Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 Jun;57(6):1668–1674. doi: 10.1128/iai.57.6.1668-1674.1989

Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin.

R T Horvat 1, M Clabaugh 1, C Duval-Jobe 1, M J Parmely 1
PMCID: PMC313337  PMID: 2470675

Abstract

Pseudomonas aeruginosa alkaline protease (AP) has recently been shown to produce limited proteolysis of human gamma interferon (IFN-gamma) and thereby destroy the antiviral and macrophage-activating activities of the lymphokine. In the present study we describe some of the characteristics of Pseudomonas elastase (E) with regard to inactivation of human IFN-gamma. The inhibitory effect of E on IFN-gamma bioactivity differed from that of AP in that the direct effects of E were reduced in the presence of human serum. That this property of human serum was in large part attributable to the protease inhibitor alpha 2-macroglobulin (alpha 2-M) was suggested by the following observations: (i) methylamine treatment of serum reduced its effect on E, (ii) E interacted directly with alpha 2-M to induce a characteristic conformational change in the protease inhibitor, and (iii) preformed E-alpha 2-M complexes lacked IFN-gamma-degrading activity. Despite these findings, anti-E antiserum partially neutralized the effect that a Pseudomonas filtrate showed on IFN-gamma, suggesting that E contributes to the activity of bacterial filtrates. Treatment of IFN-gamma with E in the presence of a suboptimal concentration of AP resulted in an E dose-dependent inactivation of the lymphokine. Preformed E-alpha 2-M complexes, although ineffective by themselves at cleaving IFN-gamma, degraded the lymphokine, providing AP was also present in the reaction mixture. These data demonstrate that the destruction of small, biologically significant peptides by Pseudomonas proteases can involve protease-protease synergy that acts even in the presence of the serum protease inhibitor alpha 2-M.

