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Abstract
State-space models provide an important body of techniques for analyzing time-series, but their
use requires estimating unobserved states. The optimal estimate of the state is its conditional
expectation given the observation histories, and computing this expectation is hard when there are
nonlinearities. Existing filtering methods, including sequential Monte Carlo, tend to be either
inaccurate or slow. In this paper, we study a nonlinear filter for nonlinear/non-Gaussian state-
space models, which uses Laplace’s method, an asymptotic series expansion, to approximate the
state’s conditional mean and variance, together with a Gaussian conditional distribution. This
Laplace-Gaussian filter (LGF) gives fast, recursive, deterministic state estimates, with an error
which is set by the stochastic characteristics of the model and is, we show, stable over time. We
illustrate the estimation ability of the LGF by applying it to the problem of neural decoding and
compare it to sequential Monte Carlo both in simulations and with real data. We find that the LGF
can deliver superior results in a small fraction of the computing time.
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1 Introduction
The central statistical problem in applying state-space models is that of filtering, i.e.,
estimating the unobserved state from the observations. For nonlinear or non-Gaussian
models, considerable effort has been devoted to devising approximate solutions to the
filtering problem, based mainly on simulation methods such as particle filtering and its
variants (Kitagawa 1987; Kitagawa 1996; Doucet, de Freitas and Gordon 2001). In this
article we study a deterministic approximation based on sequential application of Laplace’s
method which we call the Laplace Gaussian filter (LGF), and we illustrate the approach in
the context of real-time neural decoding (Brockwell, Schwartz and Kass 2007; Eden, Frank,
Barbieri, Solo and Brown 2004; Serruya, Hatsopoulos, Paninski, Fellows and Donoghue
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2002). In this context we find the LGF to be far more accurate, for equivalent computational
cost, than particle filtering.

Suppose we have a stochastic state process {xt}, t = 1, 2, … and a related observation
process {yt}. Filtering consists of estimating the state xt given a sequence of observations y1,
y2, … yt ≡ y1:t, i.e., finding the posterior distribution p(xt|y1:t) of the state, given the
sequence. It is common to assume that the state xt is a first-order homogeneous Markov
process, with initial density p(x1) and transition density p(xt+1|xt), and that yt is independent
of states and observations at all other times given xt, with observation density p(yt|xt).
Bayes’s Rule gives a recursive filtering formula,

(1)

where

(2)

is the predictive distribution, which convolves the previous filtered distribution with the
transition density. In principle, Equations (1) and (2) give a complete, recursive solution to
the filtering problem for state-space models: the mean-squared optimal point estimate is
simply the mean of the posterior density given by Equation (1). When the dynamics are
nonlinear, non-Gaussian, or even just high-dimensional, however, computing these estimates
sequentially can be a major challenge.

One approach to Bayesian computation is to attempt to simulate from the posterior
distribution. Applying Monte Carlo simulation to Equations (1)–(2) would let us draw from
p(xt|y1:t), if we had p(xt|y1:t−1). The insight of particle filtering is that the latter distribution
can itself be approximated by Monte Carlo simulation (Kitagawa 1996; Doucet et al. 2001).
This turns the recursive equations for the filtering distribution into a stochastic dynamical
system of interacting particles (Del Moral and Miclo 2000), each representing one draw
from that posterior. While particle filtering has proven itself to be useful in practice (Doucet
et al. 2001; Brockwell, Rojas and Kass 2004; Ergün, Barbieri, Eden, Wilson and Brown
2007), like any Monte Carlo scheme it can be computationally costly; moreover, the number
of particles (and so the amount of computation) needed for a given accuracy grows rapidly
with the dimensionality of the state-space. For real-time processing, such as neural
decoding, the computational cost of effective particle filtering can quickly become
prohibitive.

The primary difficulty with the nonlinear filtering equations comes from their integrals. We
use Laplace’s method to obtain estimates of the mean and variance of the posterior density
in Eq. (1), and then approximate that density by a Gaussian with that mean and variance.
This distribution is then recursively updated in its turn when the next observation is taken.

There are several versions of Laplace’s method, all of which replace integrals with series
expansion around the maxima of integrands. An expansion parameter, γ, measures the
concentration of the integrand about its peak. In the simplest version, the posterior
distribution is replaced by a Gaussian centered at the posterior mode. Under mild regularity
conditions, this gives a first-order approximation of posterior expectations, with error of
order O(γ−1). Several papers have applied some form of first-order Laplace approximation
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sequentially (Brown, Frank, Tang, Quirk and Wilson 1998; Eden et al. 2004). In the
ordinary static context, Tierney, Kass and Kadane (1989) analyzed the way a refined
procedure, the “fully exponential” Laplace approximation, gives a second-order
approximation for posterior expectations, having an error of order O(γ−2). In this paper we
provide theoretical results justifying these approximations in the sequential context. Because
state estimation proceeds recursively over time, it is conceivable that the approximation
error could accumulate, which would make the approach ineffective. Our results show that,
under reasonable regularity conditions, this does not happen: the posterior mean from the
LGF approximates the true posterior mean with error O(γ−α) uniformly across time, where α
= 1 or 2 depending on the order of the LGF.

We specify the LGF in Section 2, and give our theoretical results in Section 3. Section 4
introduces the neural decoding problem and reports comparative results both in simulation
studies and with real data. We provide additional comments in Section 5. Proofs and
implementation details are collected in the appendix.1

2 The Laplace-Gaussian filter (LGF)
Throughout the paper, xt|t and υt|t denote the mode and variance of the true filtered
distribution at time t given a sequence of observations y1:t, and similarly xt|t−1 and υt|t−1 are
those of the predictive distribution at time t given y1:t−1, respectively. Hatsˆand tildes˜on
variables indicate approximations; in particular, x̂ denotes the approximated posterior mode,
and x ̃the approximated posterior mean. The transpose of a matrix A is written AT. Bold type
of a small letter indicates a column vector.

