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Uniform saturation of a strongly coupled spin system
by two-frequency irradiation
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The theoretical basis of two-frequency saturation is given here in the framework of Provotorov theory.
The parameters influencing the saturation efficiency are discussed and studied experimentally using a
liquid-crystalline test system. It is shown that double-frequency irradiation can be extremely efficient
when the irradiation frequencies are placed at opposite sides of the characteristic frequency of the
spin system, and that the frequency separation in the double-frequency irradiation can be varied
over a large range. Provotorov theory is also shown to provide good insights into the experimental
findings, which would otherwise be difficult to obtain from simulations. © 2011 American Institute
of Physics. [doi:10.1063/1.3600758]

I. INTRODUCTION

Saturation is one of the central phenomena extensively
studied in the field of nuclear magnetic resonance (NMR).
For a system of non-interacting spins 1/2, long rf irradiation
decreases the population difference between the spin up and
down states from its thermal equilibrium value. The system
eventually reaches a steady state manifesting a balance
between the driving forces of the external rf irradiation
decreasing the population difference and the relaxation
mechanisms recovering the population difference in the
thermal equilibrium state.1 For a system of strongly coupled
spins 1/2, continuous rf irradiation brings the system into an
internal equilibrium between the Zeeman and dipolar reser-
voirs, which is well understood in terms of the concept of spin
temperature.2–4 Usually, the rf irradiation for saturation is
assumed to consist of only one frequency component. Contin-
uous NMR methodology depends on monitoring the magneti-
zation while varying the frequency of the saturating rf irradi-
ation, which reveals information about the spectral lineshape.

Among the contemporary applications of saturation,
chemical exchange saturation transfer (CEST) and magne-
tization transfer (MT) are emerging as important magnetic
resonance imaging (MRI) contrast mechanisms.5, 6 In these
methods, rf irradiation off-resonant to water protons is ap-
plied to saturate protons belonging to targeted small or macro-
molecules, and the change in the magnetization of water pro-
tons is monitored to indirectly detect such molecules. Since
MT and CEST together with direct water proton saturation
can happen simultaneously in tissues, it is important to dis-
criminate among different saturation effects in order to obtain
more quantitative information about the targeted molecules.

Liquid crystal and other oriented media have been used
to study many molecular structures by introducing residual
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alexej.jerschow@nyu.edu.

dipolar couplings.7, 8 When a liquid crystal is used as a host,
its broad proton NMR spectrum appears together with the nar-
rower and sharper spectral lines from a guest molecule and it
is often desirable to eliminate the broad spectral components.
A common solution is the delayed acquisition, to eliminate
the short-lived component from the liquid crystal and to col-
lect only the signal from a guest molecule in the free induc-
tion decay. This approach, however, often causes distortion of
the baseline, which may not be easily corrected in the resul-
tant NMR spectrum due to the evolution under the internal
Hamiltonian during the acquisition delay. Therefore, a clean
saturation of the NMR spectrum of the host liquid crystal is
desirable in practice.

It has been shown that uniform and efficient saturation
in strongly coupled spin systems can be achieved by using
two-frequency rf irradiation.9 This approach can be extremely
useful for CEST contrast in imaging, when one desires to sep-
arate MT effects from CEST effects, or for eliminating the
signal from the liquid-crystalline solvent.9 Here we present a
detailed analysis, based on Provotorov theory, as well as ex-
periments on a liquid-crystalline system, in order to study the
parameters influencing the performance of the two-frequency
irradiation technique.

II. THEORY

Provotorov’s thermodynamic theory has been used to de-
scribe the dynamics of a strongly coupled spin system under
a weak rf irradiation.3, 10 By treating the weak rf irradiation as
a perturbation, the master equation can be solved by iteration
under the assumption that the density operator is described
at all times by a quasi-equilibrium form ρ(t) = (1/2N )
[1 + βS(t)ω0Sz − βd (t)Hd ], where βS and βd are, respec-
tively, the Zeeman and dipolar inverse spin temperatures,
ω0 is the resonance frequency, and Hd is the dipole-dipole
interaction Hamiltonian. Traditionally, a set of first-order
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coupled differential equations can be derived for the in-
verse spin temperatures βS and βd . Instead, by introducing
the spin and dipolar polarizations PS = (2/N )〈Sz〉 and
Pd = (2/N )(〈Hd〉/ωloc), one can obtain a set of kinetic
equations as follows:11

