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Gluconacetobacter strains are prominent bacteria during traditional vinegar fermentation. Here, we report a
draft genome sequence of Gluconacetobacter sp. strain SXCC-1. This strain was isolated from a fermentation
starter (Daqu) used for commercial production of Shanxi vinegar, the best-known vinegar of China.

Vinegar is produced from fermentation of carbohydrates
and has been well used as a condiment, food preservative, and
medicinal agent (3, 8, 10). In China, Shanxi traditional vinegar
is one of the four most famous vinegars. During its production,
fermentation starter (Daqu) is the key material, which com-
prises different filamentous fungi, yeast, and bacteria. Daqu
plays great roles in both the anaerobic fermentation (alcohol
fermentation by fungi) and aerobic fermentation (acetic acid
fermentation by bacteria) steps. From this fermentation
starter, a Gluconacetobacter sp. designated SXCC-1 was iso-
lated as a prominent bacterium with high acetic acid resistance,
and its whole genome was sequenced.

A strategy using combined Roche 454 and Solexa sequenc-
ing technology was used to sequence the whole-genome of
SXCC-1. Genomic libraries containing 8-kb inserts were con-
structed, and 357,899 paired-end reads were generated by us-
ing the Roche GS FLX system, achieving 40.85-fold coverage
of the genome. Genomic libraries containing 3-kb inserts was
constructed, and 6,469,064 reads with a depth of approximately
143.76-fold were generated with an Illumina Solexa GA IIx
(Illumina, San Diego, CA). We used the Burrows-Wheeler
alignment (BWA) tool (4) to map all of the Solexa reads to the
scaffolds generated by 454 Newbler (454 Life Sciences, Bran-
ford, CT). The inter- and intrascaffold gaps were filled by local
assembly of Roche and Solexa reads around. Most of the
Roche and Solexa reads were assembled into nine large scaf-
folds, including 64 contigs. The overall GC content is 62.46%.

The genome of SXCC-1 contains genes that encode pyrrolo-
quinoline quinone (PQQ)-dependent dehydrogenases. They
are all membrane-bound enzymes and recognized to be impor-
tant in the acetic acid fermentation process (15). A gene clus-
ter encoding the dehydrogenase (subunit I) and cytochrome c
subunit (subunit II) of alcohol dehydrogenase (12, 14) was
found. A 15-kDa subunit (subunit III) was also found in a

different contig. It was reported that the former two subunits
were essential for the enzyme activity (11). Besides these sub-
unit genes, the genome also contains other 10 different alcohol
dehydrogenase genes. Two of them are specific for SXCC-1
compared to the genomes of other three Gluconacetobacter
strains (NC_010125, NC_011365, and BABN00000000). Alde-
hyde dehydrogenase is another key enzyme during acetic acid
fermentation, and a gene cluster responsible for synthesis of all
three subunits (AldF, AldG, and AldH) of this enzyme was
found (13). Furthermore, there are three other putative alde-
hyde dehydrogenase genes on the genome. Genes aarA, aarC,
and aatA, which are involved in the tricarboxylic acid (TCA)
cycle, acetate assimilation, and acetic acid transport, respec-
tively, were found in the genome. All three of these genes are
responsible for acetic acid resistance (2, 6). SXCC-1 possesses
a glucose dehydrogenase gene which is responsible for flavor
formation of vinegar (1). The genome also contains many
other functional genes coding for different enzymes involved in
enriching nutritional ingredients in vinegar, such as D-sorbitol
dehydrogenase (5), gluconate 5-dehydrogenase (9), and glyc-
erol dehydrogenase (7).

Nucleotide sequence accession number. The draft of ge-
nome sequence of SXCC-1 has been deposited in GenBank
under accession no. AFCH00000000.
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