2.1 Algorithm
The LGF procedure for a one-dimensional state is as follows. (The multi-dimensional
extension is straightforward; see below.)

1. At time t = 1, initialize the predictive distribution of the state, p(x1).

2. Observe yt.

3. (Filtering) Obtain the approximate posterior mean xt̃|t and variance υ̃t|t by Laplace’s
method (see below), and set p̂(xt|y1:t) to be a Gaussian distribution with the same
mean and variance.

4. (Prediction) Calculate the predictive distribution,

(3)

5. Increment t and go to step 2.

We consider first- and second- order Laplace’s approximations. In the first-order Laplace
approximation the posterior mean and variance are xt̃|t = x̂t|t ≡ argmaxxt l(xt) and υ̃t|t = [−l″
(x̂t|t)]−1, where l(xt) = log p(yt|xt)p̂(xt|y1:t−1).

The second-order (fully exponential) Laplace approximation is calculated as follows
(Tierney et al. 1989). For a given positive function g of the state, let k(xt) = log g(xt)p(yt|xt)p̂
(xt|y1:t−1), and let x̄t|t maximize k. The posterior expectation of g for the second order
approximation is then

1Appendices B–E appeared as a supplementary file in the journal version.
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(4)

When the g we care about is not necessarily positive, a simple and practical trick is to add a
large constant c to g so that g(x) + c > 0, apply Eq. (4), and then subtract c. The posterior
mean is thus calculated as xt̃|t = Ê[xt + c] − c. (In practice it suffices that the probability of
the event {g(xt) + c > 0} is close to one under the true distribution of xt. Allowing this to be
merely very probable rather than almost sure introduces additional approximation error,
which however can be made arbitrarily small simply by increasing the constant c. See
Tierney et al. (1989) for details.) The posterior variance is set to be υ̃t|t = [−l″(x̂t|t)]−1, as this
suffices for second-order accuracy (see Remark 1 in Appendix A).

To use the LGF to estimate a state in d-dimensional space, one simply takes the function g
to be each coordinate in turn, i.e., g(xt) = xt,i + c for each i = 1, 2, …, d. Each g is a function

of ℝd → ℝ, and  in Eq. (4) are replaced by the determinants of
the Hessians of l(x̂t|t) and k(x̄t|t), respectively. Thus, estimating the state with the second-
order LGF takes d times as long as using the first-order LGF, since posterior means of each
component of xt must be calculated separately.

In many applications the state process is taken to be a linear Gaussian process (such as an
autoregression or random walk) so that the integral in Eq. (3) is analytic. When this integral
is not done analytically, either the asymptotic expansion (23) or a numerical method may be
employed. To apply our theoretical results, the numerical error in the integration must be
O(γ−α), where γ is the expansion parameter, to be discussed in section 3.1, and α = 1 or 2
depending on the order of the LGF.

2.2 Smoothing
The LGF can also be used for smoothing. That is, given the observation up to time T, y1:T,
smoothed state distributions, p(xt|y1:T), t ≤ T, can be calculated from filtered and predictive
distributions by recursing backwards (Anderson and Moore 1979). Instead of the true
filtered and predictive distributions, however, we now have the approximated filtered and
predictive distributions computed by the LGF. By using these approximated distributions,
the approximated smoothed distributions can be obtained as

(5)

We address the accuracy of LGF smoothing in Theorem 5.

2.3 Implementation
Two aspects of the numerical implementation of the LGF call for special comment:
maximizing the likelihood and computing its second derivatives. One key point is that the
Hessian in Eq. (4) may be computed by careful numerical differentiation. Avoiding
analytical derivatives saves substantial time when fitting many alternative models. See
Appendix B for a brief description of our numerical procedure for computing the Hessian
matrix, and Kass (1987) for full details.

The log-likelihood function can be maximized by an iterative algorithm (e.g. Newton’s
method), in which x̂t|t−1 and x̂t|t would be chosen as a reasonable starting point for
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maximizing l(xt) and k(xt), respectively. The convergence criterion also deserves some care.
Writing x(i) for the value attained on the ith step of the iteration, the iteration should be
stopped when ‖x(i+1) − x(i)‖ < cγ−α, where c is a constant and γ is the expansion parameter, to
be discussed in section 3.1, and α is the order of the Laplace approximation. The value of c
should be smaller than that of γ (c = 1 is a reasonable choice in practice).

3 Theoretical Results
For simplicity, we state the results for the one dimensional case. The extension to the multi-
dimensional case is notationally somewhat cumbersome but conceptually straightforward.
Let p and p̂ denote the true density of a random variable and its approximation, and let h(xt)
be

(6)

where γ is the expansion parameter, whose meaning will be explained later in this section.

3.1 Regularity conditions
The following properties are the regularity conditions that are sufficient for the validity of
Laplace’s method (Erdélyi 1956; Kass, Tierney and Kadane 1990; Wojdylo 2006).

(C.1) h(xt) is a constant-order function of γ as γ → ∞, and is five-times differentiable
with respect to xt.

(C.2) h(xt) has an unique interior minimum, and its second derivative is positive (the
Hessian matrix is positive definite for multi-dimensional cases)

(C.3) p(xt+1|xt) is four-times differentiable with respect to xt.

(C.4) The integral

exists and is finite.

