to 25 cm. The
sinogram (trues+scatters) for each case was scaled so that they all have the same number of
trues. We can see that the SNR gain increases with larger random fraction, but an increase in
scatter fraction has little effect on the SNR gain, although it reduces the absolute SNR.

The relative insensitivity of the SNR gain with respect to the scatter fraction is surprising, as
scatters were sometimes modeled as events originated from a heavily smoothed object [9].
To verify that this phenomenon is not unique to the uniform phantom, we performed an
addition Monte Carlo simulation using an anthropomorphic phantom shown in Figure 9
[26]. The phantom has an activity distribution of myocardium:muscle:blood
pool:lung:bone:skin = 14:4:4:3:2:2, and the attenuation coefficient of each organ is provided
in Table 1 [12]. A 12-mm diameter lesion was inserted in the left lung and it has a contrast
ratio of 3:1 to the lung. Different scatter and random fractions were simulated in the same
way as in the uniform phantom simulation. The theoretically computed SNR gain for
different scatter and random fractions is shown in Figure 10. To validate our theoretical
calculation, we also computed the TOF SNR and SNR gain from 200 Monte Carlo
reconstructed images for the scatter fraction of 32% (shown in Figure 10(a) as the red circle
with errorbars obtained from 200 bootstrap samples.) We can see that similar to the uniform
phantom case, the SNR gain remains relatively insensitive to the scatter fractions and
increases as the random fraction becomes larger. This insensitivity of the SNR gain with
respect to the scatters is likely due to the fact that scatter events have a similar distribution in
time difference as true events. To illustrate this point, we plot in Figure 11 the mean
distribution of trues and scatters in the central vertical LOR as a function of time difference.
We can see that the trues and scatters share similar distributions in time difference, and the
ranges of the time difference are similar as well. Thus the TOF information is not effective
in discriminating between trues and scatters.

4.1.2. Effect of the System Timing Resolution—We studied the effect of the system
timing resolution on the SNR gain. In addition to the 200 ps timing resolution, we also
simulated timing resolutions of 130 ps and 500 ps and reconstructed images using the
corresponding values. Examples of reconstructed images are shown in Figure 12. We can
see that as the timing resolution gets worse, the lesion becomes less discernible from the
background. In Figure 13, we plot the SNR and SNR gains for different system timing
resolutions. As we can see, the SNR values increase with better timing resolution and the
Monte Carlo simulation results match well with the theoretical predictions. The ratio of the
SNR gain between two different systems is proportional to the ratio of the square root of the
corresponding system timing resolutions.

4.1.3. Effect of the Object Size—We considered a larger elliptical phantom to study the
effect of object size on the TOF SNR gains. The large ellipse has a long axis of 40 cm and a
short axis of 30 cm (Figure 14(a)). The lesion size and the activity-background ratio remain
the same as in the previous examples. We obtained 100 data sets using SimSET with 1.75 M
counts in each realization. The scatter fraction was around 33% and the random fraction was
around 48.6%. Examples of reconstructed images using TOF PET and non-TOF PET are
shown in Figure 14(b) and Figure 14(c).

The theoretically computed and Monte Carlo simulation based SNR values are given in
Figure 15(a) and the corresponding SNR gains are plotted in Figure 15(b) with a comparison
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with the smaller phantom. We can see that as the patient size becomes larger, the SNR
values decreases for both TOF and non-TOF cases. However, the SNR gain is greater for the
bigger object and the ratio of the increase is roughly proportional to the square root of the
patient size.

4.1.4. Effect of Mismatched Timing Kernels—We used the phantom in Figure 1. We
generated simulation data with system timing resolution of 130 ps and 500 ps, respectively,
and reconstructed all the data using a 200 ps timing kernel. Large mismatch values were
used for easier demonstration of the effect. Two hundred data samples were generated for
each case. The SNRs from theoretical predictions and Monte Carlo simulations are shown in
Figure 16. We can see that the detection performance worsens for both mismatched cases
(either using a wider kernel or a narrower one). In general, the performance improves with
better timing resolution, but the improvement deteriorates compared with the matched case.

In Figure 17, we show the theoretically computed SNR when the real system timing
resolution is 20% off the reconstructed kernel. More specifically, we assumed that the real
timing resolution is 160 ps and 240 ps, respectively, and reconstructed the image using the
200 ps resolution. We can see that compared with Figure 16, the performance degradation is
reduced as the mismatch gets smaller. The detection SNR is hardly affected for the 160 ps
system when a 200 ps timing resolution is assumed during the reconstruction. The
degradation is slightly noticeable when the system resolution is 240 ps and a 200 ps timing
kernel is used in reconstruction.

