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Abstract
Francisella tularensis is a Category A select agent for which vaccine and countermeasure
development are a priority. In the past eight years, renewed interest in this pathogen has led to the
generation of an enormous amount of new data on both the pathogen itself and its interaction with
host cells. This information has fostered the development of various vaccine candidates including
acellular subunit, killed whole cell and live attenuated. This review summarizes the progress and
promise of these various candidates.
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Introduction
Francisella tularensis, a non-spore forming, encapsulated Gram-negative coccobacillus, is
the etiologic agent of the potentially fatal zoonotic disease tularemia. Following the anthrax
bioterror attacks in the US in 2001, F. tularensis was placed on the Category A select agent
list as one of six pathogens that were the highest priority for the development of preventative
countermeasures. Since then significant progress has been made in both the understanding of
the F. tularensis pathogenic process as well as the host immune response. This, in turn, has
spurred development of new and exciting tularemia vaccine candidates.

F. tularensis was first identified as the cause of tularemia in 1911 during an outburst of a
plague-like disease among squirrels inhabiting Tulare Lake in California. It has since been
shown that F. tularensis can infect a wide range of animals including mammals, birds,
amphibians, fish and invertebrates.73 This diversity helps to explain the various colloquial
names associated with tularemia including rabbit fever, hare fever, deerfly fever and
lemming fever.73F. tularensis is capable of invading and replicating within macrophages as
well as non-phagocytic cells (including hepatocytes and alveolar epithelial cells).22,31,42F.
tularensis invades cells by both a novel asymmetric pseudopod loops mechanism19 and by a
receptor-dependent mechanism that has been shown to involve class A scavenger
receptors,79 the complement factor C3 receptor (CR3 and CR4),5,7,90 IgG receptor (FcγR),
surfactant protein A and the mannose receptor.90 Once internalized, F. tularensis is able to
escape the degradative environment of the phagolysosome13,15,17,59 into the cytoplasm
where it replicates. The high virulence of F. tularensis results from many factors including
its ability to proliferate to high numbers in host tissues and organs as well as its ability to
elicit a pronounced inflammatory response.8,23,28,39 In humans, the disease syndrome varies
with both the route of inoculation and the virulence of the infecting strain. Infection by the
dermal, oral or pulmonary routes results in ulceroglandular, oropharyngeal or pneumonic

© 2009 Landes Bioscience
*Correspondence to: Eileen M. Barry; ebarry@medicine.umaryland.edu.

NIH Public Access
Author Manuscript
Hum Vaccin. Author manuscript; available in PMC 2011 July 11.

Published in final edited form as:
Hum Vaccin. 2009 December ; 5(12): 832–838.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(formerly called typhoidal) tularemia, respectively and the highest mortality rates are
associated with the pneumonic form of the disease.94 Two subspecies, F. tularensis
subspecies holarctica (also called Type B) and F. tularensis subspecies tularensis (Type A)
are responsible for the vast majority of human tularemia cases worldwide. The less virulent
Type B strains are found in North America, Europe and Asia and the more virulent Type A
strains are found primarily in North America.54 A third subspecies, F. tularensis subspecies
novicida, while rarely a human pathogen, is widely studied as a model for tularemia. While
the F. tularensis organism is widespread in the United States, incidence of tularemia is not,
as approximately 100 cases of human tularemia are reported each year. These cases result
mainly from direct contact with infected animals or bites from arthropod vectors (e.g., ticks),
although pneumonic disease from inhalation of aerosols generated by mowing lawns or
brush in tick-infected areas has also been described.27,45,67

The attractiveness of F. tularensis as a potential bioweapon stems from its ability to be
disseminated via the aerosol route, its extremely low infectious dose, and its potential to
cause severe morbidity and mortality.23 Additionally, F. tularensis has a history of
weaponization first documented by the Japanese for purposes of warfare between 1932–
1945,43 and later by both the former Soviet Union and the United States.18,23 This history
has elevated concerns that F. tularensis could be used as a bioweapon in the future.74,75 The
current standard of care for tularemia is treatment with antibiotics as this therapy is highly
effective if implemented early in infection.98 However, the nonspecific symptoms of
tularemia, which include swollen lymph nodes, fever and lethargy, might lead to
misidentification of the pathogen that could delay appropriate therapy. Therapeutic options
could be further limited by the development of natural antibiotic resistance or the
engineering of resistant strains. Therefore a safe and effective vaccine able be used both in a
prophylactic manner in targeted populations such as the military or health care providers as
well as in the general population in a crisis situation would be a very valuable public health
tool.

Two key pieces of evidence support the feasibility of developing a Francisella vaccine. First,
immunospecific protection against reinfection has been demonstrated following natural
infection.11,97 Second, immunization with the live vaccine strain (LVS), has demonstrated
efficacy against wild type challenge in humans. LVS originated from an attenuated Type B
strain that was developed and used for mass vaccination in the Soviet Union in 1946.101

LVS was transferred from the Gamaleia Institute in Moscow to the US Army Medical
Research Institute of Infectious Diseases, Fort Detrick, MD in 1956. It was shown that
vaccination of at risk laboratory personnel with LVS reduced the incidence of laboratory-
acquired respiratory tularemia.12 LVS, while safe in humans, can be lethal in mice and has
therefore been a valuable tool for use in the murine model of tularemia infection. Although
LVS demonstrated proof of principal that a protective response may be elicited by a vaccine
it remains unlicensed for use in the general population. In response to the desire to develop a
safe and effective tularemia vaccine, researchers have focused their efforts towards the
rational design of tularemia vaccines using three main methods, acellular subunit, killed
whole cell and live attenuated vaccines.

Acellular Subunit Vaccines
Acellular subunit vaccines are cell-free vaccines which are prepared from synthesized or
purified antigenic components of a microorganism. The main advantage of acellular subunit
vaccines is that they are not infectious. Antigens recognized by either the T cells or immune
sera represent possible acelluar subunit vaccine candidates.
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Within two weeks of a tularemia infection or immunization, humans develop a robust
antibody response that is primarily directed against LPS.2,50,56,57,97 Accordingly, LPS has
been investigated as a potential F. tularensis vaccine candidate. F. tularensis LPS is
tetraacylated and therefore only weakly activates TLR4.20,25,41 It fails to induce production
of inflammatory cytokines in vivo and in vitro20 yet pretreatment with F. tularensis LPS is
able to protect mice against subsequent LVS challenge.20,21,24,35,36,86 This protection has
been shown to be primarily humoral as passive infusion of sera from F. tularensis LPS
immunized mice protects naïve mice against subsequent LVS challenge.36 However this
passive protection is not truly passive, T cells are required as the transfer of serum does not
protect mice that had been depleted of CD4+ or CD8+ T cells.36 IFNγ is also required as
neither passive transfer of immune serum nor direct immunization with LPS provided
protection to IFNγ−/− mice.24,55

Studies using immunization with whole bacteria have suggested that antibodies against the
O-antigen of F. tularensis LPS are responsible for LPS mediated protection. Passive
administration of antibodies elicited to whole cell LVS protect against an otherwise lethal
LVS challenge, while antibodies elicited by immunization with the O-antigen-deficient
strain, F. tularensis LVS wbtA, do not.91,92 Furthermore, passively administered rabbit anti-
F. tularensis LVS antisera, but not antisera depleted of anti-O antibodies, protects mice
against lethal challenge.91 However other studies have suggested that the protective
antibodies are not limited to the LPS O-antigen. Serum taken from mice immunized with a
heat killed O-antigen LVS mutant (a wbtC mutant that is completely deficient of O antigen
expression) was able to protect 80% of naïve mice against subsequent i.p. challenge with
LVS.60