We also assume the following condition which prohibits ill-behaved, “explosive”
trajectories in state space:

(C.5) Derivatives of h(xt) up to fifth-order and those of p(xt+1|xt) with respect to xt up to
third-order are bounded uniformly across time.

Strictly speaking, h(xt) is a random variable, taking values in the space of integrable non-
negative functions of ℝ. This random variable is measurable with respect to σ(y1:t).
Therefore, the stated regularity conditions only need to hold with probability 1 under the
distribution of y1:t (Kass et al. 1990).

In the following section we will state the theorems that ensure that, under conditions (C.1)–
(C.5), the LGF does not accumulate error over time, but first we explain the meaning of the
expansion parameter.

Meaning of γ—As seen in Eq. (6) and the regularity condition (C.1), for a given state-
space model, γ is constructed by combing the model parameters so that the log posterior
density is scaled by γ as γ → ∞. In general, γ would be interpreted in terms of sample size,
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the concentration of the observation density, and the inverse of the noise in the state
dynamics; we will describe how γ is chosen for a neural decoding model in section 4. From
the construction of γ, the second derivative of the log posterior density, which determines
the concentration of the posterior density, is also scaled by γ. Therefore, the larger γ is, the
more precisely variables can be estimated, and the more accurate Laplace’s method
becomes. When the concentration of the posterior density is not uniform across state-
dimentions in a multidimensional case, a multidimensional γ could be taken. Without a loss
of approximation accuracy, however, a simple implementation for this case is taking the
largest γ as a single expansion parameter.

3.2 Main theoretical results
Theorem 1 (accuracy of predictive distributions) Under the regularity conditions (C.1)–
(C.4), the α-order LGF approximates the predictive distribution as

for t ∈ ℕ, where β = 1 for β = 1 and β = 2 for α ≥ 2. Furthermore, if condition (C.5) holds,
the error term is bounded uniformly across time.

The error bound can also be established for the posterior (filtered) expectations in the
following theorem.

Theorem 2 (accuracy of posterior expectations) Under the regularity conditions (C.1)–(C.
4), the α-order LGF approximates the filtered conditional expectation of a four-times
differentiable function g(x),

for t ∈ ℕ, with β as in Theorem 1. Here E[· |y1:t] and Ê[· |y1:t] denote the expectation with
respect to p(xt|y1:t) and p̂(xt|y1:t), respectively. Furthermore, if condition (C.5) holds, the
error term is bounded uniformly across time.

Note that the order of the error is γ−2 even for α ≥ 2 both in Theorem 1 and Theorem 2. That
is, even if higher than the second-order Laplace approximation in Step 3 of the LGF is
employed, the resulting approximation error does not go beyond the second-order accuracy
with respect to γ−1. This fact leads to the following corollary.

Corollary 3 The second-order approximation is the best achievable for the LGF scheme.

The following theorem refers to stability of the LGF. It states that minor differences in the
initially-guessed distribution of the state tend to be reduced, rather than amplified, by
conditioning on further observations, even under the Laplace’s approximation.

Theorem 4 (stability of the algorithm) Suppose that two approximated predictive
distributions at time t satisfy

where ν > 0. Then, under the regularity conditions (C.1)–(C.4), applying the LGF u(> 0)
times leads to the difference of two approximated predictive distributions at time t + u as
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Theorem 5 Under the regularity conditions (C.1)–(C.4), the expectation of a four-times
differentiable function g(x) with respect to the approximated smoothed distribution Eq. (5) is
given by

for t = 1, 2, …, T, with β as in Theorem 1. Furthermore, if condition (C.5) is satisfied, the
error term is bounded uniformly across time.

3.3 Computational cost
Assuming that the maximization of l(xt) and k(xt) is done by Newton’s method, the time
complexity of the LGF goes as follows. Let d be the number of dimensions of the state, T
the number of time steps, and N be the sample size. The bottleneck of the computational cost
in the first-order LGF comes from maximization of l(xt) at each time t. In each iteration of
Newton’s method, evaluation of the Hessian matrix of l(xt) typically costs O(Nd2), as d2 is
the time complexity for matrix manipulation. Over T time steps, the time complexity of the
first-order LGF is O(TNd2). In the second-order LGF, the time complexity of calculating the
posterior expectation of each xt,i is still O(Nd2), but calculating it for i = 1, …, d results in
O(Nd3). Repeating over T time steps, the complexity of the second-order LGF is O(TNd3).

For comparison, take the time complexity of a particle filter (PF) with M particles. It is not
hard to check that the computational cost across time step T of the particle filter is
O(TMNd). For the computational cost of the particle filter to be comparable with an LGF,
the number of particles should be M = O(d) for the first-order LGF and M = O(d2) for the
second-order LGF.

4 Application to neural decoding
The problem of neural decoding consists in using an organism’s neural activity to draw
inferences about the organism’s environment and its interaction therewith — sensory
stimuli, bodily states, motor behaviors, etc. (Rieke, Warland, de Ruyter van Steveninck Rob
and Bialek 1997). Scientifically, neural decoding is vital to studying neural information
processing, as reflected by the many proposed decoding techniques (Dayan and Abbott
2001). Its engineering importance comes from efforts to design brain-machine interface
devices, especially neural motor prostheses (Schwartz 2004) such as computer cursors,
robotic arms, etc. The brain-machine interface devices must determine, from real-time
neural recordings, what motion the user desires the prosthesis to have. Such considerations
have led to many proposals, emanating from Brown et al. (1998), for neural decoding based
on state-space models (Brockwell et al. 2007).

In the rest of this section, we introduce a standard model setup for neural decoding tasks,
and identify its Laplace expansion γ. We then simulate the model and apply the LGF,
confirming the applicability of our theoretical results, and comparing its performance to
particle filtering. Finally, we apply the model and the LGF to experimental data.

4.1 Model setup
We consider the problem of decoding a “state process” from the firing of an ensemble of
neurons. Here we suppose that neurons respond to a xt ∈ ℝd, where d is the number of
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dimensions. xt may be interpreted as two- or three-dimensional hand kinematics for motor
cortical decoding (Georgopoulos, Schwartz and Kettner 1986; Ketter, Schwartz and
Georgopoulos 1988; Paninski, Fellows, Hatsopoulos and Donoghue 2004), or hand posture
(about 20 degrees of freedom) for dexterous grasping control (Artemiadis, Shakhnarovich,
Vargas-Irwin, Donoghue and Black 2007). We consider N such neurons, and assume that the
logarithm of the firing rate of neuron i is (Truccolo, Eden, Fellows, Donoghue and Brown
2005)

(7)

We let yi,t be the spike count of neuron i at time-step t. We assume that yi,t has a Poisson
distribution with intensity λi(xt)Δ, where Δ is the duration of the short time-intervals over
which spikes are counted at each time step. We also assume that firing of neurons is
conditionally independent with each other given xt. Thus the probability distribution of yt,
the vector of all the yi,t, is the product of the firing probabilities of each neuron. We assume
that the state model is given by

(8)

where F ∈ ℝd×d and εt is a d-dimensional Gaussian random variable with mean zero and
covariance matrix W ∈ ℝd×d.

The expansion parameter γ for this model is identified as follows. The second derivative of
l(xt) = log p(yt|xt)p̂(xt|y1:t−1) is

where Vt|t−1 is the covariance matrix of the predictive distribution at time t. Then, from the
Cauchy-Schwarz inequality,

Since  is scaled by ‖W−1‖, we can identify the expansion parameter:

(9)

We see that γ combines the number and the mean firing rate of the neurons, the sharpness of
neuronal tuning curves and the noise in the state dynamics.

Given our assumptions, the observation model p(yt|xt) and the state transition density p(xt+1|
xt) are strictly log-concave and have an unique interior maximum in xt, and their derivatives
up to fifth-order are uniformly bounded if the state is bounded. Furthermore, h(xt) is a
constant-order function of γ as γ → ∞, which can be seen from the construction of γ. Thus,
the regularity conditions (C.1)–(C.5) are satisfied if the initial distribution satisfies them.
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In what follows, we took the initial value for filtering to be the true state at t = 0. Note that
when there is no information about the initial distribution, we could use a “diffuse” prior
density whose covariance is taken to be large (Durbin and Koopman 2001). Either type of
initial condition would satisfy the regularity conditions. We can thus construct LGFs
according to section 2.

4.2 Simulation study
We performed numerical simulations to study first and second-order LGF (labeled by
LGF-1 and LGF-2, respectively) approximations under conditions relevant to the neural
decoding problems we are working on. We also compared LGF to particle filtering. We
judged performance by accuracy in computing the posterior mean (which was determined by
particle filtering with a very large number of particles). However, the posterior mean
contains statistical inaccuracy (due to limited data). We also evaluated the accuracy with
which the several alternative methods approximate the underlying true state.

Simulation Setup—In each simulation run, we generated a state trajectory from a d-
dimensional AR process, Eq. (8), with F = 0.94I and W = 0.019I, I being the identity
matrix, over T = 30 time-steps of duration Δ = 0.03 seconds. We examined different number
of state-dimensions, d = 6, 10, 20, 30. Regardless of d, we observed neural activity due to
the state through N = 100 neurons, with αi = 2.5 + 0, 1) and βi uniformly distributed on
the unit sphere in ℝd. Finally, the spike counts were drawn from Poisson distributions with
the firing rates λi(xt) given by Eq. (7) above.

Methods—To compare LGF state estimates to the posterior mean we first needed a high-
accuracy evaluation of the posterior mean itself. We obtained this by averaging results from
ten independent realizations of particle filtering with 106 particles; the resulting
approximation error in the mean integrated squared error (MISE) is O(10−7), and so
negligible for our purposes. We also applied the particle filter (PF) for comparison. The
number of particles in the PF was chosen by consideration of computational cost; as
discussed in subsection 3.3, a LGF-1 is comparable in time complexity to a PF with O(d)
particles, and a LGF-2 is comparable to a PF with O(d2) particles. For the case of d ≤ 30,
100 particles (PF-100) was about the least number at which the PF was effective and was
not much more resource-intensive than the LGF-1. In order that the computational time of a
PF matchs that of the LGF-2, we chose 100, 300, 500 and 1000 particles for d = 6, 10, 20
and 30, respectively. (We label it PF-scaled.) See also Table 2.

We implemented all the algorithms in Matlab, and we ran them on Windows computer with
Pentium 4 CPU, 3.80GHz and 3.50GB of RAM.

Results—The first four rows in Table 1 show the four filters’ MISE in approximating the
actual posterior mean. LGF-2 gives the best approximation, followed by LGF-1; both are
better than PF-100 and PF-scaled. Note that LGF-1 is much faster than PF-100, and the
computational time of LGF-2 is approximately the same as that of PF-scaled (Table 2).
Figure 1 displays the MISE of particle filters in approximating the actual posterior mean as a
function of the number of particles, for d = 6. PF needs on the order of 104 particles to be as
accurate as LGF-1, and about 106 particles to match LGF-2. Furthermore, since the
computational time of the PF is proportional to the number of particles, the time needed to
decode by PF with 104 and 106 particles are expected to be about 20s and 2,000s,
respectively (from Table 2). Thus, if we allow the LGFs and the PF to have the same
accuracy, LGF-1 is about 1, 000 times faster than the PF, and LGF-2 is expected to be about
10, 000 times faster than the PF.
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The value of γ for this state-space model is γ ≈ 100 (Eq. (9)). From Theorem 2, the MISEs
of LGF-1 and LGF-2 are, respectively, evaluated as , where c1 and c2 are
constants depending on the model parameters. If c1 and c2 were in the range 1 to 10, then the
MISEs of LGF-1 and LGF-2 should be 10−4 to 10−6, roughly matching the simulation
results.