d PS

dt
= −W

(
PS − �

ωloc
Pd

)
, (1)

d Pd

dt
= W

�

ωloc

(
PS − �

ωloc
Pd

)
, (2)

where 〈O〉 ≡ tr{Oρ}, ωloc ≡ tr{H2
d}/tr{S2

z }, � ≡ ω0 − ω is
the frequency difference between the resonance frequency
ω0 and the frequency ω of the weak rf irradiation, W
= πω2

1g(�), ω1 is the amplitude of the weak rf irradiation,
and g(�) is the normalized absorption line shape.

It is straightforward to incorporate another weak rf ir-
radiation at the frequency ω′ into the above equation. Each
frequency contributes to kinetics in the same way as in
Eqs. (1) and (2), and the cross effect, which depends on
the time integral

∫ ∫
dt ′dt ′′ cos ωt ′ cos ω′t ′′, will be negligi-

ble unless the two frequencies are so close that the difference
between them is comparable to the amplitude of the rf fields.
Therefore, with two weak rf irradiations, the kinetic equations
will read,
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where the primed symbols W ′ and �′ are the transition rate

and the offset for the irradiation at ω′.
From Eqs. (3) and (4), one can obtain two eigenvalues

governing the dynamics,

λ± = −1

2
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)2
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ω2
loc

⎫⎬
⎭,

(5)

which are always real and negative. Since the solutions for
PS(t) and Pd (t) have the form of A exp(λ+t) + B exp(λ−t),
with the constants A and B set according to the initial
states, PS(∞) = Pd (∞) = 0, which means that the spin
and dipolar polarizations vanish under two-frequency rf
irradiation.

In the presence of spin-lattice relaxation, the spin and
dipolar polarizations do not decay to zero, but reach steady
states. This can be easily taken into account by adding
the terms −(PS − P0)/T1 and −Pd/Td to Eqs. (3) and (4),
respectively,

d PS

dt
= −W

(
PS − �

ωloc
Pd

)
− W ′

(
PS − �′
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Pd
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T1
, (6)
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(
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)
− Pd

Td
, (7)

where T1 and Td are the spin-lattice relaxation times for
the Zeeman and dipolar reservoirs, respectively, and P0 is
the thermal equilibrium polarization. For the inhomogeneous
equations Eqs. (6) and (7), PS(t) and Pd (t) have the form
of A exp(λ+t) + B exp(λ−t) + C , where C �= 0. By replacing
d PS/dt and d Pd/dt with zero, one can obtain the steady-state
polarizations as

PS(∞) = P0
ω2

loc + Td (W�2 + W ′�′2)

ω2
loc + ω2

locT1(W + W ′) + Td (W�2 + W ′�′2) + T1Td W W ′(� − �′)2
, (8)

Pd (∞) = P0
ωlocTd (W� + W ′�′)

ω2
loc + ω2

locT1(W + W ′) + Td (W�2 + W ′�′2) + T1Td W W ′(� − �′)2
. (9)

And the two eigenvalues λ±,
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are still real and negative.
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III. RESULTS

The kinetic equations introduced in Sec. II predict that
the time evolution of the spin and dipolar polarizations are
bi-exponential. Since the initial state is always the ther-
mal equilibrium state, the spin polarization would decay
monotonously from its maximum value to the smaller final
value, in which case it may be hard to see whether its time
evolution is bi-exponential or not. Instead, the dipolar polar-
ization is initially zero, so its evolution is expected to clearly
reveal the bi-exponential time behavior in the form of buildup
and subsequent decay.

In this study, liquid crystal 5CB was chosen for numer-
ical and experimental tests. The proton NMR experiments
have been performed using a Bruker Avance 500 MHz NMR
spectrometer. The proton NMR spectrum was obtained by
applying a 9.5 μs 90◦ pulse to the thermal equilibrium state
(Fig. 1(a)). The spin-lattice relaxation time for the Zeeman
reservoir T1 was measured with the inversion recovery
sequence, and the spin-lattice relaxation time for the dipolar
reservoir Td was measured with adiabatic demagnetization in
the rotating frame (ADRF) followed by adiabatic remagne-
tization in the rotating frame (ARRF) after variable delays.
The ADRF and ARRF were performed by 1 ms-long linear
decreasing and increasing ramps, respectively. Before the
ADRF, the spin polarization was brought to the transverse

(a)

(b)

FIG. 1. (a) Proton NMR spectrum of 5CB with a 9.5 μs 90◦ pulse on the
thermal equilibrium state. (b) Linear-response spectra of 5CB with a 5◦ read-
ing pulse on (leftmost) the thermal equilibrium state, (second to fourth) the
states after 50 ms-long rf irradiation at the frequency offsets of −8 kHz,
0 kHz, and +8 kHz with rf amplitude of 500 Hz, and (rightmost) the state
after a 50ms-long on-resonant cosine pulse with a modulation frequency of
8 kHz and rf amplitude of 1 kHz.

plane by the 90◦ pulse. Mono-exponential fitting was applied
to the experimental data to estimate the spin-lattice relaxation
times to be T1 = 1.0 s and Td = 0.4 s.

The effect of two-frequency saturation is briefly depicted
in Fig. 1(b). Five linear-response spectra were obtained by
applying a 5◦ reading pulse to the thermal equilibrium state,
the states after rf irradiation at the frequency offsets of −8
kHz, 0 kHz, and +8 kHz, and the state after a on-resonant co-
sine pulse with the modulation frequency of 8 kHz. A linear-
response spectrum with a small-angle reading pulse reveals
the population differences between the energy levels of a
given spin state. The duration of the single-frequency rf irra-
diation and the cosine pulse was 50 ms and the rf amplitudes
γ B1/2π were, respectively, 500 Hz and 1 kHz, so that the in-
dividual frequency components of the cosine pulse have the
same rf amplitude as the single-frequency pulse. The linear-
response spectrum after the cosine pulse presents peaks with
very small intensity, which suggests that the system is ap-
proaching the state with equal populations across all the en-
ergy levels. On the other hand, the linear-response spectra
after single-frequency rf irradiation give rise to positive and
negative peaks, which means that there exists a nonuniform
population distribution in the spin system.

The proton NMR spectrum and relaxation times were
used to numerically solve Eqs. (6) and (7). The numerical
solutions for PS(t) and Pd (t) were obtained by using the
ode45 function in MATLAB. The amplitude of the rf irradia-
tion ω1/2π and dipolar local field ωloc/2π were set to 500 Hz
and 10 kHz, respectively. (From the integrated proton NMR
spectrum, ωloc ∼ 2π × 6 kHz.) As seen in Figs. 2(a) and 2(b),
PS and Pd are zero for a large range of the frequency combi-
nations only 50 ms after the two-frequency irradiations starts.

In the experiments, two-frequency irradiation was
implemented by cosine shaped pulses. A cosine pulse with a
modulation frequency of f Hz provides rf irradiation at ± f
Hz. Then, by shifting the center of the cosine pulse, a range
of frequency combinations can be sampled. We prepared
50 ms-long cosine pulses with the modulation frequencies
from 0 Hz to 20 kHz with increments of 1 kHz and swept
their center frequencies from −30 kHz to 30 kHz with
increments of 2 kHz. The rf amplitudes of the pulses were set
to 1 kHz, so each frequency component has an rf amplitude of
500 Hz. At the end of the cosine pulse, the 90◦ hard pulse
or the ARRF sequence were applied to measure PS or
Pd . Since PS and Pd are longitudinal, a simple four-step
phase cycling was applied to remove any residual transverse
components of the magnetization that may appear after the
cosine pulses. The results are shown in Figs. 2(c) and 2(d) for
two irradiation frequencies varying independently between
−20 kHz and 20 kHz.

