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Here, we report the complete genome sequence of Bacillus amyloliquefaciens TA208, a strain for indus-
trial production of guanosine and synthesis of ribavirin by assimilation of formamide. Comparison of its
genome sequence with those of strains DSM7 and FZB42 revealed horizontal gene transfer represented by
unique prophages and restriction-modification systems and indicated significant accumulation of
guanosine.

With the development of next-generation sequencing tech-
nology, microbial genome data have increased explosively (11).
However, knowledge on the industrially valuable strains is not
yet sufficient, especially at the genome level. Here we report
the complete genome sequence of Bacillus amyloliquefaciens
TA208, which has been used in production of guanosine and
also employed in microbial synthesis of the antiviral drug riba-
virin by assimilation of formamide in fermentation. Strain
TA208 is an adenine auxotrophic, 8-azaguanine- and methio-
nine sulfoxide-resistant strain generated by conventional mu-
tagenesis (15).

The genome was sequenced using the Illumina HiSeq 2000
at Beijing Genomics Institute (BGI; Shenzhen, China). A li-
brary containing 500-bp inserts was constructed. Sequencing
was performed with the pair-end strategy of 90-bp reads to
produce 419.04 Mb of filtered sequences, representing a 106.4-
fold coverage of the genome. The sequences were assembled
into 162 contigs and 18 scaffolds using the SOAPdenovo pack-
age (8). Gaps were closed by PCR and sequencing of the
amplicons by primer walking. The closed genome is a circular
chromosome of 3,937,511 bp without plasmids.

Genome annotation was performed at the NCBI Prokaryotic
Genomes Automatic Annotation Pipeline, where 4,135 open
reading frames (ORFs), six 16S-23S-5S rRNA operons, and 71
tRNAs were identified using Glimmer (4) and Genemark (10),
BLAST (13) against the Rfam database (5), and tRNAscan-SE
(9), respectively. A 1,259,096-bp fragment (position 1,057,022

to 2,316,118) was found to be inversed in the chromosome of
strain TA208 compared to that in strains DSM7 (14) and
FZB42 (2) by the Mauve package (3), presumably due to
phage infection, since two novel potential prophages flanking
this region were identified using Prophage Finder (1). More-
over, six other prophage and prophage remnants were found,
providing evidence for horizontal gene transfer. Preliminary
analysis revealed sets of restriction-modification systems in
strain TA208, including M.BamHI, M.BamHII, R.BamHI,
M.H2I (7), and a novel type II system composed of the ORFs
BAMTA208_19835 and BAMTA208_19845. Strain TA208
harbors a complete set of genes required for natural compe-
tence but does not readily incorporate exogenous DNA (15),
which might be caused by the frameshift mutation in comS (6)
and the complex restriction-modification systems.

The most noticeable change in the genes for purine de novo
synthesis is the presence of a truncated copy of purA in strain
TA208, revealing the loss of activity for adenylosuccinate syn-
thetase. Mutations potentially elevating the corresponding ac-
tivity or abolishing the end product feedback inhibition were
also observed in the enzymes encoded by purL (D624N), purM
(Q322K, H334Q), and purC (N6S, I89V, H166L) compared to
the reference strains. The nonsense mutation in pbuX caused
the absence of guanine permease in strain TA208, correspond-
ing to the phenotype of 8-azaguanine resistance. However,
most of the other genes encoding the enzymes in de novo
purine synthesis pathway, the nucleoside efflux pumps, and
their riboswitch containing promoter regions (12) remain un-
changed, indicating the potential for further strain improve-
ment.

Nucleotide sequence accession number. The complete ge-
nome sequence of B. amyloliquefaciens TA208 has been de-
posited in GenBank (accession number CP002627).
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