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Abstract
We present a global test for disease clustering with power to identify disturbances from the null
population distribution which accounts for the lag time between the date of exposure and the date
of diagnosis. Location at diagnosis is often used as a surrogate for the location of exposure,
however, the causative exposure could have occurred at a previous address in a case’s residential
history. We incorporate models for the incubation distribution of a disease to weight each address
in the residential history by the corresponding probability of the exposure occurring at that
address. We then introduce a test statistic which uses these incubation-weighted addresses to test
for a difference between the spatial distribution of the cases and the spatial distribution of the
controls, or the background population. We follow the construction of the M statistic to evaluate
the significance of these new distance distributions. Our results show that gains in detection power
when residential history is accounted for are of such a degree that it might make the qualitative
difference between the presence of spatial clustering being detected or not, thus making a strong
argument for the inclusion of residential history in the analysis of such data.
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1. Introduction
Our goal is to study the effect long incubation periods have on the power of a test for global
clustering, as defined in [1]. Tests for global clustering attempt to detect the presence of
clustering process throughout a study region, without necessarily attempting to locate or
identify the actual clusters. For several examples of tests for global clustering, see [2, 3, 4, 5,
6, 7, 8, 9]. Cluster detection techniques have been criticized [10] and, in 1990, researchers
claimed that there had been no cancer clusters found in the prior 22 years [11]. But, if one
accepts the fact that cancers have non-auto-induced causes, whether they be environmental
or infectious, then some form of clustering among cases should be expected. Indeed, the
National Cancer Institute cancer mortality maps [12] show that several cancers have a
regional prevalence distribution that is clearly nonuniform. So it is puzzling why more
clusters have not been discovered on a smaller geographic scale. In this paper, we suggest
that one possible reason current statistical techniques do not provide adequate evidence of
cancer clusters is that lengthy incubation periods combined with residential mobility render
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addresses at diagnosis almost non-informative as to where a disease causing exposure may
have occurred. We propose a test for global clustering that uses more informative address
histories, which has more power to detect the presence of possible disease clustering.

Disease clusters have been found in the past, and their detection has led to informative
results, especially regarding their etiologic explanations. The most famous of these has to be
the work by John Snow and his famous cholera study [13], but others have been found such
as the anthrax cluster located downwind of a Russian weapons factory [14]. The
investigators’ brilliant use of the correct addresses accounted for the ability to identify the
most likely cause of exposure, despite the official governmental pronouncements to the
contrary.

What these two successful cluster studies share is the immediacy of the disease; there is no
significant lag between the exposure and disease onset. When this lag time is extended, as
with some chronic diseases, cancers for example, the linkage may become more tenuous.
The substantial amount of time between a possible exposure and subsequent diagnosis,
combined with a mobile population, will mask the true spatial relationship between cases
and exposure. This is why we must incorporate the incubation period of the disease in our
calculations.

That is not to say that an anticipated effect cannot be studied in a prospective manner, no
matter how long the incubation period. For example, the survivors of the Hiroshima
bombing have been followed and their subsequent health studied [15]. So, as happened, an
increase in the incidence of leukemia was observed over several years; an association that
one would not attribute to chance; as defined in [10].

Another example in which a cancer’s long incubation period might have affected the
detection of an informative cluster is the group of young women with adenocarcinoma of the
vagina, in Boston, Massachusetts between 1966 and 1969[16]. Had the investigators just
focused on the cases presenting with disease and their recent exposures, the true relationship
may never have been found.

As most spatio-temporal analyses are performed to find a link between exposure location
and disease, typical surveillance data involve a time component, usually date of diagnosis,
together with a spatial component; usually some indicator of residence at the time of
diagnosis [9, 17]. However, critical information regarding the relationship between location
and disease would be the location where the exposure occurred, which is not always
collected, analyzed, known, or even considered. If we are interested in studying the spatial
patterns of a disease such as leukemia or breast cancer, the current locations of the cases
could be irrelevant to our study. According to census estimates, the median duration of
residence for Americans is 4.7 years. For children under 18 years old, the median duration
of residence is 3.8 years [18]. If there is a substantial lag between the exposure of interest
and the detection of this disease, then by using the address at diagnosis the spatial
relationship is usually lost. Recommendations published by the Mortality and Morbidity
Weekly Report remind investigators of the importance of accounting for the incubation
period of a disease when investigating clusters[19]. Following a meeting of national experts
with backgrounds in statistics, epidemiology and geography the council agreed that
residential history information is a crucial aspect in the analysis of cancer registry data [20,
21].