That protection against F. tularensis could be mediated through humoral immunity has been
a controversial matter because F. tularensis is an intracellular pathogen. The prevailing
methodology in vaccine development suggests that humoral immunity plays a critical role in
protection against extracellular pathogens, while cell-mediated immunity is far more
important for protection against intracellular pathogens. However recent studies have
demonstrated that the majority of F. tularensis recovered from the blood of infected mice
was located in plasma rather than within leukocytes.29 This distribution pattern was
observed irrespective of inoculation route or size, time after inoculation or virulence of the
infecting strain.29

One significant drawback to the use of LPS as a vaccine is its inability to protect against the
most virulent strains. Immunization with LPS purified from LVS only fully protected mice
against challenge with LVS and some virulent Type B strains. LVS LPS vaccination
increased the mean time to death but did not protect against challenge with the Type A strain
Schu S4.36 It is possible that these differences in survival relates to the inherent differences
in LPS from Type A and B strains. However, studies have shown that the structure of the O-
antigens are identical in Type A and B strain41,80,100 and immunization with LPS purified
from Schu S4 was unable to protect mice against Schu S4 challenge and only increased the
mean time to death.80 Therefore the disparate outcomes of LVS and Type A challenge
following LPS immunization most likely relates to differences in virulence between the
strains and their distinct requirements for protection.

One possible means to increase the protective ability of LPS might be to couple LPS
immunization to induction of Francisella specific cell mediated immune response. This idea
has shown some promise as LPS-immunized mice boosted with live LVS were protected
against Schu S4 challenge.36 Additionally, immunization of mice with LPS in combination
with Neisseria meningitidis PorB, a TLR2/1 ligand that has been shown to enhance the T-
cell costimulatory activity of antigen-presenting cells both in vitro and in vivo,65,66,93
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greatly improved survival after intranasal LVS challenge when compared to immunization
with F. tularensis LPS alone.16

As an alternative subunit vaccine formulation, Huntley et al. investigated the potential utility
of F. tularensis outer membrane proteins (OMP) as an acellular subunit vaccine.
Immunization with 3 doses of native OMPs with adjuvant provided protection in 50% of the
mice against intranasal challenge with Schu S4.49

Acellular subunit vaccines can also utilize antigens that activate T-cells. A screen of T
lymphocyte antigens identified a pool of candidate epitopes from Schu S4 antigens for
inclusion in a rationally designed tularemia vaccine.69 HLA transgenic mice immunized
with a subset of these epitopes incorporated into a string-of-beads DNA prime, peptide boost
vaccine regimen were protected against an otherwise lethal intratracheal F. tularensis LVS
challenge.69

Another F. tularensis specific T cell epitope is comprised of amino acids 86–99 from the 17-
kDa lipoprotein Tul4 (also known as LpnA). These amino acids function as an
immunodominant CD4+ T cell epitope in B6 mice and T cells specific for this epitope can
account for as much as 20% of the responding CD4+ T cells in an acute Francisella
infection.95,104 However immunization with Salmonella typhimurium expressing Tul4,96 as
well as immunization with Tul4 incorporated into immunostimulating complexes38 only
provided partial protection against LVS challenge.

Killed Whole Cell Vaccines
Successful killed whole cell vaccines are biologically complex, non infectious, preparations
of infectious agents that are able to induce a protective immune response. In the 1940's Lee
Foshay developed killed whole cell tularemia vaccine formulations by phenolization or
acetone extraction.32,33,51 Immunization of non human primates with the Foshay vaccine
prevented death after challenge with 740 CFU of Schu S4. However, immunization caused
adverse reactions in the animals including local necrotic lesions and regional
lymphadenopathy.51 Administration of the Foshay vaccine to volunteers led to the
development of milder reactions but was unable to prevent development of lesions after
intracutaneous challenge with 10 CFU of Schu S4.88 Furthermore, administration of the
Foshay vaccine neither prevented nor modified the development of overt tularemia in
individuals who inhaled of 50 CFU of Schu S4.87 Though there has been minimal attention
devoted to the development of a killed whole F. tularensis vaccine in recent years,40 in
2007, Lavine et al. reported that immunization with heat-killed F. tularensis LVS alone or in
combination with an IL-12-expressing vesicular stomatitis virus-based vector protected mice
against subsequent i.p. challenge with LVS. This protection appeared to be antibody
mediated as sera from mice immunized with heat killed LVS was able to protect naïve
animals against subsequent i.p. challenge with LVS.60 However, Baron et al. found that i.n.
inoculation with inactivated LVS only protected against subsequent i.n. challenge with live
LVS when the inactivated bacteria were given in conjuction with recombinant IL-12.6

