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The classic analysis of Rayleigh light scattering (LS) is re-examined for multi-component protein
solutions, within the context of Kirkwood-Buff (KB) theory as well as a more generalized canonical
treatment. Significant differences arise when traditional treatments that approximate constant
pressure and neglect concentration fluctuations in one or more (co)solvent/co-solute species are
compared with more rigorous treatments at constant volume and with all species free to fluctuate. For
dilute solutions, it is shown that LS can be used to rigorously and unambiguously obtain values for
the osmotic second virial coefficient (B22), in contrast with recent arguments regarding protein inter-
actions deduced from LS experiments. For more concentrated solutions, it is shown that conventional
analysis over(under)-estimates the magnitude of B22 for significantly repulsive(attractive) condi-
tions, and that protein-protein KB integrals (G22) are the more relevant quantity obtainable from
LS. Published data for α–chymotrypsinogen A and a series of monoclonal antibodies at different pH
and salt concentrations are re-analyzed using traditional and new treatments. The results illustrate
that while traditional analysis may be sufficient if one is interested in only the sign of B22 or G22,
the quantitative values can be significantly in error. A simple approach is illustrated for determining
whether protein concentration (c2) is sufficiently dilute for B22 to apply, and for correcting B22 values
from traditional LS regression at higher c2 values. The apparent molecular weight M2,app obtained
from LS is shown to generally not be equal to the true molecular weight, with the differences
arising from a combination of protein-solute and protein-cosolute interactions that may, in principle,
also be determined from LS. © 2011 American Institute of Physics. [doi:10.1063/1.3596726]

I. INTRODUCTION

Light scattering (LS) from protein solutions has long
been used to provide information regarding protein-protein
interactions1–7 via the protein osmotic second virial coeffi-
cient (B22). In keeping with common practice, the Scatchard
notation for aqueous protein solutions is adopted here, with 1
denoting water, 2 denoting protein, and i = 3, 4, ... denoting
any co-solvent and co-solute species.8 B22 is formally related
to protein–protein interactions in the limit of low protein con-
centration (c2), averaged over the spatial degrees of freedom
of the solvent and any co-solute or co-solvent species – i.e.,
the protein–protein potential of mean force W22 in a grand-
canonical ensemble9 via

B22 = −1

2

∫
(e−W22/kB T − 1) 4πr2dr, (1)

where kB is the Boltzmann constant, T is the absolute temper-
ature, and r denotes distance between centers-of-mass. Al-
though one can derive a similar equation to Eq. (1) in any
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thermodynamic ensemble, the osmotic second virial coeffi-
cient is recovered only when the protein–protein potential of
mean force comes from a grand-canonical ensemble.9 Oth-
erwise the integral has a different thermodynamic meaning.
For example, by using W22 from a canonical ensemble (fixed
temperature, composition, and volume) to solve the integral
in Eq. (1), one obtains the trivial solution9 that the inte-
gral is independent of the magnitude or sign of the interac-
tions described by W22. The interested reader is referred to
detailed discussions and derivations elsewhere (e.g., Refs. 9
and 10).

B22 and other osmotic virial coefficients play central
roles in both qualitative and quantitative models and the-
ories relating colloidal protein-protein interactions to pro-
tein crystallization and fluid-fuid phase behavior,11–18 pro-
tein aggregation,19–24 and protein purification.25–27 In some
cases, only the sign of B22 is considered important, as a neg-
ative (positive) B22 corresponds to net attractive (repulsive)
protein-protein interactions relative to an ideal solution.9, 10, 28

More recent work highlights the importance of consider-
ing an equivalent hard-sphere (HS) or purely steric protein-
protein interaction (i.e., B H S

22 ) as a more appropriate reference
point.24, 29–31 That is, systems with B22/B H S

22 > 1 have non-
steric interactions that are dominated by non-steric repulsions,
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while those with B22/B H S
22 < 1 are dominated by attractive in-

teractions.
Recent experimental comparisons between LS and al-

ternative means to estimate B22 have led some authors to
conclude that LS fundamentally does not yield B22 as an
independent quantity – i.e., that the apparent virial coeffi-
cient (A2) from traditional LS analysis is instead a convo-
lution of B22 with protein-cosolute and/or (co)solvent virial
coefficients.32, 33 This is potentially problematic, as LS is ar-
guably the historic method of choice for determining B22, and
is the basis for much if not the majority of experimental B22

values reported in the literature.34–37

The original treatments by Stockmayer and others form
the basis of most non-trivial derivations to relate Rayleigh
scattering to deviations from ideal solution for any solute-
solvent system.38–41 The approach proposed by Stockmayer
has been the most widely used and accepted.42–46 For
thermodynamic convenience and mathematical simplicity,
Stockmayer’s treatment and those of others make the simpli-
fying assumption that fluctuations in pressure (p) and solvent
(water) concentration are negligible within the scattering
volume. That is, the scattering (sub)volume is treated as
though it contains a constant number of water molecules, and
it is implicitly assumed that one can neglect the differences
between constant pressure and constant volume for the scat-
tering region of the fluid. Corrections have also been applied
to account for requirements of electroneutrality and resulting
Donnan effects on A2,44 particularly for the case of protein
solutions. As noted above, recent derivations32, 33 have been
proposed that argue A2 from LS contains contributions from
other osmotic virial coefficients, or from Donnan contri-
butions via constraints of electroneutrality.44 Alternatively,
Casassa and Eisenberg47, 48 corrected Stockmayer’s treatment
by imposing electroneutrality through the equilibration of
protein with cosolutes within the scattering volume (a cor-
rection which was implicitly obtained herein). Nevertheless,
in all of the above cases, fluctuations in pressure and solvent
concentration are neglected, and fluctuations in the remaining
species are related to LS intensity via thermodynamic trans-
formations that express non-idealities in terms of activity
coefficients,38, 39, 42, 44, 49–51 implying, as it is shown below,
that information about interactions between solvent and all
the other components is not recovered explicitly, but rather it
is convoluted within A2 and the apparent molecular weight.