For example, the incubation period associated with mesothelioma has been estimated at
almost 40 years[22], and 20 years for breast cancer [23], thus those individuals who are
diagnosed with this disease, are likely to have been exposed decades prior to diagnosis. The
effects of this are two-fold. First, a large proportion of individuals exposed to asbestos, for
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example, are likely to have moved to other areas, adding additional cases to the background
rate and thus attenuating the contrast, and making subsequent signal detection that much
more difficult. Second, those cases currently living at the location of interest, are perhaps
unlikely to have been living there when their cancer causing exposure occurred.

We propose a novel method that summarizes the spatial and temporal distributions of a
group diagnosed with a chronic disease, and compares that distribution to the distribution of
controls. If the cases are distributed differently from the controls then an explanation of this
discrepancy is necessary. We seek to evaluate the relationships between cases using a
measure of distance between them that incorporates information specific to the disease of
interest. The additional information which we combine with the physical distances between
cases is the incubation distribution of the disease. The incubation distribution is the
probability distribution of the time between exposure and diagnosis. This in turn yields
information regarding the spatial relationships between the cases. We extend the M statistic
[8] to evaluate the significance of this new “distance” distribution, building on the work of
Sartwell, Armenian and Lillienfeld[24, 25, 26] to define and describe the incubation
distributions. This method attempts to answer the question, “Are the spatial distributions of
the cases and the controls the same?” This question can arise from evidence-based reports
from concerned citizens, or via routine collection and analysis of disease surveillance data.
If the the spatial distributions are not the same, then one can attempt to identify potential
clusters. We envision this method being used as a first step in the identification of a chronic
disease cluster.

While residential history collection may not currently be the norm in disease surveillance,
with the adoption of person based surveillance systems, and electronic health records, this
information will be compiled and more widely accessible in the near future. We feel it is
important to develop methods which utilize this information, both to lend weight to the
importance of its collection, and to be able to use this important information once collected.

2. The Incubation Distribution
The lognormal incubation distribution model has been tested for non-infectious, chronic
diseases by Armenian and Lillienfeld[26] who study incubation periods associated with six
neoplastic diseases. They find that the incubation periods for the neoplastic diseases also
closely follow the lognormal distribution. But, because there is no obvious “infection” time
involved with these chronic diseases, the authors define the incubation period as, “the
interval between exposure to an etiologic factor and the onset of symptoms or disease
detection.” In this paper, we refer to time from exposure to diagnosis as the incubation
period, though because this is a simulation study, one could easily replace ”address at
diagnosis” with ”address of symptom onset” and arrive at the same conclusions. Also, to
focus our discussion we refer to this first exposure as the time of the “disease causing
exposure.”

In addition to how to define the start of the incubation period, another difference between an
infectious disease and a chronic disease, is the question of a possible dose-response
relationship between the intensity of the exposure and the outcome. In [27], an early study of
skin tumors in mice induced by UV light exposure, the lognormally distributed incubation
period was observed, with no systematic variability due to either intensity or frequency of
dose, or age of subject. Lack of a dose-response relationship is also evident in the aftermath
of the atomic bomb drops in Hiroshima. While incidence of leukemia was influenced by
individuals’ proximity to the bomb site, there was no significant difference between the
incubation periods between distances considered close enough to the blast to be “exposed”
[15]. Other studies have shown similar relationships between the intensity of exposure, the
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incidence and the incubation period [28, 29]. More recently, researchers show that while
there is a strong positive dose-response between baseline alcohol intake and the risk of
breast cancer, including most recent alcohol intake diminished the relationship [23], which
may indicate the lack of an affect of cumulative exposure. Thus, for the remainder of this
work we assume that given a cancer is diagnosed, reversing time and looking back to
determine when the exposure occurred should not be affected by the distance from the
source, or intensity of the exposure.