4.2. Performance Analysis using the Theoretical Formulae
From Sections 4.1.1–4.1.4, we have shown that the SNR values from Monte Carlo
simulations match well with the theoretical predictions. As the theoretical approach does not
require any image reconstruction, it can be used as a general framework to study the
detection performance under different scenario. In this section, we investigate the effects of
the lesion size and lumpy backgrounds on the detection performance.

4.2.1. Effect of the Lesion Size—In Figure 18, we show the theoretically computed
SNRs for a 12 mm lesion and a 18 mm one, with all the other factors remaining the same.
We can see that as the lesion increases in size, the SNR values increase, but the SNR gains
for the TOF PET over non-TOF PET actually decreases. The result shows that with other
factors being the same, it is less advantageous to use the TOF information for detecting a
larger lesion.

4.2.2. Effect of Lumpy Backgrounds—The lumpy background was simulated by
randomly superimposing Gaussian functions on a constant background over the phantom
space [27]. The lumpy component can be mathematically modeled as

(28)

where G(σ2, rk) is a Gaussian blob with variance σ2 centered at a random location rk which
was uniformly distributed within the phantom, K represents the total number of blobs, which
is a Poisson random variable with mean Kmean, b represents the amplitude of the blob.
Assuming that the constant background has an amplitude of b0, we considered 6 parameter
combinations to represent different lumpiness: (a) b/b0 = 5, σ = 9 mm, Kmean = 150; (b) b/b0
= 5, σ = 9 mm, Kmean = 250; (c) b/b0 = 8, σ = 9 mm, Kmean = 150; (d) b/b0 = 320/9, σ = 24
mm, Kmean = 675/32; (e) b/b0 = 20/9, σ = 6 mm, Kmean = 337.5; and (f) b/b0 = 5/9, σ = 3
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mm, Kmean = 1350. The first three cases (a–c) share the same correlation length (σ in
Equation (28)) but different variance (the diagonal elements of Σx), while the first and the
last three cases (a, d–f) have the same variance but different correlation. For each case,
images were scaled to the same activity level as the example shown in Section 4.1 (with an
expected number of true events of 579k). We added a hot lesion of diameter 12 mm at the
center with an activity-background ratio of 3 : 2. Examples of these lumpy backgrounds are
shown in Figure 19.

The theoretical SNRs of TOF PET and non-TOF PET were computed using equation (16)
where Σx was estimated from 5000 samples. The theoretical SNR gains are plotted in Figure
20. We can see that with all other conditions being the same, the SNR gain for the lumpy
background is smaller than the uniform background case, although the changes in SNR gain
are less than the corresponding changes in the absolute SNR values. In Figure 20(a), we
show the SNR gains for different lumpy backgrounds with the same correlation length (σ =
9 mm). We can see that with the same correlation length, the SNR gain reduces with larger
number of patches and greater amplitudes (both increase the variance). Figure 20(b) gives
the SNR gain for different lumpy backgrounds with the same variance. It shows that with
the same variance, the SNR gain reduces with the correlation length. It reaches the minimum
when the width of the lumps is close to the tumor size. While the difference between σ = 6
mm and σ = 3 mm cases are small, we found that the SNR gain increased substantially when
we removed the correlation completely by setting all the off-diagonal elements in Σx to zero.
These results indicate it is important to consider background variability in evaluating TOF
PET.