The experimental results look similar to the numeri-
cal solutions. The Zeeman polarization PS (Figs. 2(c)) turns
to zero for a large range of frequencies, especially when
one frequency is positive and the other is negative or when
the rf irradiation is applied at frequencies where the spec-
tral intensity is large. Small residual dipolar polarization Pd

(Fig. 2(d)) in the region where PS is zero is uniform. We
should note that the possibilities of using a direct numeri-
cal simulation of spin dynamics to reproduce the results in
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FIG. 2. (a) Zeeman and (b) dipolar orders calculated by solving the dynamic equations. (c) Zeeman and (d) dipolar orders experimentally measured in 5CB.
The two-frequency irradiations are 50 ms-long cosine-modulated pulses with an rf amplitude γ B1/2π = 1 kHz.

Fig. 2 are very limited. For time-independent Hamiltonians,
such simulations can be performed on spin systems of up to
12–13 spins (and slightly larger using symmetry arguments).
This number of spins is not enough to describe the behavior in
the thermodynamic limit. The problem of the two-frequency
irradiation is even more difficult because the Hamiltonian
is essentially time-dependent and, therefore, the simulation
would require very large number of time steps. It would fur-
ther decrease the number of spins which can be used in the
simulations.

To see whether Pd follows the bi-exponential build-up,
as predicted by the kinetic equations Eqs. (3) and (4) (or
Eqs. (6) and (7)), cosine pulses with the modulation frequency
of 5 kHz and different durations from 200 μs to 50 ms were
applied to the thermal equilibrium state, and were followed
by the ARRF pulse to monitor Pd . The center frequencies of
the pulses were varied from −10 kHz to 10 kHz with a step
of 2 kHz. The results are shown in Fig. 3, in which the bi-
exponential build-up behavior of Pd is clearly observed.

IV. DISCUSSION

The eigenvalues λ± in Eqs. (5) or (10) determine how fast
the Zeeman and dipolar polarizations PS and Pd decay to zero
or reach the steady states, and smaller eigenvalues (large abso-
lute values) are favored for faster saturation. From Eq. (5), one
can see that λ− will be smaller when the terms in the square
root are smaller. There are two cases when the expressions for
the eigenvalues become simple: if � = −�′ = ωloc, the two
eigenvalues become −2W and −2W ′. On the other hand, if
W� + W ′�′ = 0, the two eigenvalues become −(W + W ′)
and −(W�2 + W ′�′2)/ω2

loc. For both cases, larger W and W ′

make the eigenvalues smaller and saturation faster. To obtain
a general idea of how the performance of the two-frequency

saturation depends on the parameters W , W ′, �, �′, and ωloc,
three numerical calculations were performed, using Eqs. (10).

In the first, � and �′ are fixed, and λ± are calculated for
varying W and W ′. In Fig. 4, the results are shown for � =
0.5 ωloc and �′ = −0.3 ωloc, which are randomly chosen to
avoid the two special cases discussed above. While λ+ simply
gets smaller as either of W and W ′ increases, λ− gets smaller
when both of W and W ′ are larger, most efficiently following
the line W� + W ′�′ = 0. So W and W ′ are supposed to be
larger for faster saturation.

In the second, W and W ′ are fixed and the dependence
of λ± on � and �′ is investigated. The frequency offsets �

and �′ are conveniently represented in units of ωloc. The re-
sult when W = 2W ′ = 100 π is presented in Fig. 5. The two

FIG. 3. Time-dependence of the dipolar order. A cosine pulse with mod-
ulation frequency 5 kHz was used as the two-frequency pulse. The center
frequencies of the cosine pulse were 0 kHz (cross), ±2 kHz (diamond),
±4 kHz (down triangle), ±6 kHz (up triangle), ±8 kHz (circle), and ±10
kHz (square). Open and filled symbols represent the positive and negative
frequency offsets, respectively.
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FIG. 4. Eigenvalues (a) λ+ and (b) λ− as a function of W and W ′ when � = 0.5 ωloc and �′ = −0.3 ωloc. T1 = 1 s and Td = 0.4 s.

eigenvalues have quite different behavior: λ+ seems to fol-
low an elliptic paraboloid with its maximum point around
the origin, and λ− appears to decrease quickly along the line
W� + W ′�′ = 0. Therefore, it seems that W� + W ′�′ = 0
is a good condition for efficient two-frequency saturation.
Since W and W ′ are positive, it would be beneficial for faster
saturation to choose two irradiation frequencies located at op-
posite sides of the spectrum and farther from the resonance
frequency in order to minimize λ±.