3. Methods
3.1. Complete Residential History

To truly detect if cases of a disease cluster together, we need to measure the spatial
distribution of the cases at the moment of infection, or in the case of chronic disease, when
the disease causing exposure occurred. We can then compare this spatial distribution to the
distribution of a suitably defined control group, to look for differences in the two
distributions. Unfortunately, in practice we fall short in two ways: (i) we do not know when
the disease causing exposure occurred, and (ii) as a result, we do not measure the spatial
distribution accurately.

Suppose our data consist of N individuals, with each individual having a residential history:
person i lived at location Aik for a duration of Pik, k in 1, …, ni and i in 1, …, N. We scale
the durations such that Σk Pik = 1, and consider Pik as the proportion of time person i is
living at location Aik. The set  = {(Ai1, Pi1), (Ai2, Pi2), …, (Aini, Pini)} is the complete
residential history of individual i.

To overcome the problem of not knowing which address is the informative location, we can
weight each known addresses by the relative probability that it is the address of exposure. A
naive approach might be to use a uniform prior; i.e. weight each address by the length of
time resided at that address, given above as Pik. A more refined approach, which we suggest,
is to define each weight as the probability of that address being the address of exposure. We
use the incubation distribution to estimate these probabilities. With this approach, each
address for a given case has attached to it, the probability that the disease causing exposure
occurred at that location. Let Cik be the incubation based weight, which we can calculate as
Cik =∫Aikf(t)dt, k = 1, …, ni, where f(·) is the density function for the estimated incubation
distribution, and integrating over Aik is to be taken as the integral over the period of time
individual i lived at address Aik. Following the work of Sartwell, Armenian, and Lillienfeld
[25, 26, 30], we use the lognormal distribution to model the incubation distribution.

For each individual in our study population, we have a set of addresses, and each address
has an associated weight. We use these addresses and weights to summarize the difference
between the spatial locations of the cases and the controls, by examining the distribution of
the distances between the cases and the distribution of the distances between the controls. To
test the difference between the spatial distributions of the cases and the controls, we use an
adapted form of the M-statistic [8]. The M-statistic is a nonparametric test that quantifies the
difference between two sets of locations by examining the differences of the distributions of
the distances between those locations. The distances between the locations are called the
interpoint distances, and the distribution of these distances is the interpoint distance
distribution. The M-statistic has typically been used to summarize differences based on
Euclidean distances, but in this work, we generalize this statistic to handle a new distance
metric.

Specific to chronic illnesses, such as leukemia or breast cancer, we formulate a distance
metric that has power to detect a point-source environmental exposure. This point-source
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could be a contaminated well (as in the cholera outbreak), or a source of aerosolized release
(as in the anthrax cluster). In those settings, we are concerned with the spatial proximity
between cases more so than with their temporal proximity. Consider the John Snow Cholera
setting: it is informative to know that two people visited the same well, not necessarily that
those two people visited at the same (or different) times. If two cases happen to occupy the
same residence but at different times, we are still interested in this spatial relationship. For
this reason, the metric we choose to consider is the ‘all possible distances’ measure. This
metric weights the physical distances between individual’s locations by the time each person
spends at each respective address.

We represent this random distance between individuals i and j by the random variable Dij
whose distribution we define as,

where d(X, Y) is the Euclidean distance between locations X and Y. Although we use the
Euclidean distance, if the scale of the study region is especially large, other distances such as
the Harvesine distance can be used [31]. Summarize this non-negative random variable, Dij,
by constructing its distribution function Fij (·). The steps of Fij are at the possible distance
values and the step sizes are determined by the probability associated with those values.
Thus the cumulative distribution function for the random variable representing all possible
distances between individuals i and j is given by,

(1)

where 1(X) is the indicator function, with values 1 if X is true, zero otherwise. Once we

calculate each distribution function corresponding to the  pairs of individuals, we
define the overall empirical distribution function for our sample as,

(2)

where scaling by  ensures that F(+∞) = 1 and F(·) is thus a proper distribution
function.