This report examines the result of relaxing these as-
sumptions, as well as utilizing Kirkwood-Buff (KB) solution
theory52 to rigorously and more generally relate LS to protein-
protein, protein-solvent, and protein-cosolute interactions.
The results highlight errors or unnecessary approximations in
alternative treatments, and also provide a new mathematical
description of LS that in principle is valid at both low and
high protein concentration, with a straightforward means
to extract protein-protein KB integrals (G22) from LS data.
The remainder of the article is organized as follows. In
Sec. II, a general equation for Rayleigh scattering from multi-
component solutions is developed in terms of KB integrals.
Dilute and semi-dilute protein solutions are then considered
in Sec. III, including a comparison with a more general ver-
sion of the traditional, non-KB approach that is strictly valid

only for non-ionizable solutes. A more general expression is
also derived in the canonical framework that does not assume
c2 → 0. Additionally, the supplementary material53 provides
a comparison with the simplest and the most traditional
thermodynamic analysis with non-dissociable solutes to
show equivalence between the two approaches as c2 → 0 if
fluctuations in pressure and solvent species are not neglected,
and if protein-solvent and protein-cosolute interactions can be
neglected. Finally Sec. IV uses the working equations from
the KB and more general canonical approaches, as well as
the standard expression,54 and analyzes published LS data for
α–chymotrypsinogen A (aCgn) and a set of monoclonal
antibodies (mAb)24, 31 to highlight differences in the resulting
B22 (or G22) and apparent molecular weight values as a func-
tion of solvent pH and NaCl concentration for experimental
systems.

II. KIRKWOOD-BUFF THEORY APPLIED TO
RAYLEIGH SCATTERING FROM MULTICOMPONENT
SOLUTIONS

Laser light scattering from multicomponent single-phase
solutions due to Rayleigh scattering is described by the the-
ory of Einstein,55 with each species treated as a point scat-
ter so long as its characteristic dimension is sufficiently small
compared to the wavelength of the incident light.28, 38, 39, 56, 57

In the case of laser light scattering, light is scattered from a
small but macroscopic volume V within a bulk solution, with
time-averaged scattered intensity that is proportional to the
magnitude of ensemble-averaged fluctuations in the dielectric
constant, or equivalently fluctuations in refractive index (n),

R90 = 4π2n2〈(�n)2〉V
λ4

, (2)

where R90 is the Rayleigh ratio for a 90 degree scattering an-
gle, and λ is the wavelength of incident light in vacuo. The
brackets 〈· · ·〉 denote an ensemble average. The fluctuations
in refractive index within the scattering volume are expressed
based on the total differential for n as a function of temper-
ature (T ), volume (V ), and the number of molecules of each
species (N j , j = 1, 2, . . .). For fixed scattering volume, and
assuming negligible fluctuations in temperature, this gives

�n = (n − n̄) ≈ dn =
∑

j

(
∂n

∂ N j

)
T,V,Nk �= j

d N j . (3)

Squaring Eq. (3) and ensemble averaging gives

〈�n2〉 =
∑

i

(
∂n

∂ Ni

)2

T,V,Nk �=i

(〈N 2
i 〉 − 〈Ni 〉2

)

+ 2
∑
i< j

(
∂n

∂ Ni

)
T,V,Nk �=i

(
∂n

∂ N j

)
T,V,Nk �= j

× (〈Ni N j 〉 − 〈Ni 〉〈N j 〉). (4)

Because the scattering volume is open to exchange
of all species and is constant volume and effectively con-
stant temperature, the fluctuations in species concentra-
tions are most easily and naturally expressed in terms of
Kirkwood-Buff (K B) integrals (Gi j ) in the grand canonical
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ensemble9, 52, 58

〈Ni N j 〉 − 〈Ni 〉〈N j 〉 = 〈Ni 〉
(

δi j + 〈N j 〉
V

Gi j

)
, (5)

with δi j denoting the Kronecker delta function, the brackets
denoting the average within the grand canonical ensemble for
the scattering volume, and with Gi j defined by

Gi j =
∫

(ḡi j (r ) − 1) 4πr2dr, (6)

where ḡi j (r ) is the molecular pair correlation function for
component i with respect to component j . It gives the prob-
ability, relative to an ideal mixture, of finding an i − j pair
of molecules at a distance r between centers-of-mass, av-
eraged over the orientations of species i and j , and aver-
aged over the possible positions and orientations of all other
species in the mixture. The overbar indicates that the av-
eraging must be done in an open system, i.e., with fixed
chemical potential (μ) of each of components i and j ,
and not with fixed Ni or N j .9, 58 This is equivalent to a
weighted average over the canonical pair correlation func-
tions gi j (r ; Ni , N j ) across all possible values of (Ni , N j ).9

That is, gi j (r ; Ni , N j ) is the pair correlation function in the
closed ensemble at fixed (Ni , N j ). The overbar indicates an
average over p(Ni , N j )gi j (r ; Ni , N j ), with p(Ni , N j ) denot-
ing the equilibrium probability of observing a particular set
of (Ni , N j ) values within the open (i.e., grand canonical)
ensemble.58 The average values for each species are fixed by
the bulk composition of the solution, within which the scat-
tering volume is a small subsystem. Equations (5) and (6) are
general; they do not require assumptions of pairwise additiv-
ity, and inherently incorporate restrictions of electroneutrality
for ionic solutions, provided that the system volume is open
to exchange of all ionized species.

Combining Eqs. (2), (4), and (5) gives upon rearrange-
ment

R90

K ′ =
∑

i

(
∂n

∂ci

)2

T,V,Nk �=i

ci (ci G
′
i i + 1)

+ 2
∑
i< j

(
∂n

∂ci

)
T,V,Nk �=i

(
∂n

∂c j

)
T,V,Nk �= j

ci c j G
′
i j , (7)

where ci = Ni/(V NA) is the concentration of component i
on a mole/volume basis, and the prime on each Gi j indicates
that the K B integrals have units of volume/mole. K ′ is given
by 4π2n2 N−1

A λ−4, with NA denoting Avogadro’s number.
The prime is to distinguish this from the closely related
quantity K that appears in traditional treatments of LS.

Experimentally, changes in n with bulk solvent and solute
concentrations are more easily evaluated at fixed pressure (p),
rather than at fixed V. Transforming the derivatives of refrac-
tive index from constant V to constant p gives(

∂n

∂ni

)
T,V,nk �=i

=
(

∂n

∂ni

)
T,p,nk �=i

+
(

∂n

∂p

)
T,{nk}

v̄i

〈V 〉κT
, (8)

where {nk} denotes the set of all mole numbers, v̄i the partial
molar volume of component i , κT the isothermal compress-
ibility of the solution, and 〈V 〉 the average volume of a solu-
tion with {nk} at the T and p of interest.

Using Eq. (8) in Eq. (7) gives

R90

K ′ =
∑

i

η2
i ci (ci G

′
i i + 1) + 2

∑
i< j

ηiη j ci c j G
′
i j , (9)

with

ηi = (1 − ci v̄i )

(
∂n

∂ci

)
T,p,ck �=i

+
(

∂n

∂p

)
T,{nk}

v̄i

κT
. (10)

At dilute conditions of component i , the term ci v̄i in
Eq. (10) can be neglected. Equations (9) and (10) apply gen-
erally, and show that Rayleigh scattering as a function of sol-
vent composition and solute concentrations can be described
succinctly in terms of KB integrals, the dependence of n on
the bulk concentrations of solvent and solute(s), the volu-
metric properties of the solution, and the dependence of n
on pressure. The magnitude and sign of the difference be-
tween treating scattering as a constant pressure process in-
stead of constant volume is then determined by the second
term in Eq. (10), and this quantity is squared in the expres-
sion for Rayleigh scattering. In a sense, this indicates the
magnitude of the errors introduced by neglecting pressure
fluctuations, and thereby assuming one can replace ηi with
(1 − ci v̄i ) (∂n/∂ci )T,p,ck �=i

.

III. RAYLEIGH SCATTERING IN DILUTE PROTEIN
SOLUTIONS

A. Protein-protein and protein-solvent interactions
from KB analysis

Consider a ϑ - component mixture of water (compo-
nent 1), protein (component 2), and ϑ − 2 cosolute or cosol-
vent species (components 3, 4,...). Let R0 be the scattering at
90 degrees from an equivalent solution at zero protein concen-
tration, and let Rex

90 = R90 − R0 denote the excess Rayleigh
ratio. Assuming that c2 is sufficiently small that Gi j (i, j �= 2)
values are the same for the protein solution and the protein-
free solution,58 and converting to the more experimentally
convenient concentration units of mass/volume, Rex

90 can be
written with the aid of Eqs. (9) and (10) as

Rex
90

K ′ (ηm
2

)2 = M2,appcm
2 + M2Gm

22

(
cm

2

)2
, (11a)

Rex
90

K ′ (ηm
2

)2

∣∣∣∣
c2→0

= M2,appcm
2 − 2M2 Bm

22

(
cm

2

)2
, (11b)

with the apparent molecular weight (M2,app) given by

M2,app = M2

⎡
⎣1 + 2

∑
i �=2

(
ηm

i

ηm
2

)
cm

i Gm
2i

⎤
⎦ . (12)

In the above expressions, M2 is the protein molecular
weight, Gm

2 j (= G ′
2 j/M2) is G2 j in units of volume per mass-

of-protein, and the superscript m denotes that concentrations
and derivatives with respect to concentration are expressed on
a w/v basis. The summation in Eq. (12) can be either positive
or negative, therefore the apparent molecular weight can be
either larger or smaller than M2. In the limit of c2 → 0, G ′

22
can be replaced9 by −2B22 in Eq. (11a), leading to Eq. (11b).
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For an ideal solution, G ′
22 and G ′

2i are identically zero; yield-
ing the classical ideal result Rex

90 ∝ M2cm
2 .38, 39, 42

The results above clearly show that excess Rayleigh scat-
tering is directly and unambiguously related to B22 (or more
generally to G22) if one utilizes the KB-based analysis of
the scattering data, and there is no fundamental convolution
of B22 or G22 with other osmotic virial coefficients or KB
integrals. Subsection III B examines this further from the per-
spective of a more canonical treatment of Rayleigh scattering.
Notably, there is no assumption regarding non-dissociable
cosolutes or electroneutrality in Eq. (11). That is, scattering
occurs in a grand canonical ensemble with the fluctuations
of all species obeying the constraint of constant chemical
potential for each species. The fluctuations within the system
therefore cannot violate electroneutrality, as doing so would
result in an effectively infinite chemical potential for one or
more species within the scattering volume. As such, Eq. (11)
holds for both ionizable and non-ionizable solutes.

Equation (11) also suggests it may be possible to as-
sess protein-solvent/cosolute interactions via the dependence
of M2,app on solvent composition. However, in the limit of
cm

2 → 0, the values of cm
i �=2 are not independent. Thus, it may

be difficult to determine independent values of G2 j (all j
�= 2) from light scattering alone. A similar conclusion holds
in what follows in Subsection III B. Finally, Eq. (11) is not
limited to highly dilute protein solutions, in that G ′

2 j depends
on cm

2 at higher protein concentrations. The remainder of this
report focuses on dilute or semi-dilute protein solutions, with
a more detailed treatment of highly concentrated solutions left
to a future report.

B. Revisiting the canonical treatment of Rayleigh
scattering

In order to provide the relation between Rayleigh
scattering and thermodynamic quantities such as activity
coefficients, Eq. (4) can be expressed alternatively using
an approach similar to that employed by Stockmayer38 or
Kirkwood and Goldberg,39 but without making the simplify-
ing assumption that one can neglect the differences between
constant pressure and constant volume, and not neglecting
fluctuations of any species in the mixture. By using the
identity9

RT

V

(
∂ci

∂μ j

)
T,V,μk �= j

= 〈ci c j 〉 − 〈ci 〉〈c j 〉. (13)

Equation (4) can equivalently be written as

〈(�n)2〉 = RT

V

∑
i

∑
j

ηiη j

(
∂ci

∂μ j

)
T,V,μk �= j

, (14)

where ηi is defined in Eq. (10), μk is the chemical potential
of the kth component in the solution, and R is the ideal gas
constant. It is possible to express the derivatives in Eq. (14) in
terms of derivatives at constant ck �=i rather than constant μk �= j .
To do so, one can begin with the set of differential equations

dμk =
∑

i

aikdci

with

aik =
(

∂μi

∂ck

)
T,V,c j �=k

=
(

∂μk

∂ci

)
T,V,c j �=i

= aki . (15)

For neutral, non-dissociable cosolutes (components
3,4,...),38, 44 the solution to this set of simultaneous equations
can be expressed as9, 38, 39(

∂ci

∂μ j

)
T,V,μk �= j

= Ai j

| A | (16)

ai j =
(

∂μi

∂c j

)
T,V,ck �= j

,

where | A | represents the determinant of the matrix
{
ai j

}
,

and Ai j is the co-factor of the element ai j in this determinant.
Combining Eqs. (2), (14), and (16) gives

R90

K ′ = RT
∑

i

∑
j

ηiη j
Ai j

| A | . (17)

For concreteness, consider a three-component mixture,
using the same notation as in Subsection III A. Equation (17)
can then be rearranged to

R90

K ′ =
[
η1

(
A21
A22

)
+ η2 + η3

(
A32
A22

)]2

1
RT

[
a12

(
A21
A22

)
+ a22 + a23

(
A32
A22

)]

+
[
η3 − η1

(
a13
a11

)]2

1
RT

[
a33 − a2

13
a11

] + η2
1

a11/RT
. (18)

Defining R0 and Rex
90 as above, and making the same

approximations as in Sec. II when subtracting contributions
from the solvent background, gives

Rex
90

K ′ =
[
η1

(
A21
A22

)
+ η2 + η3

(
A32
A22

)]2

1
RT

[
a12

(
A21
A22

)
+ a22 + a23

(
A32
A22

)] . (19)

Note the term in brackets in the numerator of the right
hand side of Eq. (19) is equivalent to applying a Legendre
transform to η2 in order to obtain (∂n/∂c2)T,V,μ j �=2

. By doing
so, one recoverers a similar term to that proposed by Casassa
and Eisenberg47, 48 as a correction to Stockmayer’s derivation,
with the difference being that fluctuations in water concen-
tration are not neglected in the present case. From a practical
perspective, this would be equivalent to neglecting terms ac-
counting for protein-solvent interactions, and assuming that
fluctuations in protein concentration and co-solute concentra-
tion are coupled, but those involving water are not coupled
(see also the further discussion below on this point).

Defining the protein activity coefficient (γ2) using a mo-
lar reference state gives

RT ln γ2 = μex
2 = μ2 − μid

2 (20)

with

μid
2 = μ0

2 + RT ln c2
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and μ0
2 denoting the protein standard state chemical potential.

Doing so allows one to express the denominator on the right
hand side of Eq. (19) as

1

RT

[
a12

(
A21

A22

)
+ a22 + a23

(
A32

A22

)]

= 1

c2
+ A21

A22

(
∂ ln γ2

∂c1

)
T,V,ck �=1

+
(

∂ ln γ2

∂c2

)
T,V,ck �=2

+ A32

A22

(
∂ ln γ2

∂c3

)
T,V,ck �=3

. (21)

Equation (21) can be formally related (see Appendix A)
to G22, or to the osmotic second virial coefficient (B22) when
protein (component 2) is sufficiently dilute.

Combining Eqs. (19)–(21) and using KB theory (see also
below) gives

Rex
90

K ′η2
2

=
[
1 +

(
η1

η2

) (
c1G ′

12
1+c2G ′

22

)
+

(
η3

η2

) (
c3G ′

23
1+c2G ′

22

)]2

1
c2

− G ′
22

1+c2G ′
22

, (22)

where the ratio A2i/A22 with i = 1, 3 was expressed with the
aid of Eqs. (5) and (13) in terms of KB integrals as

A2i

A22
= A2i/|A|

A22/|A| = (∂ci/∂μ2)T,V,μ j �=2

(∂c2/∂μ2)T,V,μ j �=2

= ci G ′
2i

1 + c2G ′
22

. (23)

Changing to w/v units, multiplying the numerator and de-
nominator by cm

2

(
1 + cm

2 Gm
22

)
, and rearranging Eq. (22) gives

Rex
90

K ′ (ηm
2

)2 = M2 (1 + 2k13) cm
2 + M2Gm

22

(
cm

2

)2

+ M2cm
2 k2

13

1 + cm
2 Gm

22

, (24)

where

k13 =
(

ηm
1

ηm
2

)
cm

1 Gm
12 +

(
ηm

3

ηm
2

)
cm

3 Gm
23. (25)

If k13 is sufficiently small, Eq. (11) is recovered from
Eq. (24). Alternatively, multiplying numerator and denomi-
nator by cm

2 in Eq. (22), and converting to w/v units, gives

Rex
90

K ′ (ηm
2

)2 =
cm

2 M2

[
1 + k13

1+cm
2 Gm

22

]2

1 + cm
2 Gm

22
1+cm

2 Gm
22

, (26a)

Rex
90

K ′ (ηm
2

)2 = cm
2 M ′

2,app

1 + cm
2 Gm

22
1+cm

2 Gm
22

, (26b)

with a somewhat different apparent molecular weight

M ′
2,app = M2

(
1 + k13

1 + cm
2 Gm

22

)2

.

Equation (26) has the same functional form as that
of the now standard expression for analysis of static light
scattering,28, 54, 57

Rex
90

K ′ ∝ M2cm
2

1 + 2Am
2 cm

2

(27)

if one defines

Am
2 = −1

2

(
Gm

22

1 + cm
2 Gm

22

)
. (28)

Historically, A2 in Eq. (27) is treated as being identical to
B22.18, 42, 59 Notably, A2 > B22 if one considers highly repul-
sive conditions (G22 	 0), and vice versa for highly attractive
conditions (G22 
 0). Comparison of Eq. (27) with Eq. (26)
also shows that the former erroneously replaces M2,app with
the molecular weight, M2. While it is true that Eq. (26) and
(27) show that A2 from LS is more complex than simply B22,
this is purely a consequence of not working at sufficiently low
c2, and is not due to convolution with other osmotic virial co-
efficients or KB integrals.33 The same cannot be stated for
M2,app, as this clearly depends on all G2 j , independent of
whether one uses Eq. (11) or ((26)) to show that M2,app �= M2.

A similar issue exists for other treatments42, 45 that ne-
glect fluctuations in N1, as well as additional consequences
for those that incorrectly equate B22 with a derivative of μ2

or μex
2 with respect to c2 without fixing μk �=2.24, 32, 33, 44, 50, 51

When fluctuations in N1 are neglected, one inherently
changes the coupling of fluctuations in solvent with respect
to fluctuations in all the other components. For example, if
a protein molecule leaves the scattering volume but the sys-
tem has a fixed number of water molecules, there would ei-
ther be a large void or only co-solute molecules would be
able to enter the system to fill that void; vice versa, adding
a protein molecule to the system would result in preferen-
tially “crowding” out co-solute molecules rather than water
molecules if this constant-N1 assumption holds. The supple-
mentary material53 provides additional, mathematical analy-
sis of the consequences of assuming constant N1, as well as
if fluctuations in other solvent components or solutes are si-
multaneously neglected, akin to common treatments.28, 42 In
addition, Appendix B shows that the same mathematical form
as Eq. (27) can be obtained if one applies the classical ap-
proximations akin to that used by Stockmayer38 (i.e., neglect-
ing not only fluctuations in solvent concentration, but also in
pressure), although B22 or G22 is not explicitly recovered.

IV. EXPERIMENTAL VIRIAL COEFFICIENTS AND
APPARENT MOLECULAR WEIGHTS

The preceding sections clearly show that B22 and G22

arise naturally, and without convolution by protein–solvent or
protein–cosolute virial coefficients, if one properly accounts
for fluctuations in all species simultaneously. Nevertheless,
there are differences in the de novo mathematical forms pre-
sented herein if one considers the KB analysis (i.e., an open
ensemble) (Eq. (11)) or upon imposing a restriction of non-
dissociable or unionized solutes (Eq. (24) or (26)). Funda-
mentally, one might then expect differences in the results
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for experimental systems when comparing G22 or B22 val-
ues regressed from LS data using one form versus the other.
Equation (11) would be expected to hold more generally than
Eq. (24) or (26) for protein solutions, as proteins are necessar-
ily ionized species in most practical instances, even if one can
eliminate buffer salts from the solution via extensive dialysis.

In addition, because Eq. (27) is the traditional form used
to regress LS data to obtain A2 values, it remains an open
question whether A2 and B22 or G22 will differ significantly
from a quantitative and qualitative perspective. The results be-
low consider this question by comparing B22 and A2, as well
as M2,app values, obtained by regression of experimental SLS
data as a function of cm

2 for monoclonal antibodies (mAb) and
α-chymotrypsinogen A (aCgn). The experimental details and
the scattering data were published previously,24, 31 along with
fitted A2 values using the equivalent of Eq. (27). Those results
are combined here with re-analysis of the same data using
Eqs. (11) and (26). Before doing so, however, it is useful to
examine the implications of some of the standard assumptions
when LS experiments are conducted.

A. Experimental implications

Two aspects of LS experiments that are related to the
standard assumptions of classical LS analysis are revisited
in this subsection. This first is regarding the assumption
that the derivative of n with respect to protein concentra-
tion at constant V is equal to the same derivative at constant
p. Equation (10) provides a rigorous relationship between(
∂n/∂cm

i

)
T,V,cm

k �=i
(=ηm

i ) and the more experimentally conve-

nient (∂n/∂cm
i )T,p,cm

k �=i
. For water, the term (∂n/∂p)T,N/κT is

of order of 0.2. For proteins, typical values of (∂n/∂c2)T,p,ck �=2

are of the order of 0.2 mL/g, while typical values of partial
specific volume are ≈0.75 mL/g. Thus, both terms on the
right hand side of Eq. (10) are expected to be quantitatively
significant, and assuming that (∂n/∂cm

2 )T,p,cm
k �=2

≈ ηm
2 is likely

a poor assumption when dealing with protein solutions.
Table I summarizes the values for solution conditions

used here for aCgn and the four antibodies at different pH
and cosolvent concentration. For illustrative proposes, the
partial specific volume of protein (v̂2) was assumed con-
stant and equal to 0.75 mL/g for all cares. In the case of the
other thermodynamic quantities involved in Eq. (10), κT and
(∂n/∂p)T,N were taken from Ref. 60 for aqueous solution of
NaCl. The results in Table I show that typical values of ηm

2 are
approximately twice the value of (∂n/∂cm

2 )T,p,cm
j �=2

for all of
the proteins and conditions, demonstrating a potentially large
source of quantitative error in values of M2,app and B22 or G22

fitted with the assumption of η2 ≈ (∂n/∂c2)T,p,ck �=2 .
The second aspect which needs consideration is that LS

experiments require the Rayleigh ratio of a reference (pure)
liquid (RRef

90 , e.g., toluene or benzene) in order to measure
absolute values of Rex

90 .61 The relation between the excess
Rayleigh ratio at 90◦ for a protein solution and that for the
reference liquid is given by28

Rex
90 = (I90 − I90 |c2=0)

I Re f
90

(
n

nref

)2

RRef
90 , (29)

TABLE I. Comparison of (∂n/∂c2) under the assumption of constant vol-
ume or constant pressure.

NaCl
(
∂n/∂cm

2

)
T,p,cm

k �=2
ηm

2

Protein pH [mM]
[
mL/g

] [
mL/g

]
aCgn 2.5 - 4.5 0 0.192 0.407

100 0.410
200 0.413

IgG1.1 6.5 54 0.181 0.398
5.5 0.181 0.398
4.5 0.183 0.400
3.5 0.182 0.399

IgG1.2 6.5 54 0.183 0.400
5.5 0.184 0.401
4.5 0.184 0.401
3.5 0.184 0.401

IgG1.3 6.5 54 0.182 0.399
5.5 0.187 0.404
4.5 0.183 0.400
3.5 0.183 0.400

IgG1.4 6.5 54 0.180 0.397
5.5 0.181 0.398
4.5 0.181 0.398
3.5 0.182 0.399

where I90 and I90 |c2=0 are, respectively, the scattered inten-
sities of the protein solution and the solution without protein.
I Re f
90 is the scattered intensity of the reference pure liquid, and

n and nref are the refractive indexes of the solution and the
reference liquid, respectively.

In the literature, one can find RRef
90 measured from sev-

eral methods, though they are commonly classified as “high”
or “low” values.62 “High” R90 values correspond to those val-
ues (methods) which return the average molecular weight of
a standard polymer when they are used in Eq. (29) for a dilute
solution of the same polymer,63–68 whereas “low” values do
not correlate well with the expected M2 values for standard–
polymer solutions. Apparently, because it is now accepted that
LS can be used to obtain the true molecular weight, “low”
R90 values are often omitted or neglected from later literature,
and the use of “high” values has become standard. Thus, if
the differences between (∂n/∂c)T at fixed p versus V for the
reference macromolecule-solvent system are similar to those
for the protein-solvent system of interest, then the errors in
approximating η2 ≈ (∂n/∂c2)T,p,ck �=2

may be smaller than the
statistical uncertainty in the fitted parameters.

This may explain the historical observations that utilizing
(∂n/∂c2)T,p,ck �=2

instead of η2 yields at least physically rea-
sonable magnitudes for M2,app, although this can differ sig-
nificantly from the known value of M2 in either a positive
or negative direction.24, 31, 69 It remains an open question of
how valid this approximation is if one finds significant devi-
ations of M2,app from M2, particularly if there is no evidence
of oligomerization. Therefore, for parity with current prac-
tice, in Subsection IV B the reported experimental Rex

90 val-

ues utilize the currently accepted values of RRef
90 , and there-

fore also employ η2 ≈ (∂n/∂c2)T,p,ck �=2
. While doing so does

not affect the comparison or conclusions below, it behooves
the LS community to more carefully consider the historically
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FIG. 1. Representative LS data and fits for aCgn solutions at pH of 2.5
and 4.5, and different ionic strength. The symbols, solid lines, dashed lines,
and dotted lines correspond to experimental data,31 and mathematical fits to
Eqs. (11), (26), (27), and (30) (using constant Am

2 ), respectively. The fits to
Eqs. (11), (24), (26), or (30) are indistinguishable on the scale of the plot.

accepted assumptions of constant pressure in LS analysis, and
in this case its impact on the Rayleigh ratio of the reference
liquid, and what is the correct value for the differential of n
with respect to solute and/or protein concentration.

B. Classical analysis vs. KB analysis

Using KB theory and a more general canonical treatment,
two de novo expressions (Eq. (11) and each of the equiva-
lent Eq. (24) or (26)) have been derived to describe LS data.
In addition, if one neglects the c2 dependence of M ′

2,app of
Eq. (26b), this yields a third expression

Rex
90

K ′ (ηm
2

)2 = cm
2 M2,app

1 + cm
2 Gm

22
1+cm

2 Gm
22

(30)

that is reminiscent of the canonical expression for LS
(Eq. (27), with Am

2 held fixed) except that the denomi-
nator does not assume Am

2 = −2Gm
22. In Eq. (30), M2,app

= (1 + k13)2 ≈ M2, and therefore this expression is expected
to hold only when protein-solvent and protein-cosolute inter-
actions are relatively weak. In what follows, the results from
using each of the three expressions (Eq. (11), (26), or (30))
with experimental data for protein solutions are compared
with that from a canonical treatment. In the remainder of the
report, Eq. (27) is used with Am

2 as a constant, making it equiv-
alent to the canonical expression that historically equates B22

with Am
2 , factoring in the appropriate conversion between dif-

ferent conventions for the units of B22.18, 42, 59 This provides
a means to test not only whether the de novo expressions can
provide reasonable fits to the experimental data, but also to
assess differences in the resulting values of G22 and M2,app

compared to A2 and M2 in the classical LS analysis.
Figure 1 shows a comparison of illustrative fits for each

de novo expression and the classical equation to represen-
tative LS data for aCgn at solvent conditions that span from

FIG. 2. Apparent protein molecular weight M2,app for IgG1.3 in 54mM
NaCl as a function of pH. The values are obtained from regressing exper-
imental data to the working equations. For Eq. (26), Gm

22 and k13 were re-
gressed, and M2,app calculated from the expression for M ′

2,app defined in
Eq. (26). Error bars are based on 95% confidence intervals for the fitted pa-
rameters. Analogous results are shown for IgG1.1, IgG1.2, and IgG1.4, as
well as for aCgn, in the supplementary material.53

attractive (upward curvature) to repulsive (downward curva-
ture). For all the conditions, all the equations capture the qual-
itative behavior of Rex

90 as a function of protein concentration,
as expected since each of Eqs. (11), (26), (30), and (27) pro-
duce the same sign for the curvature of Rex

90 if one use a pos-
itive or negative value for G22 or A2. When protein–protein
interactions are near ideal (i.e., linear Rex

90 vs. cm
2 ), no differ-

ence can be observed between these expressions. However,
for large deviations, differences between the de novo equa-
tions (Eqs. (11)), (26), and (30)), and the classical expression
(Eq. (27) with constant Am

2 ) become more evident. However,
these differences are minor, and likely would not give one
cause to conclude that one expression is inherently better able
to capture the LS data per se. Rather, the comparison of the
fitted parameter values reveals the differences more clearly.

Figure 2, as well as Figs. S1 and S2 in the supplementary
material,53 summarize differences in M2,app values obtained
from regressing SLS data as a function of pH and I, using the
classical analysis (Eq. (27) or (B6)) and the new expressions
(Eqs. (11), (26), and (30)), for aCgn, and each antibody. These
values are normalized by the true protein molecular weight
M2 derived from amino acid analysis. The true molecular
weights for the five proteins are: 146.7, 146.9, 146.5, 143.0,
and 25.7 kDa for IgG1.1, IgG1.2, IgG1.3, IgG1.4, and aCgn,
respectively. For the four antibodies, LS data correspond to
solutions at one cosolvent concentration ([NaCl] = 54 mM)
and four different pH (3.5, 4.5, 5.5, and 6.5), whereas for
aCgn the data correspond to solutions at three different co-
solvent concentrations ([NaCl] = 0, 100, and 200 mM) and
five different pH values (2.5, 3, 3.5, 4, and 4.5).

Inspection of Fig. 2, and S1 and S2 in the supple-
mentary material53 show that the fitted M2,app values
are the same from Eqs. (11), (26), (27), and (30) within
95% confidence intervals, across a wide range of conditions.
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FIG. 3. B22 values for aCgn obtained from classical (Eq. (27)) and KB (Eqs. (11), (24), (30) or (26)) analysis at different pH and ionic strength (I): (a) pH =
2.5; (b) pH = 4.5; (c) low ionic strength ([NaCl] = 0 mM); (d) medium ionic strength ([NaCl] = 100 mM). Dashed line indicates value for ideal hard spheres.
Error bars are based on 95% confidence intervals for the fitted parameters.

Additionally, M22,app/M2 is not greatly different from
1 for most examples tested here. This suggests that
|k13| 	 1, as required for Eq. (24) or (26) to be
equivalent to the more general expression (Eq. (11)). In
the case of IgG1.2 (Fig. S1b) and pH 5.5 in Fig. 2, protein
dimerization was suspected,24 consistent with M2,app 
 M2.
A more systematic and broader range of cosolute composi-
tions may need to be tested to assess how large the deviations
of M2,app from M2 may become for real systems.

In terms of protein–protein interactions, Figs. 3 and 4,
and S3 (see supplementary material53) summarize the values
of G22 or A2 obtained from regressing the experimental LS
data for aCgn and each of mAb. These values are reported
relative to the hard-sphere second virial coefficient (−G∗

22
= −G22/2B H S

2 and A∗
2 = A2/B H S

2 ) for easier comparison
across different proteins; recall that G22 = −2B22 at low c2.9

The estimated B H S
2 was calculated as B H S

2 = (2/3) πσ 3
H S ,

where the hard-sphere diameter (σH S) was taken as 10 nm
for each of the four mAb70–72 and 4 nm for aCgn.31

At low pH (≤ 3.5), repulsive protein interactions are
expected (B22 > B H S

2 , G∗
22 	 0), since all the charged side

chains have positive charges and the contribution from
electrostatic interactions to the protein–protein interactions
is significant at these relatively low ionic strength values.
As pH increases, there are both repulsive and attractive

protein–protein interactions because there are both positively
and negatively charged side chains, and G22 (A2) is expected
to increase (decrease). Similarly, at low ionic strength, elec-

FIG. 4. B22 values for IgG1.3 in 54 mM NaCl as a function of pH. The val-
ues are obtained from regressing experimental data to the working equations.
Dashed line indicates value for ideal hard spheres. Error bars are based on
95% confidence intervals for the fitted parameters.
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trostatic interactions are relatively unscreened, and become
more screened with increasing I.73 If one is concerned about
only the sign of B22, A2, or G22, then Eqs. (11), (24) or
(26), (30), and (27) provide equivalent results. That is, linear
behavior for Rex

90 gives A2 = B22 = G22 = 0, and positive
(negative) deviations from linearity requires A2, B22, or
−G22 to be negative (positive).

On the other hand, if one is concerned with the magnitude
of protein–protein interactions, then Figs. 3 and 4, and S3 in
the supplementary material53 show that the classical LS treat-
ment is in error. As Eq. (28) shows, the errors are most pro-
nounced at high c2 and/or |G22|. The now-standard expression
to analyze LS (Eq. (27)) implicitly assumes |c2G22| 	 1 by
considering A2 = B22. However, within the experimentally
accessible range of protein concentration, that product is not
necessarily small. Thus, for very repulsive (attractive) condi-
tions, G22 	 0 (
 0), the classical expression is no longer
valid. This causes −G22 or B22 to be over (under) estimated
under strongly repulsive (attractive) conditions. The main dif-
ference in deriving Eq. (11) or (26) is the assumption of non-
dissociable solutes for Eq. (26), i.e., via the neglect of Donnan
contributions in Eq. (26). The agreement between G∗

22 for fits
to Eq. (11) vs. Eq. (26) or (30) in Figs. 3 and 4, and S2 (sup-
plementary material53) suggests that contributions from Don-
nan equilibria involving the proteins and the counterions are
not significant for the present examples, within experimental
uncertainty. As shown above, A2 from traditional analysis is
not equal to B22 unless the magnitude of c2 B22 (or c2G22) is
small compared to 1. However, this cannot explain the dif-
ference in sign argued elsewhere.32, 33 The source of the dis-
crepancies between B22 obtained from different experimental
methods33, 74 is not apparent at this point, but the analysis of
LS provided here clearly shows that B22 or G22 is rigorously
obtained from proper analysis of LS data.

Furthermore, the fact that differences between A2 and
B22 (or G22) in Eq. (26) and (27) are the artifact of a mathe-
matical manipulation and the assumption of c2 → 0 suggests
A2 may be corrected without a need to regress data retrospec-
tively. Figure 5 shows A∗

2 values regressed from Eq. (27) vs.
−G∗

22 values regressed from Eq. (11) for all the data analyzed
here, along with a curve that represents Eq. (28) – i.e., the
curve is not a fit to the data. The average protein concentra-
tion among all the LS data was used in Eq. (28) for Fig. 5.
Together with the analysis provided in Sec. III, this clearly
demonstrates that A2 regressed from Eq. (27) is not the os-
motic second virial coefficient unless c2 and/or |G22| are suf-
ficiently small, but one can relate A2 from classical analy-
sis to G22 via Eq. (28). However, the difference between A2

and G22 is not due to a convolution with other osmotic virial
coefficients; it occurs because of the erroneous approxima-
tion of c2 → 0 when analyzing LS data. For the data consid-
ered here, differences between A2 and −G22/2 are significant
when |Gm

22cm
2 | ≥ 3x10−2, even if the average concentration is

low (≈ 3 mg/mL). Nevertheless, Eq. (28) may provide a way
to recover accurate values of G22 from previously determined
A2 values, and therefore also test whether the approximation
A2 ≈ B22 is valid.

Interestingly, Asthagiri et al.44 also found protein–
protein interactions were over-estimated at repulsive condi-

FIG. 5. Normalized osmotic virial coefficients obtained from Eq. (27) (A∗
2)

and Eq. (11) (−G∗
22) for aCgn and each of the mAb’s. Symbols corresponds

to (◦) aCgn; (�) IgG1.1; (♦) IgG1.2; (�) IgG1.3; (�) IgG1.4; solid line cor-
responds to Eq. (28).

tions by comparing A2 obtained from experimental LS data
with those values obtained from molecular simulations. By
acknowledging ionizable species in a derivation starting from
Stockmayer approach,38 they suggested that the A2 parame-
ter is the combination of a protein–protein interaction term
and a Donnan effect term arising from a need to impose elec-
troneutrality. Thus, for conditions dominated by electrostatic
interactions (very high or low pH, and/or low ionic strength),
the Donnan term becomes important, leading to overesti-
mated positive values of A2. The analysis here provides an
alternative explanation, without a need to invoke argument
of electroneutrality, as the grand canonical ensemble inher-
ently maintains electroneutrality by the imposition of con-
stant chemical potential. The empirical observation that G∗

22
fit from Eqs. (11) and (26) were equivalent in the present
work argues that Donnan contributions to Eq. (26) could
be neglected for the experimental data considered here, as
Eq. (11) is not limited by such restrictions.

Strictly, if one considers the scenario of dissociable or
ionizable species, particularly protein, the canonical treatment
(Eq. (26)) is no longer valid, since Eq. (21) (or Eq. (A4)) only
applies to non-dissociable components. However, Eq. (11)
can be used whether or not protein and/or cosolutes disso-
ciate or ionize if one acknowledges the concentration of some
dissociated or ionized species is proportional to c2. Neverthe-
less, special care must be taken in using the KB analysis for
such situations, as G22 may be a linear combination of the
KB integrals for the interactions between protein and some
of the dissociated components (e.g., counterions). This is a
common issue in other types of experiments for measuring os-
motic virial coefficients or KB integrals such as sedimentation
equilibrium and classical osmometry experiments, since there
is thermodynamic coupling between protein and some of the
dissociated or ionized components in solution. This does not
preclude the possibility that one would obtain significantly
different results at very low ionic strength and/or high
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protein charge if one used Eq. (26) instead of Eq. (11), as well
as the importance of considering Donnan contributions when
large strong electrostatic contributions are present. Correcting
for additional factors such as Donnan equilibrium in deriving
Eq. (26) or (30) is left to a future report, and instead Eq. (11)
is recommended for use more generally.

V. SUMMARY AND CONCLUSIONS

Classic analysis of Rayleigh light scattering in terms of
concentration fluctuations is revisited and three alternative
versions of the final working equation are derived and
compared with the traditional form. The new formulations
are based on either KB solution theory, or on a more
general canonical treatment applicable to solutions with non-
dissociable solutes. The former is more general in that it is
not restricted in terms of the nature of the solutes or solvents,
or assumptions of independent cross fluctuations of charged
species. The analysis shows that B22 arises naturally and
without convolution by other virial coefficients if one consid-
ers sufficiently dilute protein concentrations and/or low |B22|
values – disputing recent arguments that are based on a less
general analysis. However, comparison to the now-standard
expression for regressing LS data shows that the standard
analysis may significantly over(under)-estimate the mag-
nitude of the osmotic second virial coefficient for strongly
repulsive(attractive) protein-protein interactions. The KB in-
tegral G22 is the more relevant quantity as one considers larger
protein concentrations and/or strong repulsions or attractions.
Expressions are derived that in principle allow one to correct
previous results, as well as to unambiguously determine
whether one is sufficiently dilute to recover B22 rather than
G22 from LS experiments. The analysis is applied to a num-
ber of experimental systems, illustrating that the magnitude
of the errors from the traditional analysis can be significant
(a factor of 2 or more) for estimating protein-protein virial
coefficient or KB integral values; while the errors in assuming
the apparent molecular weight from LS analysis is equal to
the true molecular weight may be appreciably smaller but
still measurable. The present work also lays a foundation for
extending LS to model protein-protein and protein-solvent or
protein-cosolute interactions in more concentrated solutions.
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APPENDIX A: B22 IN TERMS OF ACTIVITY
COEFFICIENTS

In order to establish the relation between the osmotic sec-
ond virial coefficient, B22, and the activity coefficients, we can

start from the definition of fluctuations in the concentration of
protein for a multi component mixture in a grand-canonical
ensemble. That is

〈(�N2)2〉 = kT

(
∂ N2

∂μ2

)
T,V,μk �=2

= kT
A22

| A | , (A1)

where A22 and | A | are defined in Eq. (16). In addition, these
fluctuations can be expressed rigorously in terms of the KB
integral, G22, as9

kT

V

(
∂ N2

∂μ2

)
T,V,μk �=2

= c2 (1 + c2G22)

= kT

(
∂c2

∂μ2

)
T,V,μk �=2

. (A2)

Combining Eqs. (A1) and (A2), and defining the protein
activity coefficient (γ2) as Eq. (20), we can express G22 as

G22 =
−

[(
∂ ln γ2

∂c2

)
T,V,ck �=2

+ ∑
i �=2

A2i
A22

(
∂ ln γ2

∂ci

)
T,V,ck �=i

]

1 + c2

[(
∂ ln γ2

∂c2

)
T,V,ck �=2

+ ∑
i �=2

A2i
A22

(
∂ ln γ2

∂ci

)
T,V,ck �=i

] .

(A3)

Equation (A3) is formally exact assuming non-
dissociable species. In the limit of infinite dilution of protein
(c2 → 0) this becomes

G22 = −
[(

∂ ln γ2

∂c2

)(∞)

T,V,ck �=2

+
∑
i �=2

A2i

A22

(
∂ ln γ2

∂ci

)(∞)

T,V,ck �=i

⎤
⎦ , (A4)

where the superscript (∞) denotes that the derivatives are
evaluated in the limit of low protein concentration. In addi-
tion, G(∞)

22 = −2B22,9 therefore

B22 = 1

2

⎡
⎣(

∂ ln γ2

∂c2

)(∞)

T,V,ck �=2

+
∑
i �=2

A2i

A22

(
∂ ln γ2

∂ci

)(∞)

T,V,ck �=i

⎤
⎦ .

(A5)

Equations (A3)–(A5) give formal relations between
protein–protein interactions in terms of G22 and B22 (i.e., an
open ensemble), and the activity coefficients of the different
component in the solution (i.e., a Helmholtz framework).

APPENDIX B: CONSTANT PRESSURE ASSUMPTION

Most of the theories28, 38, 39, 42, 44 which relate Rayleigh
scattering to molecular interactions assume that the system is
at constant pressure. In addition, fluctuations on N1 (water), or
in all solvent species, are often neglected. The impact of these
approximations are illustrated here, for comparison to the re-
sults in Sections II and III. For concreteness, first consider a
ternary mixture at constant T, p, and with μk of all the com-
ponents but solvent (component 1) held fixed, i.e., constant(

p, T, N1, μk �=1
)
. In this ensemble, fluctuations in refractive
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index are due to fluctuations in V and Nk �=1

〈(�n)2〉 =
(

∂n

∂V

)2

T,N
〈(�V )2〉

+ 2
3∑

i=2

(
∂n

∂V

)
T,N

(
∂n

∂ Ni

)
T,V,Nk �=i

〈�V �Ni 〉

+
3∑

i=2

3∑
j=2

(
∂n

∂ Ni

)
T,V,Nk �=i

(
∂n

∂ N j

)
T,V,Nk �= j

〈�Ni�N j 〉,

(B1)

where fluctuations in volume and number of molecules are
expressed as

β〈(�V )2〉 = −
(

∂V

∂p

)
T,N1,μk �=1

= κT V −
3∑

i=2

vi

(
∂ Ni

∂p

)
T,N1,μk �=1

β〈�V �Ni 〉 =
(

∂V

∂μi

)
T,P,N1,μk �=1,i

= −
(

∂ Ni

∂p

)
T,N1,μk �=1,i

=
3∑

j=2

v j

(
∂ N j

∂μi

)
T,p,N1,μk �=1,i

β〈�Ni�N j 〉 =
(

∂ N j

∂μi

)
T,p,N1,μk �=1,i

=
(

∂ Ni

∂μ j

)
T,p,N1,μk �=1, j

.

Replacing the above definitions in Eq. (B2), and substi-
tuting derivatives at constant V for their equivalents deriva-
tives at constant p, we obtain

〈V 〉〈(�n)2〉 = kT 〈V 〉
3∑

i=2

3∑
j=2

ξiξ j

(
∂ Ni

∂μ j

)
T,p,N1,μk �= j

− kT

κT

(
∂n

∂p

)2

T,N
, (B2)

where

ξi =
(

∂n

∂ Ni

)
T,p,Nk �=i

.

In a similar way to that for obtaining Eq. (16), the deriva-
tive of the number of molecules of the i’th component with
respect the chemical potential of the j’th component can be
written as (

∂ Ni

∂μ j

)
T,p,N1,μk �= j

= �i j

| � | , (B3)

where | � | and �i j are the determinant and the ij–cofactor
in the determinant, respectively, of the matrix formed by the

elements

ψi j = ψ j i =
(

∂μi

∂ N j

)
T,p,Nk �= j

i, j = 2, 3.

With Eqs. (B2) and (B3), Eq. (2) in mole/volume units
becomes

R90

K ′ =
RT

[
ξ2 − ξ3

(
ψ23

ψ33

)]2

〈V 〉
[
ψ22 − ψ23

(
ψ23

ψ33

)]

+ RT ξ 2
3

〈V 〉ψ33
− RT

κT

(
∂n

∂p

)2

T,{nk}
. (B4)

One can then express
(
Rex

90

)
as

Rex
90

K ′ξ 2
2

=
[
1 −

(
ξ3

ξ2

) (
ψ23

ψ33

)]2

〈V 〉
RT

(
∂μ2

∂n2

)
T,p,n1,μ3

, (B5)

where the denominator follows from(
∂μ2

∂n2

)
T,p,n1,μ3

=
(

∂μ2

∂n2

)
T,p,nj�=2

+
(

∂μ2

∂n3

)
T,p,nj�=3

(
∂n3

∂n2

)
T,p,n1,μ3

.

Finally, by analogy with the derivation of Eq. (27) in
Sec. III, one can express Eq. (B5) at low protein concentra-
tion as

Rex
90

K ′ (ξm
2

)2 = cm
2 M2,app

1 + 2cm
2 Am

2,app

, (B6)

where

M2,app = M2

{
1 + ξ3

ξ2
cm

3

[
G23

M2

− M1

M2

(
G13

M1
+ G12

M1
− 1

cm
1

− G11

M1

)]}2

, (B7)

Am
2,app = −1

2

[
Gm

22 + M1

M2

(
1

cm
1

+ G11

M1
− 2G12

M1

)]
.

(B8)
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