The fifth row of Table 1 shows the MISE between the true state and the actual posterior
mean. The error in using the optimal filter, i.e., the actual posterior mean, to estimate the
true state is statistical error, inherent in the system’s stochastic characteristics, and not due to
the approximations. The statistical error is an order of magnitude larger than the
approximation error in the LGFs, so that increasing the accuracy with which the posterior
expectation is approximated does little to improve the estimation of the state. The
approximation error in the PFs, however, becomes on the same order as the statistical error
when the state dimension is larger (d = 20 or 30). In such cases the inaccuracy of the PF will
produce comparatively inaccurate estimates of the true state.

Finally, we examined how the choice of initial prior density affects the filtering result.
Figure 2 shows five estimated trajectories started with different initial values. These five
trajectories converged to the same state as the time evolves, as expected from Theorem 4.

4.3 Real data analysis
Experiment setting and data collection—We used LGF to estimate the hand motion
from neural activity. A multi-electrode array was implanted in the motor cortex of a monkey
to record neural activity following procedures similar to those described previously in
Velliste, Perel, Spalding, Whitford and Schwartz (2008). In all, 78 distinct neurons were
recorded simultaneously. Raw voltage waveforms were thresholded and spikes were sorted
to isolate the activity of individual cells. A monkey in this experiment was presented with a
virtual 3-D space, containing a cursor which was controlled by the subject’s hand position,
and eight possible targets which were located on the corners of a cube. The task was to
move the cursor to a highlighted target from the middle of the cube; the monkey received a
reward upon successful completion. In our data each trial consisted of time series of spike-
counts from the recorded neurons, along with the recorded hand positions, and hand
velocities found by taking differences in hand position at successive Δ = 0.03s intervals.
Each trial contained 23 time-steps on average. Our data set consisted of 104 such trials.

Methods—For decoding, we used the same state-space model as in our simulation study.
Many neurons in the motor cortex fire preferentially in response to the velocity υt ∈ ℝ3 and
the position zt ∈ ℝ3 of the hand (Wang, Chan, Heldman and Moran 2007). We thus took the
state xt to be a 6-dimensional concatenated vector xt = (zt, υt). The state model was taken to
be

(10)

where εt is a 3-D Gaussian random variable with mean zero and covariance matrix σ2I, I
being the identity matrix. 16 trials consisting of 2 presentations of each of the 8 targets, were
reserved for estimating the parameters of the model. The parameters in the firing rate, αi and
βi, were estimated by Poisson regression of spike counts on cursor position and velocity, and
the value of σ2 was determined via maximum likelihood. The time-lag between the hand
movement and each neural activity was also estimated from the same training data. This was
done by fitting a model over different values of time-lag ranging from 0 to 3Δs. The
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estimated optimal time-lag was the value at which the model had the highest R2. Having
estimated all the parameters, cursor motions were reconstructed from spike trains for the
other 88 trials, and it is on these trials we focused. For comparison, we also reconstructed
the cursor motion with a PF-100 and a widely-used population vector algorithm (PVA)
(Dayan and Abbott 2001, pp. 97–101) (see also Appendix D).

Results—Figure 3 compares MISEs for different algorithms in estimating the true cursor
position. Figure 3 (a) compares the MISE of LGF-1 with that of LGF-2. Just like in the
simulation study, there is no substantial difference between them since the statistical error is
larger than the LGFs’ approximation errors. Figure 3 (b) compares LGF-1 to PF-100: the
former estimates the true cursor position better than the latter in most trials. Also (Table 2),
LGF-1 is much faster than PF-100. Figure 3 (c) shows that the numerical error in the PF-100
is of the same order as the error resulting from using PVA. (Plots of the true and
reconstructed cursor trajectories are shown in Appendix E.)

5 Discussion
In this paper we have shown that, under suitable regularity conditions, the error of the LGF
does not accumulate across time. In the context of a neural decoding example we found the
LGF to be much more accurate than the particle filter with the same computational cost: in
our simulation study the first-order and second-order LGFs had MISE of about 1/200 to
1/7,500 the size of the particle filter. We also found that for 6-dimensional case, about
10,000 particles were required in order for the particle filtering to become competitive with
the first-order LGF; and the second-order LGF remained as accurate as the particle filter
with 1,000,000 particles. In many situations (such as some neural decoding applications),
implementation needs to be easy so that repeated refinements in modeling assumptions may
be carried out quickly. With this in mind, it might be argued that the simplicity of the
particle filter gives it some advantages. We have, however, noted how numerical methods
may be used to supply the necessary second-derivative matrices (see Appendix B, and Kass
(1987)), and these, together with maximization algorithms, make it as easy to modify the
LGF for new variations on models as it is to modify the particle filter. Nor does the use of
the LGF interfere with diagnostic tests and model-adequacy checks, such as the time-
rescaling theorem for point processes (Brown, Barbieri, Ventura, Kass and Frank 2002). The
obvious conclusion is that the LGF is likely to be preferable to the particle filter in
applications where the posterior in Eq. (1) becomes concentrated.