This summary measure associated with the spatial distribution is not usually invertible (it is
translation and rotation invariant) and thus does not uniquely identify the contemporaneous
spatial distribution, but it does have advantages: One, a general advantage, is that it is
univariate and thus much easier to manipulate and comprehend. Two, it has been shown to
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be powerful in detecting the presence of clusters[32, 33, 8]. And, three, it lends itself easily
to the problem at hand when we actually do not know with certainty which address we wish
to consider. The details of the proposed method follows.

3.2. Incomplete Residential History
Consider a situation where individual i has the complete residential history , as above, but
the data consist of only a subset of these values. Let the subset be

 where mi < ni.

In this situation, the property ΣkCik = 1 no longer holds, instead ΣkCik = pi, the proportion of
the residential history known for individual i. The individual CDFs, Fij (·), are constructed in
the same manner as outlined in Section 3.1, except now Fij (+∞) = pi pj. When we sum

across the  CDFs, the resultant function F is such that F(+∞) = Σij pi pj. To obtain a
proper empirical CDF (ECDF), the increment of the step function that the missing
information would have contributed must be appropriately accounted for.

This missing information is analogous to a censored observation in the survival setting.
However, with right censored survival times, the minimum time is known (the time at which
the observation is censored) and the maximum likelihood solution, as shown in [34],
distributes the observation’s mass equally to all remaining event times greater than the
censoring time. Here, in the distance based setting, there is no directional information
regarding the missing distances, therefore we distribute the missing distance’s mass equally
among all observed distances. Thus, we assume a missing distance is equally likely to be
any distance which we observe. In practice, this is achieved by a proper scaling factor
applied to F,

(3)

and thus F(·) is now a proper distribution function. In the complete residential history

setting, . Note that this method of scaling F is not equivalent to scaling
each Fij individually, as we use all observed distances to determine the proper weighting
factor.

4. Constructing the two-sample test statistic
Suppose the data consist of the N couplets, ((X1, G1), (X2, G2), …, (XN, GN)), where Xi =
{(Ai1, Ci1), (Ai2, Ci2), …, (Aini, Cini)} and Gi is a group indicator variable with values, Gi =
1 if subject i is in Group 1 and Gi = 0 if subject i is in Group 2. Let N1 and N2 be the number
of subjects belonging to Group 1 and Group 2, respectively. The cumulative distribution
function corresponding to the distance between individuals i and j is given by Fij in Equation
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1. If there is a relationship between location and disease, then we expect the distribution
function of the interpoint distances between the cases to be different from the distribution
function of the interpoint distances between the controls.

To compare two distribution functions, we first select a vector d = (d1, d2, …, dm), spanning
the range of observed values of the weighted distances between individuals. We then define
two vectors, F̂j (d) = {F̂j (d1), F̂j (d2), …, F̂j (dm)}, j = 1, 2, to construct the test statistic,

(4)

where  is the generalized inverse of the estimated covariance matrix for the weighted
distances.

Note that (F̂1 − F̂2) is indeed a U-statistic[35], and thus will allow us to appeal to the
appropriate asymptotic results[36], to define the covariance between F̂1 and F̂2 evaluated at
any two interpoint distances, da, db as

Where φg(m, n, p, da, db) =Σi,j,k,l(Cmi Cnj Cmk Cpl 1d(Xmi, Xnj) ≤ da, d(Xmi, Xpk) ≤ db |Gm =
Gn = Gp = g).

This test is analogous to a χ2 goodness-of-fit test, where the choice of the vector d represents
the binning of the data. For a more complete discussion of the bin selection procedure, see
[33]. When the interpoint distance distribution of the cases differs from the distribution of
the controls, MR will have larger values. To calculate a p-value, one could rely on the
asymptotic theory available from U-statistic theory, or generate the null permutation
distribution for MR using the random labeling hypothesis and randomly switching the case
and control status of the subjects in the sample[37].

