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Genome analysis of Acinetobacter calcoaceticus PHEA-2 was undertaken because of the importance of this
bacterium for bioremediation of phenol-polluted water and because of the close phylogenetic relationship of
this species with the human pathogen Acinetobacter baumannii. To our knowledge, this is the first strain of A.
calcoaceticus whose genome has been sequenced.

The Acinetobacter genus belongs to the gamma subclass of
proteobacteria, which are widespread in nature and can be
obtained from soil and water, but they are also recognized as
significant pathogens in hospital environments (8, 11). Acin-
etobacter isolates are nutritionally versatile, and they often
display natural competence that may be the mechanism for
horizontal gene transfer by which acinetobacteria achieve
genetic diversity (3). Acinetobacter calcoaceticus and Acineto-
bacter baumannii are genotypically closely related and pheno-
typically difficult to distinguish (5). The nucleotide sequences
of the genomes of six clinical A. baumannii isolates have been
established, but there was no A. calcoaceticus genome available
for comparison (1, 3, 7, 12).

A. calcoaceticus PHEA-2 was originally isolated from indus-
trial wastewater in China because of its ability to use phenol as
the sole carbon source (13–15). In this report, raw reads of the
strain genome were generated by using Illumina GA (Solexa)
and assembled with the SOAP de novo software (9). Based on
the reference genome of A. baumannii AYE (12), a draft
genome of PHEA-2 was completed. Closure of the 115 gaps
was finished by PCR and prime walking by using the routine
Sanger method. Contigs and PCR products were assembled
using the sequence assembly program (Phrap). Coding se-
quences (CDSs) were predicted using GLIMMER (4). Pu-
tative ribosomal-binding sites and tRNA genes were identi-
fied using the ribosome binding site (RBS) finder (6) and
tRNAscan-SE (10). The rRNA operons and transposons
were revealed by BLASTN (2). Tandem repeats shorter
than 2,000 nucleotides (nt) were predicted by the Tandem
Repeats Finder (Trf) software (http://tandem.bu.edu/trf/trf
.html) and RepeatMasker (http://www.repeatmasker.org/).

A. calcoaceticus PHEA-2 has a single circular chromosome
of 3,862,530 bp and an average G�C content of 38.8%. The
chromosome of PHEA-2 contains 3,599 putative coding se-

quences (938-bp average length, 87.5% coding density), of
which 3,095 have functional predictions. The genome encodes
69 tRNAs, representing all amino acids and two rRNA oper-
ons. COG analysis for strain PHEA-2 predicts 96 genes
involved in signal transduction. Strain PHEA-2 has many two-
component systems, including 15 predicted histidine kinase-
associated CDSs (HPKs), 30 response regulator receiver pro-
teins (RRs), and two hybrid proteins with both histidine kinase
and response regulatory domains for sensing and responding
to dynamic environmental conditions. Consistent with its abil-
ities to mineralize various aromatic compounds, three different
major pathways for the catabolism of these compounds, i.e.,
the catechol (cat), protocatechuate (pca), and phenylacetate
(pha), are predicted in PHEA-2. The clustering of these cata-
bolic genes and their high G�C contents (47.4%, 50.8%,
51.4%, and 49.1%) support the hypothesis that the four cata-
bolic regions in the PHEA-2 genome were acquired by hori-
zontal gene transfer. In general, industry wastewater is an
extreme and hostile habitat where various xenobiotic com-
pounds, including heavy metals, have toxic effects on microbial
activity. Analysis of the complete genome sequence of
PHEA-2 revealed many clues for the basis of its stress toler-
ance. It also offers opportunities for exploiting the biotechno-
logical potential of the genus Acinetobacter.

Nucleotide sequence accession number. The complete nu-
cleotide sequence of A. calcoaceticus PHEA-2 has been depos-
ited in GenBank under accession number CP002177.
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