Live Attenuated Vaccines
Live attenuated vaccines are broadly defined as vaccines prepared from live organisms that,
while attenuated for virulence, are still immunogenic. The most extensively tested tularemia
live vaccine is LVS. Multiple challenge studies in non human primates as well as in humans
demonstrated the efficacy of LVS vaccination in conferring at least partial protection against
challenge with the Schu S4; although the degree of protection varied with the route and dose
of both vaccine and challenge administration.47,48,68,89 Yet, while LVS demonstrated proof
of principal that a live attenuated strain could protect against challenge, it suffers from
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several drawbacks that make it a sub-optimal vaccine. LVS is based on a Type B strain and
confers only partial protection against virulent Type A challenge, the molecular mechanism
of its attenuation is not defined and LVS demonstrates an unstable colony
phenotype.26,44,78,102 Accordingly, researchers have attempted to replicate and improve
upon the protective ability of LVS by generating fully defined, stable, attenuated mutants.
Modern molecular techniques have allowed the engineering of precise genetic mutations
resulting in the generation of completely defined mutant strains.34

Genes that have been targeted for mutation can be broadly classified into three groups:
metabolic enzymes, virulence factors and regulatory proteins (Table 1). Most of the targeted
mutations were first constructed and tested in LVS or F. novicida because of the ease of
manipulation of these strains and ability to work under BSL-2 conditions. This has allowed
researchers to identify promising target genes prior to their mutation in Type A strains and
the requirement for higher level containment.

Mutants in metabolic enzymes
Targeted mutations in genes encoding critical enzymes in metabolic pathways have been the
basis of attenuating mutations in many bacterial pathogens.61 Analysis of Francisella
genomes revealed the presence of enzymes that are involved in the aromatic amino acid
biosynthetic pathways.53,58 While F. novicida, purA, purCD or purM mutants were
attenuated in mice, they did not protect against wild type homologous challenge. In contrast,
i.p. injection of the F. novicida purF mutant induced an immune response in mice that
provided protection against challenge with the parental strain, but not against challenge with
Schu S4.83,99 Deletions in purMCD, guaA or guaB highly attenuated Francisella
LVS.76,77,86 These three mutant strains did not disseminate in the organs of infected mice
nor were they able to replicate intracellularly in macrophages.76,86 Mice vaccinated with
LVS purMCD, guaA or guaB mutants were protected against lethal challenge with the
parental LVS strain. However, a single i.n. immunization with LVS purMCD did not protect
mice against i.n. and i.d. challenge with low doses of Type A Schu S4.77 These findings are
in contrast to the results seen after immunization with parental LVS, as one i.n. dose of LVS
protected mice against subsequent low dose i.d. and i.n. challenge with Schu S4.77 The Schu
S4 guaA and guaB mutants and the Schu S4 purMCD mutant were attenuated in mice.77,85

However, immunization with either the Schu S4 guaA or guaB mutant was unable to protect
against homologous challenge.85 Intranasal immunization with a single dose of the Schu S4
purMCD mutant provided only partial protection against i.n. challenge with Schu S4 and
provoked tissue damage in the lungs.77