5. Conclusions
In this paper, we present a theoretical approach to investigate the performance of TOF PET
in improving the lesion detectability. We used the list-mode MAP reconstruction and
assessed the detection performance using the channelized Hotelling observer. We showed
that the TOF PET provides better lesion detection performance than the non-TOF PET and
the SNR gain is greater with higher random fraction, better system timing resolution, and
larger patient. The scatters by themselves have little impact on the SNR gain after
correction. Since the true system timing resolution may not be known precisely in practice,
we investigated the effect of mismatched timing kernels and showed that using a
mismatched timing kernel in reconstruction always degrades the detection performance, no
matter whether it is narrower or wider than the real value. Using the proposed theoretical
framework, we also studied the effect of background variability on the detection
performance. Our results indicated that with lumpy background, the TOF PET still
outperforms non-TOF PET, but the improvement is smaller compared with the uniform
background case. More specifically, with the same correlation length, the SNR gain reduces
with bigger number of lumpy patches and larger lumpy amplitudes. With the variance being
equal, the SNR gain reaches the minimum when the width of the lumps is close to the size of
the tumor. We plan to apply the analysis to real data in future work.
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Figure 1.
Illustration of the 20 cm × 30 cm phantom used in the simulation. The lesion at the center is
12 mm in diameter with a 3:2 contrast.
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Figure 2.
Examples of reconstructed images with β = 10−13. The top row is for the non-TOF
reconstruction and the bottom row is for the TOF case. Each column corresponds to a
different realization.
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Figure 3.
Examples of reconstructed images for TOF PET with different β. (a) β = 10−12. (b) β =
10−13. (c) β = 10−14.
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Figure 4.
(a) ROC curves for the TOF PET and non-TOF PET with β = 10−13. (b) AUC values
computed from theoretical predictions (in red) and numerical integrations (in blue).
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Figure 5.
The selected regions for computing the LROC curve.
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Figure 6.
LROC curves for the TOF PET and non-TOF PET with β = 10−13.
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Figure 7.
SNRs computed from theoretical predictions and Monte Carlo reconstructed images under
four conditions. (a) True events only. (b) True plus scattered events. (c) True plus random
events. (d) All prompts. The solid line represents the SNRs computed from theoretical
predictions and the cross indicates the SNRs computed from Monte Carlo reconstructed
images. The error bars were obtained from 200 bootstrap samples.
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Figure 8.
SNR gains from the theoretical prediction for different (a) scatter and (b) random fractions
(β = 10−13). Each point corresponds to a different scatter or random fraction with the
corresponding value marked in the plots.
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Figure 9.
(a) A thorax phantom derived from the Zubal phantom. (b) Attenuation map of the thorax
phantom (in cm−1).
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Figure 10.
SNR gains from the theoretical prediction for different (a) scatter and (b) random fractions
(β = 10−13) for the Zubal thorax phantom. Each star point corresponds to a different scatter
or random fraction with the corresponding value marked in the plots. The red circle in (a)
corresponds to the TOF SNR and SNR gain computed from 200 Monte Carlo reconstructed
images for the scatter fraction of 32%. The horizontal and vertical error bars are for the TOF
SNR and SNR gain, respectively, obtained from 200 bootstrap samples.
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Figure 11.
Distribution of the mean of (a) trues and (b) scatters as a function of the time difference for
the central vertical LOR.
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Figure 12.
Examples of reconstructed images with different system timing resolutions at β = 10−13. (a)
130 ps. (b) 200 ps. (c) 500 ps.
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Figure 13.
(a) SNRs computed from theoretical predictions and Monte Carlo reconstructed images for
130 ps and 500 ps timing resolutions. (b) Monte Carlo simulation based SNR gains for
different timing resolutions.
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Figure 14.
(a) The large phantom (30 cm × 40 cm) used in the simulation. (b) A sample reconstruction
of TOF PET data. (c) A sample reconstruction of non-TOF PET data.
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Figure 15.
(a) SNRs computed from theoretical predictions and Monte Carlo reconstructed images for
the 30 × 40 cm2 phantom. (b) SNR gains from Monte Carlo simulations for objects of
different sizes.
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Figure 16.
SNRs computed from theoretical predictions and Monte Carlo reconstructed images for
mismatched compared to matched timing kernels.
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Figure 17.
SNRs computed from theoretical predictions for mismatched compared to matched timing
kernels.
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Figure 18.
(a) SNRs computed from theoretical predictions for a 18 mm lesion and a 12 mm lesion. (b)
Theoretically predicted SNR gains.
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Figure 19.
Examples of lumpy backgrounds with different parameters. (a) b/b0 = 5, σ = 9 mm, Kmean =
150; (b) b/b0 = 5, σ = 9 mm, Kmean = 250; (c) b/b0 = 8, σ = 9 mm, Kmean = 150; (d) b/b0 =
320/9, σ = 24 mm, Kmean = 675/32; (e) b/b0 = 20/9, σ = 6 mm, Kmean = 337.5; and (f) b/b0 =
5/9, σ = 3 mm, Kmean = 1350.
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Figure 20.
Theoretically computed SNR gains for different lumpy backgrounds: (a) with the same
correlation length σ = 9 mm; (b) with the same variance. The three numbers in the legend
are the values of the lumpy background parameters b/b0, σ, and Kmean, respectively.
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