Finally, the dependence of λ± on ωloc has been ex-
amined. As an illustration, Fig. 6 shows the result when
W = W ′ = 100 π and � = −2�′, which avoids the condi-
tion W� + W ′�′ = 0 and shows more general behavior of
the eigenvalues: λ+ quickly increases when ωloc is very small
and becomes constant when ωloc > 0.01�, while λ− makes
a transition from a small value to a value close to zero when
ωloc crosses �. Note that ωloc is a measure of the spectral
width. Since the absorption line shape g will be very small
when |�|, |�′| 
 ωloc, which makes W and W ′ very small,
the huge change of λ+ shown in Fig. 6 is not practically rele-
vant. If such a regime is excluded, the result shown in Fig. 6
suggests that λ+ would not significantly depend on ωloc in the
practical regime and that the minimum of λ− can be searched
around |�| ∼ ωloc.

In summary, for faster saturation, it is useful to increase
W and W ′ by using a larger rf amplitude and/or choosing

the frequency positions of rf irradiation where the absorp-
tion line shape g is larger. In addition, it has been found
that the saturation can be more efficient when the two ir-
radiation frequencies are located at opposite sides of the
resonance frequency, and when the condition W� + W ′�′

= 0 is met. Selecting the frequency positions far from the
resonance frequency seems beneficial, but there is a lim-
itation on how large the offsets can be. Normally, g de-
cays fast beyond ωloc, which makes it practically reason-
able to make |�| and |�′| comparable to ωloc. In addition,
Provotorov’s thermodynamic theory assumes ω1 � ωloc, so a
larger ωloc can allow larger ω1, thereby making the saturation
faster.

In the liquid crystal 5CB, there are two groups of pro-
tons, aliphatic and aromatic. Proton spins within a group are
strongly coupled by dipole-dipole interactions, while inter-
actions between the spins from different groups are much
weaker. As a result, total equilibration and reaching a uniform
dipolar temperature is relatively slow. This is the major reason
for some deviations between the theoretical and experimental
results, as seen in Fig. 2.

The thermodynamic description with two spin tem-
peratures suggests that two irradiation frequencies are
needed for fast and uniform saturation. In systems where the
quasi-equilibrium state is described by more than two spin
temperatures, it would be beneficial to increase the number of
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FIG. 6. Eigenvalues λ+ (solid) and λ− (dashed) as a function of ωloc when
� = −2�′ and W = W ′ = 100 π . T1 = 1 s and Td = 0.4 s.

irradiation frequencies to match the number of independent
spin temperatures.

In our experiments, we used cosine-modulated pulses to
irradiate symmetrically on two sides of the rf frequency. In
some cases, the method may be more conveniently imple-
mented by using a square-shaped modulation. Such modula-
tion is produced by a sequence of two pulses with equal width
τ and opposite phases. The Fourier components with the low-
est frequencies ±π/τ would act exactly like the two frequen-
cies of the cosine modulation. The components with higher
frequencies have small amplitude and produce insignificant
effects.

V. CONCLUSION

We have demonstrated that two-frequency irradiation
can be a convenient simple method for fast uniform saturation
of spin systems with dipolar couplings. The method is very
robust and does not require tuning of the experimental param-
eters. The theoretical description is based on the application

of Provotorov theory, which provides a quantitative descrip-
tion of the experimental results. A liquid-crystalline test
system has been used to study different saturation regimes,
and it is found that saturation works best in the case where the
two irradiation frequencies are placed at opposite sides of the
average Larmor frequency. The actual irradiation frequencies
are not important as long as there is appreciable spectral
density of the dipolar coupled spectrum in this region. The
two-frequency irradiation can be used in solid-state and
liquid-crystalline NMR for eliminating unwanted signals
from a system of strongly coupled spins. In MRI applications,
this technique can be utilized for suppressing broad spectral
components, saturation in CEST experiments, discrimination
between CEST and MT mechanisms, and for improving MRI
contrast.
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