γ-glutamyl transpeptidase (GGT) is an essential enzyme that catalyzes the first step in the
degradation of the tripeptide glutathione (GSH). In F. tularensis, GGT allows the utilization
of γ-glutamyl as a source of cysteine during intracellular replication. Mutation of ggt in LVS
resulted in a significant growth defect in J774 macrophages and reduced virulence in mice;
the LD50 of the mutant was three orders of magnitude lower then the LD50 for LVS when
mice were challenged by the i.p route.1

Mutants in virulence factors
Virulence factors offer another rational target for mutation. The LPS of Francisella, like
other Gram negative bacteria, is composed of the lipid A, a core oligosaccharide and an O-
antigen polysaccharide (O-PS).41 Unlike other many other Gram negative pathogenic
bacteria, the LPS of F. tularensis is tetraacylated and does not provoke an overt
proinflammatory cytokine response.20,25,41 However mutations affecting F. tularensis LPS
attenuate bacterial virulence. Deletions in wbtA-encoded epimerase/dehydratase of the
Francisella O-PS locus resulted in a ΔwbtA LVS strain that was attenuated for virulence in
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mice.84,91 Mutations in the sugar transamine/perosamine synthetase gene, wbtI, resulted in
the complete loss of O-antigen expression. The wbtI mutant was highly susceptible to the
bactericidal action of serum however, it was still able to multiply to wild type levels in J774
macrophages which may explain why this strain was only moderately attenuated in mice.62

Mutants in three enzymes required for F. novicida lipid A carbohydrate modifications
(flmF1, flmF2 and flmK) were generated and evaluated in mice. The flmF1 mutant was not
attenuated in mice but the flmF2 and flmK mutants were attenuated after challenge by both
aerosolized and subcutaneous routes of infection.52

In terms of their protective ability, immunization with either the LVS wbtA or wbtI mutants
protected mice against low level LVS challenge (25 LD50s).62,91 However immunization
with LVS ΔwbtA was not able to induce protection against challenge with Schu S4.91 Mice
immunized with flmF2 or flmK mutants by the pulmonary route were protected against a
lethal F. novicida challenge, but only the flmK mutant induced protective immunity when
the mice where immunized by subcutaneous injection.52

Other virulence factors that have been targeted for deletion include the superoxide dismutase
(sodB).3,4 A F. tularensis sodB mutant strain was significantly attenuated for virulence in
mice. BALB/c mice vaccinated with the LVSΔsodB mutant strain were partially protected
against low dose intranasal Schu S4 challenge and the protection levels were improved in
boosted mice.3 While only modest and short term protection was induced following
immunization with the LVSΔsodB mutant, it is notable that immunization with this LVS
mutant induced better protection against Schu S4 challenge than the parental LVS strain.

Acid phosphatases hydrolyze a wide variety of substrates including proteins with
phosphorylated tyrosines. In Francisella five acid phosphatases have been described (AcpA,
AcpB, AcpC, Hap and Hap homolog). The acid phosphatase A (AcpA) is required for
intramacrophage survival and efficient escape from the phago-some.70 A F. novicida
derivative mutated in four of these genes, acpA, acpB, acpC and hap, was defective for
growth and survival in macrophages, unable to escape from the phagosome, and was highly
attenuated in mice. Mice vaccinated with this quadruple mutant survived a stringent wild
type F. novicida challenge.72

The dsbB- and the dsbA-encoded enzymes are required to catalyze the formation of disulfide
bonds in Gram negative bacteria. Both DsbA and DsbB proteins participate in the assembly
of several virulence factors in bacteria.46 Mann and colleagues introduced mutations into
FTT0107c and FTT1103, which encode DsbB- and DsbA-like proteins respectively, in Schu
S4. Both mutants were unable to replicate intracellularly, and the FTT1103 mutant also
showed impaired ability to escape the phagosome. Both mutant strains were highly
attenuated in mice, however only the FTT1103 mutant induced protection against wild type
Schu S4 challenge.81,82 It is significant to note that the Schu S4 FTT1103 mutant is the only
live attenuated strain that has shown a high level of protection against wild type Type A
challenge in the stringent C57BL/6 mouse model.

FTT918 encodes a hypothetical protein of 58 kDa that is a virulence factor of unknown
function. Deletion of this gene in Schu S4 led to a reduction in the intracellular growth rate
in peritoneal mouse macrophages. Mice vaccinated with the FTT918 deletion mutant were
protected against low challenge doses (~10 CFU) of the virulent Type A strain FSC033.103

Type IV pili are considered virulence factors in a wide spectrum of bacteria and the genes
encoding Type IV pili have been identified in the Francisella genomes.58 In F. tularensis
subspecies holarctica, deletion of pilin genes resulted in attenuation of virulence in mice and
impaired ability to spread from the initial site of infection to the spleen.30 Studies in LVS
showed that deletions in pilF, encoding the assembly ATPase, and pilT, encoding the

Barry et al. Page 6

Hum Vaccin. Author manuscript; available in PMC 2011 July 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



disassembly ATPase, caused a complete loss of pili. While both pilF and pilT LVS mutants
were able to multiply intracellularly in cells, both mutants were defective for adherence to
macrophages, epithelial cells and hepatocytes. The mutants were attenuated in mice when
introduced via the intradermal route.14

Catalase is encoded by katG and is used by bacteria to detoxify bactericidal compounds such
as H2O2 and ONOO−. Schu S4 and LVS mutants in katG demonstrated enhanced
susceptibility to H2O2 in vitro, but were not affected in their ability to replicate
intracellularly in murine peritoneal macrophages. The LVS katG mutant was attenuated in
mice while the Schu S4 katG mutant retained its virulence.63

Mutants in regulatory proteins
Mutations in regulatory proteins can also attenuate virulence. Four transcriptional regulators,
mglA, sspA, fevR and pmrA, have been shown to regulate genes that are contained in the
Francisella Pathogenecity Island.10,59,71 A F. novicida pmrA mutant was defective in
survival and intracellular growth within human and murine macrophages.71 The mutant was
highly attenuated in mice, and a single immunization protected against a high dose challenge
with the homologous wild type strain but failed to induce protection against Schu S4
challenge. A F. novicida mglA mutant was attenuated in mice and did not replicate as
effectively as the parental strain in infected organs. However immunization with this strain
was unable confer protection against a subsequent challenge with wild type F.
novicida.59,106 Studies in mice suggested that FevR is required for bacterial replication in
macrophages. In mice, a fevR mutant is unable to replicate in spleen and skin.9

Taken together, these studies underscore the differences between Type A and B strains and
suggest different requirements for protective vaccines against each. Furthermore these
studies illustrate that attenuation and protective ability are not synonymous; multiple
engineered strains are attenuated, but few have demonstrated the ability to protect against
subsequent challenge with a Type A strain (Table 1).

Summary
The requirements for a successful tularemia vaccine are clear; an effective tularemia vaccine
will safely provoke long lasting protective immunity in the general population in a relatively
short period of time. The search for this elusive product has led to the development of
multiple new vaccine candidates and, succeed or fail, these attempts all provide valuable
information about the requirements for the generation of a protective immune response.
While the data is complicated by the use of different Francisella strains as well as different
animal and cell models, a clearer picture is emerging of both the pathogenic pathways of F.
tularensis and host response. The fact that F. tularensis is an intracellular pathogen has led
to the conclusion that a cell-mediated response will be required for protection. While this
assumption has been born out in many studies, a role for antibody has also been clearly
established. This suggests that any successful vaccine will need to induce both a humoral
and cell mediated response.

Concurrent advances in the broader vaccine fields of adjuvants and co-stimulatory
molecules, administrative routes, as well as vaccine formulation have provided an
abundance of options for the development of a tularemia vaccine. Accordingly, the search
for a tularemia vaccine has included the investigation of new vaccine regimens including
heterologous prime boost, new administration options e.g., nasal injection and new possible
adjuvants such as IL-12.6 Novel strategies such as these may be required to induce an
efficacious response against tularemia. Additionally, a viable vaccine for use against a
potential biothreat must also take into account several practical considerations. This vaccine
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must be safe for use in the general population and effective in individuals of varying ages
and levels of immunocompetence. Since it is highly unlikely that a vaccine against a
potential biothreat would be routinely administered to the general populous, routes of
administration must allow for speed and ease of deployment and this vaccine must be able to
be manufactured quickly, or stored in a formulation conferring long term stability.

Animal models are crucially important in the study of human pathogens; however there are
limitations that must be recognized. The majority of F. tularensis research has been, and
continues to be carried out in mice. While this work is very valuable, findings in mice and
humans are not necessarily equivalent. For example, mice can be lethally infected with
strains that are not pathogenic in humans, i.e., LVS. Therefore, advancement of any vaccine
candidate will require the use of additional animal models to confirm safety,
immunogenicity and protection. Models under investigation include the rabbit, rat and
nonhuman primates.64,107

Historically, vaccines have served as one of the most effective public health tools. While a
great deal of effort has been applied towards the development of a tularemia vaccine, much
work remains. Our greater understanding of the protective immune response to F. tularensis
will help to direct research towards the most effective vaccine candidates or regimes.
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Table 1

Live attenuated vaccine candidates

Gene Principal function Findings in mice Reference

F. tularensis subsp. holarctica LVS derivatives

purMCD Purines biosynthesis Attenuated and protective against LVS challenge (76)

tolC, ftlC TolC and TolC homologous tolC is attenuated and ftlC is not attenuated in C3H/HeN mice (37)

sodB Superoxide Dismutase B Moderately attenuated in mice, modest protection against Schu
S4 challenge (3, 4)

wbtA O-antigen biosynthesis Attenuated and protective against Type B strains LVS and
FSC108 challenge, but not protective against Schu S4 challenge (84, 91)

wbtl Transamine/perosamine synthetase Moderately attenuated and protective against low dose challenge
with LVS (62)

katG Catalase Attenuated in mice (63)

pitF, pitT Type IV Pili assembly Moderately attenuated in C3H/HeN mice (14)

ggt Gamma-glutamyl transpeptidase Moderately attenuated in BALB/c mice (1)

guaB, guaA Synthesis of GMP Attenuated in mice and protective against LVS challenge in
BALB/c mice (86)

F. tularensis subsp. Tularensis Schu S4 derivatives

FTT0918 58 kDa protein Attenuated in mice, induces modest protection against Type A
strain FSC033 challenge (10 CFU/aerosol) (103)

FTT0107c dsbB Disulfide bond formation Attenuated in C57BL/6 mice, not protective against Schu S4
challenge (81)

FTT1103 dsbA-like Lipoprotein Attenuated in mice and protective against Schu S4 challenge in
C57BL/6 mice (100–1,000 CFU/i.n route) (82)

purMCD Purines biosynthesis Attenuated in mice, modest protection against Schu S4 challenge (77)

guaA/guaB Synthesis of GMP Attenuated in mice, not protective against Schu S4 challenge (85)

katG Catalase Not attenuated in C57BL/6 mice (63)

F. novicida U112 derivatives

purA/purF Purines biosynthesis
purA is attenuated but not protective against U112 challenge in
mice. purF is attenuated and induces protection against U112

challenge but not against Schu S4
(83)

lpxF 4'-Phosphatase Attenuated in mice (105)

acpA, acpB, acpC, hap Acid phosphatases ΔacpABCH attenuated in BALB/c mice and protective against
U112 challenge (70, 72)

flmF1, ImF2, flmK Lipid A biosynthesis flmF1 mutant is not attenuated while flmF2 and flmK mutants are
modestly attenuated in mice (52)

mglA Transcriptional factor Attenuated, not protective against U112 challenge (106)

pmrA Response regulator protein Attenuated, induces protection against U112 challenge but not
against Schu S4 (71)

fevR Regulator protein fevR mutant is unable to multiply in spleen and skin (9)
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