We should note that the validity of the LGF is guaranteed only when the posterior
distribution is uni-modal and has a log-concave property. On the other hand, the particle
filter is a distribution-free method and can be used in a multi-modal case.

It is perhaps worth emphasizing the distinction between the LGF and other alternatives to
the Kalman filter. The simplest non-linear filter, the extended Kalman filter (EKF) (Ahmed
1998), linearizes the state dynamics and the observation function around the current state
estimate x̂, assuming Gaussian distributions for both. The error thus depends on the strength
of the quadratic nonlinearities and the accuracy of preceding estimates, and so error can
accumulate dramatically. The LGF makes no linear approximations—every filtering step is
a (generally simple) nonlinear optimization—nor does it need to approximate either the state
dynamics or the observation noise as Gaussians.

In our simulation studies, the second-order LGF was always more (in some cases much
more) than 20 times as accurate as the first-order LGF in approximating the posterior, but
this translated into only small gains in decoding accuracy. The reason is simply that the
inherent statistical error of the posterior itself was much larger than the numerical error of
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the first-order LGF in approximating the posterior. We would expect this to be the case quite
generally. Thus, our work may be seen as supporting the use of the first-order LGF, as
applied to neural decoding in Brown et al. (1998).

Finally, an interesting idea is to use a sequential approximation to the posterior based on
some well-behaved and low-dimensional parametric family, and to apply sequential
simulation based on that family. The Gaussian could again be used (e.g., (Azimi-Sadjadi and
Krishnaprasad 2005; Brigo, Hanzon and LeGland 1995; Ergün et al. 2007)), and our results
would provide new theoretical justification for such procedures. However, it is well-known
that Gaussian distributions, with their very thin tails, are poorly suited for importance
sampling, so that heavier-tailed alternatives often work better (e.g., (Evans and Swartz
1995)). Sequential simulation schemes with approximating Gaussians replaced by
multivariate t, or other heavy-tailed distributions, may be worth exploring.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A. Proofs of theorems
We begin by proving a lemma and a proposition needed for the main theorems. To simplify
notation we introduce the symbols

.

Lemma 6 Let ĥ(xt) be

(11)

, and x̂t|t the minimizer of ĥ(xt). Then, under the regularity conditions, the
order-α Laplace approximation of the posterior mean and variance have series expansions
as

(12)

and

(13)

where the coefficients, Aj and Bj, are functions of .

Proof (Lemma 6) The expectation of a function g(xt) with respect to the approximated
posterior distribution is
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(14)

where g(xt) = xt for the mean and  for the second moment. We get the coefficients Aj
and Bj by applying Laplace’s method, an (infinite) asymptotic expansion of a Laplace-type
integral (Theorem 1.1 in (Wojdylo 2006); see Appendix C for a brief summary), to both the
numerator and the denominator of Eq. (14); those formulae also show that the coefficients
are functions of , l = 1, 2, ․ ․ … For example, the coefficients of up to first-order terms

are obtained as .

Remark 1 Lemma 6 guarantees that the choice of xt̃|t = x̂t|t and  provides the
first-order approximation of posterior mean and variance. As proved in Tierney et al. (1989),
Eq. (4) achieves the second-order expansion of the posterior mean .

Thus Eq. (4) and  provide the second-order approximation.

Proposition 7 Suppose that the regularity conditions (C.1)–(C.4) hold, and that the
approximated predictive distribution of time t satisfies

(15)

where ℰt,j(xt) is a constant-order function of γ and 0 < ν < N for ν, N ∈ ℕ. Replacing the
filtered distribution at time t with a Gaussian with α-order Laplace approximated mean and
variance leads to the approximate predictive distribution at time t + 1,

(16)

where β = 1 for α = 1 and β = 2 for α ≥ 2. Here  does not depend on
{ℰt,k(xt)}k=ν,ν+1,… and

(17)

for j = ν, ν + 1, …, N. Furthermore, if the condition (C.5) is satisfied, the coefficients of the
expansion terms in Eq. (16) are bounded uniformly across time.

Proof (Proposition 7) The proof works by comparing the asymptotic expansions of the true
and approximated predictive distributions. To do this, we must find those asymptotic
expansions; once this is done the remaining steps are fairly straightforward.

(i) We begin by evaluating the true predictive distribution at time t + 1. From Eqs. (1) and
(2), this is
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Applying Laplace’s method (Theorem 1.1 in (Wojdylo 2006), see also Appendix C) to both
the numerator and the denominator of above equation leads to

(18)

where

(19)

and

(20)

Here s,j(A1, …) is a partial ordinary Bell polynomial, which is the coefficient of xi in the
formal expansion of (A1x + A2x2 + ⋯)j, and  is the coefficient which appeared
in Lemma 6. Expanding with respect to γ−1, we obtain the asymptotic expansion of p(xt+1|
y1:t) as

(21)

where q(xt+1) was earlier defined as p(xt+1|xt), and where Cj(xt+1) depends on q(k)(xt+1) and
. Cj(xt+1) is directly calculated by Eqs. (18)–(20).

(ii) We next consider the approximated predictive distribution of time t+1,

(22)

where p̂(xt|y1:t) is the Gaussian distribution whose mean and variance are given by Eq. (12)
and (13), respectively. Eq. (22) can be re-written as
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Applying Laplace’s method again,

(23)

where Γ(j + 1) is the Gamma function and

(24)

Now we compare Eqs. (23) and (21), via a series of substitutions. We want to re-write Eq.
(23) with q(k)(xt+1) and . Substituting Eq. (15) into Eq. (11),

(25)

where

is a collection of terms which depend on ℰt,j(xt).

Suppose x̂t|t = xt|t + ε and ε ≪ 1. Taking the derivative both sides of Eq. (25) and evaluating
it at xt|t, we obtain

Then we get

(26)

Inserting Eq. (26) into Eq. (25) gives

(27)

Substituting Eq. (26) and Eq. (27) into Eq. (12) leads to
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(28)

Inserting Eq. (28) into Eq. (24) and expanding with respect to γ−1,

(29)

Substituting Eqs. (13), (27) and (29) into Eq. (23), we obtain the final asymptotic expansion
of p̂(xt+1|y1:t),

(30)

in which

and

where  appeared in Lemma 6.

(iii) Now we compare Eqs. (21) and (30). The coefficients, up to second order terms, in the
former are

(31)
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and

(32)

For the first-order Laplace approximation (α = 1), the coefficient of order γ−1 in Eq. (30) is

(33)

which does not correspond to C1(xt+1), and hence Eq. (16) holds.

For α ≥ 2, R1(xt+1) is as

(34)

which corresponds to C1(xt+1), and the first-order error term in Eq. (16) is canceled.

The second-order error term in Eq. (30) is calculated as

(35)

for α = 2, and

(36)

for α ≥ 3. Thus R2(xt+1) ≠ C2(xt+1) and second-order error term in Eq. (16) remains for α ≥
2.

From (31)–(36), the leading error term introduced by the Gaussian approximation is

for α = 1, and

for α = 2, and
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for α ≥ 3. Thus if the condition (C.5) is satisfied, the leading error term is bounded
uniformly across time. We can confirm in the same way that the other error terms are also
bounded uniformly.

There are two sources of error in Eq. (16): first, that due to the replacement of the true

filtered distribution at time t by a Gaussian, , and, second, that due to

propagation from time t, . At each step, the Gaussian approximation
introduces an O(γ−β) error into the predictive distribution, where β = 1 for α = 1 and β = 2
for α ≥ 2. However, the errors propagated from the previous time-step “move up” one order
of magnitude (power of γ). Applying Eq. (17) repeatedly, we find that the leading error term,

, which is generated at time-step t, is propagated, by a strictly later time-step u, to
be ℰu,u−t+β(xu)−(u−t+β) where

The compounded error in time-step u is then given by the summation of the propagated
errors from t = 1 to u − 1 as

where the inequality holds under the condition (C.5), C < γ is a constant which is
independent of time t. The right hand side in this equation converge on O(γ−β−1) as u → ∞,
so that the compounded error after infinite time-step remains O(γ−β−1). The result is that the
whole error term in the predictive distribution becomes O(γ−β), even if it started out smaller,
but it does not grow beyond that order. Theorem 1 is then proved from Proposition 7
immediately:

Proof (Theorem 1) The LGFs start with an initial predictive distribution which does not
involve any errors. Thus, from Proposition 7 it is proved inductively that the error in the
approximated predictive distribution is O(γ−β) and uniformly bounded for t ∈ ℕ.

Proof (Theorem 2) (Sketch) Since the predictive distribution,

is the posterior expectation of p(xt+1|xt) with respect to xt, Theorem 2 is proved in the same
way as Theorem 1 (replacing p(xt+1|xt) by g(xt) in the proof of Theorem 1).

Proof (Theorem 4) From Proposition 7, the two predictive distributions at time t are given
by
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and

where . Applying the LGF to both predictive distributions introduces the

same errors at time t + 1, , which are canceled, while propagated errors
from time-step t to t + 1 in both predictive distributions,

 are not canceled. Then we get p̂1(xt+1|
y1:t) − p̂2(xt+1|y1:t) = O(γ−ν−1). Applying this procedure u times completes the theorem.

Proof (Theorem 5) Assume that the expectation at time t + 1 satisfies

(37)

From Theorem 1 and Eq. (37), we obtain

Using Theorem 2, the expectation at time t is

The initial smoothed distribution of the backward recursion is given by the filtered
distribution p̂(xT|y1:T), which satisfies Ê[xT|y1:T] = E[xT|y1:T]+O(γ−β) by theorem 2. Then,
the theorem is proved inductively.

APPENDIX B. Numerical Computation for second derivatives
We describe the numerical algorithm for computing the Hessian matrix, as promised in
Section 2.3.

The Laplace approximation requires the second derivative (or the Hessian matrix) of the log-
likelihood function evaluated at its maximum. However, it is often difficult, and even more
often tedious, to get correct analytical derivatives of the log-likelihood function. In such
cases accurate numerical computations of the derivative may be used, as follows. Consider
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calculating the second derivative of l(x) at x0 for the one-dimensional case. For n = 0, 1, 2,
… and c > 1, define the second central difference quotient,

and then for k = 1, 2, …, n compute

(38)

When the value of |An,k − An−1,k| is sufficiently small, An,k+1 is used for the second
derivative.

This algorithm is an iterated version of the second central difference formula, often called
Richardson extrapolation, producing an approximation with an error of order O(h2(k+1))
(Dahlquist and Bjorck 1974).

In the d-dimensional case of a second-derivative approximation at a maximum, Kass (1987)
proposed an efficient numerical routine which reduces the computation of the Hessian
matrix to a series of one-dimensional second-derivative calculations. The trick is to apply
the second-difference quotient to suitably-defined functions f of a single variable s as
follows.

1. Initialize the increment h = (h1, …, hd).

2. Find the maximum of l(x), and call it x̂.

3. Get all unmixed second derivatives for each i = 1 to d, using the function

Compute the second difference quotient; then repeat and extrapolate until the
difference in successive approximations meets a relative error criterion, as in (38);

store as diagonal elements of the Hessian matrix array, .

4. Similarly, get all the mixed second derivatives. For each i = 1 to d, for each j = i + 1
to d, using the function

Compute the second difference quotient; then repeat and extrapolate until
difference in successive approximations is less than relative error criterion as in
(38); store as off-diagonal elements of the Hessian matrix array,

.
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In practice, the increment for computing the Hessian at time t would be taken to be

, i = 1, 2, …, d, where  is the (i, i)-element of the covariance matrix of
the predictive distribution at time t.

APPENDIX C. Laplace’s Method
Here, we briefly describe Laplace’s method, especially the details used in the proofs of
Lemma 6 and Proposition 7.

We consider the following integral,

(39)

where x ∈ ℝ; γ, the expansion parameter, is a large positive real number; h(x) and g(x) are
independent of γ (or very weakly dependent on γ); and the interval of integration can be
finite or infinite. Laplace’s method approximates I(γ) as a series expansion in descending
powers of γ. There is a computationally efficient method to compute the coefficients in this
infinite asymptotic expansion (Theorem 1.1 in (Wojdylo 2006)). Suppose that h(x) has an
interior minimum at x0, and h(x) and g(x) are assumed to be expandable in a neighborhood
of x0 in series of ascending powers of x. Thus, as x → x0,

and

in which a0, b0 ≠ 0.

Let us introduce two dimensionless sets of quantities, Ai ≡ ai/a0 and Bi ≡ bi/b0, as well as the

constants . Then the integral in 39) can be asymptotically
expanded as

where
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where i,j(A1, …) is a partial ordinary Bell polynomial, the coefficient of xi in the formal
expansion of (A1x + A2x2 + ⋯)j. i,j(A1, …) can be computed by the following recursive
formula,

for 1 ≥ j ≥ i. Note that 0,0(A1, …) = 1, and i,0(A1, …) = 0,j(A1, …) = 0 for all i, j > 0.

APPENDIX D. The Population Vector Algorithm
The population vector algorithm (PVA) is a standard method for neural decoding, especially
for directionally-sensitive neurons like the motor-cortical cells recorded from in the
experiments we analyze (Dayan and Abbott 2001, pp. 97–101). Briefly, the idea is that each
neuron i, 1 ≤ i ≤ N, has a preferred motion vector θi, and the expected spiking rate λi varies
with the inner product between this vector and the actual motion vector x(t),

(40)

where ri is a baseline firing rate for neuron i, and Λi a maximum firing rate. ((40)
corresponds to a cosine tuning curve.) If one observes yi(t), the actual neuronal counts over
some time-window Δ, then averaging over neurons and inverting gives the population vector

which the PVA uses as an estimate of x(t). If preferred vectors θi are uniformly distributed,
then xpop converges on a vector parallel to x as N → ∞, and is in that sense unbiased
(Dayan and Abbott 2001, p. 101). If preferred vectors are not uniform, however, then in
general the population vector gives a biased estimate.

APPENDIX E. Real data analysis
Figure 4 shows trajectories of the true and estimated (by LGF, PF-100 and PVA) cursor
position of the real data analysis. It is seen that the LGF provides better estimation than
either the PF-100 or the PVA.
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Figure 1.
Scaling of the MISE for particle filters. The solid line represents the MISE (vertical axis) of
the particle filter as a function of the number of particles (horizontal axis). Error here is with
respect to the actual posterior expectation (optimal filter). The dashed and dotted horizontal
lines represent the MISEs for the first- and second-order LGF, respectively.
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Figure 2.
The solid lines represent the estimated trajectories with five different initial values by
LGF-1. The dashed line represents the true state trajectory.
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Figure 3.
Algorithm comparisons. The horizontal and vertical axes represent the MISE of different
algorithms in estimating the true cursor position. Each point compares two different
algorithms for a trial. Overall, 4 algorithms (LGF-1, LGF-2, PF-100 and PVA) were
compared for 88 trials. (a) LGF-2 vs. LGF-1, (b) LGF-1 vs. PF-100, and (c) PF-100 vs.
PVA.
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Figure 4.
The trajectories of the cursor position. “True”: actual trajectory. “LGF1”: trajectories
estimated by first-order LGF, respectively. “PF100”: trajectory estimated by the particle
filter with 100 particles. “PVA”: trajectory estimated by the population vector algorithm.
The trajectories estimated by the LGF2 are not shown; they are similar to those estimated by
the LGF1.
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Table 1

MISEs for different filters

Method Number of dimensions, d

6 10 20 30

LGF-2 0.0000008 0.000002 0.00001 0.00006

LGF-1 0.00003 0.00004 0.0001 0.0002

PF-100 0.006 0.01 0.03 0.04

PF-scaled 0.006 0.007 0.01 0.02

posterior 0.03 0.04 0.06 0.07

NOTE: The first four rows give the discrepancy between four approximate filters and the optimal filter (approximation error). The fifth row gives
the MISE between the true state and the estimate of the optimal filter, i.e., the actual posterior mean (statistical error). All values are means from 10
independent replicates. The simulation standard errors are all smaller than the leading digits in the table.
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Table 2

Time (seconds) needed to decode

Method Number of dimensions, d

6 10 20 30

LGF-2 0.24 0.43 1.0 2.0

LGF-1 0.018 0.024 0.032 0.056

PF-100 0.18 0.18 0.18 0.19

PF-scaled 0.18 0.50 0.81 1.8

NOTE: All values are means from 10 independent replicates. The simulation standard errors are all smaller than the leading digits in the table.
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