Full text

PDF
1674

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J. Alpha 2-macroglobulin. Methods Enzymol. 1981;80(Pt 100):737–754. doi: 10.1016/s0076-6879(81)80056-0. [DOI] [PubMed] [Google Scholar]
  2. Barrett A. J., Brown M. A., Sayers C. A. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule. Biochem J. 1979 Aug 1;181(2):401–418. doi: 10.1042/bj1810401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett A. J., Starkey P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973 Aug;133(4):709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Björk I., Fish W. W. Evidence for similar conformational changes in alpha 2-macroglobulin on reaction with primary amines or proteolytic enzymes. Biochem J. 1982 Nov 1;207(2):347–356. doi: 10.1042/bj2070347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackwood L. L., Lin T., Rowe J. I. Suppression of the delayed-type hypersensitivity and cell-mediated immune responses to Listeria monocytogenes induced by Pseudomonas aeruginosa. Infect Immun. 1987 Mar;55(3):639–644. doi: 10.1128/iai.55.3.639-644.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borth W., Teodorescu M. Inactivation of human interleukin-2 (IL-2) by alpha 2-macroglobulin-trypsin complexes. Immunology. 1986 Mar;57(3):367–371. [PMC free article] [PubMed] [Google Scholar]
  7. Eccleston E. D., Howard J. B. Reaction of methylamine with human alpha 2-macroglobulin. Mechanism of inactivation. J Biol Chem. 1985 Aug 25;260(18):10169–10176. [PubMed] [Google Scholar]
  8. Geokas M. C., Brodrick J. W., Johnson J. H., Largman C. Pancreatic elastase in human serum. Determination by radioimmunoassay. J Biol Chem. 1977 Jan 10;252(1):61–67. [PubMed] [Google Scholar]
  9. Goldstein W., Döring G. Lysosomal enzymes from polymorphonuclear leukocytes and proteinase inhibitors in patients with cystic fibrosis. Am Rev Respir Dis. 1986 Jul;134(1):49–56. doi: 10.1164/arrd.1986.134.1.49. [DOI] [PubMed] [Google Scholar]
  10. Harpel P. C. Studies on human plasma alpha 2-macroglobulin-enzyme interactions. Evidence for proteolytic modification of the subunit chain structure. J Exp Med. 1973 Sep 1;138(3):508–521. doi: 10.1084/jem.138.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holder I. A. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: effect of treatment with protease inhibitors. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S914–S921. doi: 10.1093/clinids/5.supplement_5.s914. [DOI] [PubMed] [Google Scholar]
  12. Holder I. A., Haidaris C. G. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: extracellular protease and elastase as in vivo virulence factors. Can J Microbiol. 1979 May;25(5):593–599. doi: 10.1139/m79-085. [DOI] [PubMed] [Google Scholar]
  13. Holt P. S., Misfeldt M. L. Variables which affect suppression of the immune response induced by Pseudomonas aeruginosa exotoxin A. Infect Immun. 1986 Apr;52(1):96–100. doi: 10.1128/iai.52.1.96-100.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horvat R. T., Parmely M. J. Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity. Infect Immun. 1988 Nov;56(11):2925–2932. doi: 10.1128/iai.56.11.2925-2932.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jagger K. S., Bahner D. R., Warren R. L. Protease phenotypes of Pseudomonas aeruginosa isolated from patients with cystic fibrosis. J Clin Microbiol. 1983 Jan;17(1):55–59. doi: 10.1128/jcm.17.1.55-59.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Janda J. M., Atang-Nomo S., Bottone E. J., Desmond E. P. Correlation of proteolytic activity of Pseudomonas aeruginosa with site of isolation. J Clin Microbiol. 1980 Oct;12(4):626–628. doi: 10.1128/jcm.12.4.626-628.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kelder B., Rashidbaigi A., Pestka S. A sandwich radioimmunoassay for human IFN-gamma. Methods Enzymol. 1986;119:582–587. doi: 10.1016/0076-6879(86)19079-3. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Largman C., Johnson J. H., Brodrick J. W., Geokas M. C. Proinsulin conversion to desalanyl insulin by alpha2-macroglobin-bound trypsin. Nature. 1977 Sep 8;269(5624):168–170. doi: 10.1038/269168a0. [DOI] [PubMed] [Google Scholar]
  20. MEHL J. W., O'CONNELL W., DEGROOT J. MACROGLOBULIN FROM HUMAN PLASMA WHICH FORMS AN ENZYMATICALLY ACTIVE COMPOUND WITH TRYPSIN. Science. 1964 Aug 21;145(3634):821–822. doi: 10.1126/science.145.3634.821. [DOI] [PubMed] [Google Scholar]
  21. Marynen P., Van Leuven F., Cassiman J. J., Van den Berghe H. A monoclonal antibody to a neo-antigen on alpha 2-macroglobulin complexes inhibits receptor-mediated endocytosis. J Immunol. 1981 Nov;127(5):1782–1786. [PubMed] [Google Scholar]
  22. Morihara K., Tsuzuki H. Phosphoramidon as an inhibitor of elastase from Pseudomonas aeruginosa. Jpn J Exp Med. 1978 Feb;48(1):81–84. [PubMed] [Google Scholar]
  23. Morihara K., Tsuzuki H. Production of protease and elastase by Pseudomonas aeruginosa strains isolated from patients. Infect Immun. 1977 Mar;15(3):679–685. doi: 10.1128/iai.15.3.679-685.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neely A. N., Law E. J., Holder I. A. Increased susceptibility to lethal Candida infections in burned mice preinfected with Pseudomonas aeruginosa or pretreated with proteolytic enzymes. Infect Immun. 1986 Apr;52(1):200–204. doi: 10.1128/iai.52.1.200-204.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nutman J., Berger M., Chase P. A., Dearborn D. G., Miller K. M., Waller R. L., Sorensen R. U. Studies on the mechanism of T cell inhibition by the Pseudomonas aeruginosa phenazine pigment pyocyanine. J Immunol. 1987 May 15;138(10):3481–3487. [PubMed] [Google Scholar]
  26. Parmely M. J., Horvat R. T. Antigenic specificities of Pseudomonas aeruginosa alkaline protease and elastase defined by human T cell clones. J Immunol. 1986 Aug 1;137(3):988–994. [PubMed] [Google Scholar]
  27. Parmely M. J., Horvat R. T., Iglewski B. H., Kanarek J., Furtado D., Van Enk R. The antigenicity of a pulmonary pathogen defined by monoclonal T cells. Adv Exp Med Biol. 1987;216B:1043–1051. [PubMed] [Google Scholar]
  28. Parmely M. J., Iglewski B. H., Horvat R. T. Identification of the principal T lymphocyte-stimulating antigens of Pseudomonas aeruginosa. J Exp Med. 1984 Nov 1;160(5):1338–1349. doi: 10.1084/jem.160.5.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Petit J. C., Richard G., Albert B., Daguet G. L. Depression by Pseudomonas aeruginosa of two T-cell-mediated responses, anti-Listeria immunity and delayed-type hypersensitivity to sheep erythrocytes. Infect Immun. 1982 Mar;35(3):900–908. doi: 10.1128/iai.35.3.900-908.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rinderknecht H., Geokas M. C., Silverman P., Haverback B. J. A new ultrasensitive method for the determination of proteolytic activity. Clin Chim Acta. 1968 Aug;21(2):197–203. doi: 10.1016/0009-8981(68)90127-7. [DOI] [PubMed] [Google Scholar]
  31. Sorensen R. U., Klinger J. D., Cash H. A., Chase P. A., Dearborn D. G. In vitro inhibition of lymphocyte proliferation by Pseudomonas aeruginosa phenazine pigments. Infect Immun. 1983 Jul;41(1):321–330. doi: 10.1128/iai.41.1.321-330.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sorensen R. U., Stern R. C., Chase P., Polmar S. H. Defective cellular immunity to gram-negative bacteria in cystic fibrosis patients. Infect Immun. 1979 Feb;23(2):398–402. doi: 10.1128/iai.23.2.398-402.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sorensen R. U., Stern R. C., Polmar S. H. Cellular immunity to bacteria: impairment of in vitro lymphocyte responses to Pseudomonas aeruginosa in cystic fibrosis patients. Infect Immun. 1977 Dec;18(3):735–740. doi: 10.1128/iai.18.3.735-740.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Steinbuch M., Pejaudier L., Quentin M., Martin V. Molecular alteration of alpha-2-macroglobulin by aliphatic amines. Biochim Biophys Acta. 1968 Jan 22;154(1):228–231. doi: 10.1016/0005-2795(68)90277-8. [DOI] [PubMed] [Google Scholar]
  35. Theander T. G., Kharazmi A., Pedersen B. K., Christensen L. D., Tvede N., Poulsen L. K., Odum N., Svenson M., Bendtzen K. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infect Immun. 1988 Jul;56(7):1673–1677. doi: 10.1128/iai.56.7.1673-1677.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Van Leuven F., Cassiman J. J., Van den Berghe H. Functional modifications of alpha 2-macroglobulin by primary amines. I. Characterization of alpha 2 M after derivatization by methylamine and by factor XIII. J Biol Chem. 1981 Sep 10;256(17):9016–9022. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES