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Streptomyces griseus strain XylebKG-1 is an insect-associated strain of the well-studied actinobacterial
species S. griseus. Here, we present the genome of XylebKG-1 and discuss its similarity to the genome of S.
griseus subsp. griseus NBRC13350. XylebKG-1 was isolated from the fungus-cultivating Xyleborinus sax-
esenii system. Given its similarity to free-living S. griseus subsp. griseus NBRC13350, comparative genom-
ics will elucidate critical components of bacterial interactions with insects.

Streptomyces griseus is a soil bacterium known for its produc-
tion of secondary metabolites, including streptomycin, the first
effective antibiotic for tuberculosis (19). Here, we present the
genome sequence of Streptomyces griseus strain XylebKG-1,
which, to our knowledge, is the first strain of S. griseus associ-
ated with an insect. XylebKG-1 was isolated from the ambrosia
beetle Xyleborinus saxeseni, which cultivates a fungus for food
(2). Actinobacteria-specific isolations from both beetles and
their fungal galleries resulted in isolation of XylebKG-1.

DNA from pure isolates was extracted using a bead-beating
protocol (10), and the genome was sequenced at the DOE
Joint Genome Institute (JGI). A noncontiguous finished ge-
nome of XylebKG-1 was generated using a shotgun approach
employing a combination of Illumina (3) and 454 sequencing
technologies (15). An Illumina shotgun library (69,927,062
reads totaling �5.3 Gbp) and two 454 GS (FLX Titanium)
shotgun libraries (688,595 standard reads and 172,566 20-kbp
paired-end reads totaling �352 Mbp) were sequenced and
assembled. The 454 data were assembled using Newbler, ver-
sion 2.3 (Roche), and Illumina sequencing data were assem-
bled with Velvet, version 0.7.63 (20). All assemblies were in-
tegrated using parallel Phrap, version SPS D 4.24 (High
Performance Software, LLC). Illumina data were used to cor-
rect potential base errors and increase consensus quality using
the software program Polisher, developed at the JGI (Alla
Lapidus, unpublished). Possible misassembled regions were
corrected using gapResolution (Cliff Han, unpublished) or
Dupfinisher (11) or by sequencing cloned bridging PCR frag-
ments with subcloning. Gaps between contigs were closed by

editing in Consed (6–8), by PCR, and by Bubble PCR (J.-F.
Cheng, unpublished) primer walks. The total size of the ge-
nome is 8,727,768 bp, and the final assembly is based on 352.4
Mbp of 454 sequence (38� coverage) and 5.3 Gbp of Illumina
sequence (257� coverage).

The overall genome G�C content is 72.1%. Generation (http:
//compbio.ornl.gov/generation/), Glimmer (5), and Critica (ver-
sion 1.05) (1) were used to predict a total of 7,265 candidate
protein-encoding gene models. RNAmmer (13) annotated six 16S
rRNAs and six 23S rRNAs. A tRNAscan-SE (14) search revealed
66 tRNAs corresponding to all 20 standard amino acids. Addi-
tional PRIAM (4), KEGG (12), and COG (18) analyses were
completed, and the results can be accessed at http://genome.ornl
.gov/microbial/streACT1.

Evidence for XylebKG-1 as a strain of S. griseus is based
on similarity between the genomes of XylebKG-1 and the
type strain S. griseus subsp. griseus NBRC13350 (16). Both
have similar genome sizes (8.7 Mbp to 8.5 Mbp) and G�C
contents (72.1% to 72.2%), six rRNA operons, and 66
tRNAs. An average nucleotide identity analysis conducted
between both genomes using Jspecies (version 1.2.1) (17)
revealed a 98.98 ANIb value (91.68% genome alignment)
and a 98.95 ANIm value (94.13% genome alignment), indi-
cating a species level degree of similarity (9). Given this
similarity, XylebKG-1 represents a unique opportunity to
study genetic elements involved in Actinobacteria-insect as-
sociations.

Nucleotide sequence accession number. The genome se-
quence of Streptomyces griseus strain XylebKG-1 has been de-
posited in GenBank under accession no. ADFC00000000.
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