We also note the simplifying assumptions made in the construction of this test statistic. In
this paper a common incubation distribution is considered for each individual. While this
assumption may not be ideal in practice, modeling a different incubation distribution for
each subject is a straightforward extension, as this distribution just influences the weights
assigned to each address. For example, one could parameterize the incubation distribution
and introduce personal covariates for each individual. We also assume uniformity of
exposure conditions through time. If there is a clustering mechanism, such as a point-source
of exposure, then this assumption means that mechanism will be present throughout the
study. This assumption will often be satisfied when studying patients diagnosed within a
relatively short time of each other. We also note that calendar time does not enter into our
model, as each person’s time origin is their time of diagnosis.

4.1. Properties of the test statistic
Incorporating weights into the residential histories through the incubation distribution results
in greater power for the M statistic to detect a difference between F1(·) and F2(·), than
simply using the address at diagnosis.
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Proposition 4.1 (Increased weight)—On average, the weighting scheme which
accounts for residential history will give more weight to the address of exposure than the
method which only uses the address at diagnosis.

Proof: For each case i = 1, …, N1, let {(Ai1, Ci1), …, (Aie, Cie ), …, (Aini, Cini)} be the
complete residential history, where Aie is the address of exposure, and Cie is the
corresponding weight given to that address. Note, if the address at diagnosis is in fact the
address of exposure, then e = ni. Considering only the address at diagnosis is equivalent to
forcing Cini = 1.

When considering only the address at diagnosis, the expected weight given to the address at
exposure, Cie, is equal to the probability that the address of exposure is also the address at
diagnosis. Let t* be the time at which the exposure occurred, and t be the duration of
residence at the address at diagnosis, Aini, which we assume follows an exponential
distribution, with mean λ. The expectation of the weight given to the address of exposure is
then,

Assuming t* ~ LogNormal(μ, σ) gives the form of f(t*), and allows us to evaluate this
probability for a given set of parameters, μ and σ. We call this expectation, .

Using the residential history weighting scheme outlined above, we can calculate the
expected weight given to Aie, and compare this to . Using the residential history
method, the expected weight each address is given is defined as the probability that the
exposure occurred at that address, E[Cik] = Pr{Aik = Aie}. Thus, under this scheme, E[Cini]
= Et*[P (t ≥ t*)], which is equivalent to the expected weight from the method only
incorporating the address at diagnosis. So, if the exposure occurred at the address at
diagnosis, the expected weight given to that address, E[Cini], is the same in both methods.

However, if Aie is not the address at the time of diagnosis, then the address at diagnosis
method will result in Cie = 0, whereas the residential history weighting method will still
assign a non-negative weight. Thus, the residential history weighting scheme will always
result in the address at exposure having an expected weight that is greater than or equal to
the expected weight resulting from the address at diagnosis method.

Proposition 4.2 (Increased power)—Assuming a constant covariance matrix for the
different weighting schemes, the M statistic which accounts for residential history will have
more power to detect a difference between the distributions of the cases and the controls.

Proof: Assume that each case in our study population was exposed to a causative agent at
exactly one location in their residential history, then the interpoint distances described by
F̂1(·) come from three possible categories: (i) the distances between two addresses of
exposure, (ii) the distances between one address of exposure and one non-exposure address,
and (iii) the distances between two non-exposure addresses. Because we expect the
clustering to only occur among the addresses of exposure, the third group of distances,
should be indistinguishable from the interpoint distance distribution for the controls,
estimated by F̂2(·). By examining how each category of interpoint distances contributes to
F̂1(·), one can compare the performance of the proposed test statistic under two different
weighting schemes.
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Let us decompose F̂1(·) into a mixture of , the distribution from interpoint distances (i)
and (ii), and F̂2(·), as

We can expand the M statistic as,

Larger values of α result in larger values of M. Because , larger values of M
result in increased power to reject the null hypothesis. From Proposition 4.1, we see that the
incubation based weighting scheme gives increased weight to the correct address, which in
turn, increases α, thus yielding greater power.

Despite our simplifying assumption of a constant covariance matrix in Proposition 4.2, all of
the simulations presented in the following section are consistent with both of these results,
even when the covariance matrix does vary.

5. A Simulation Study
To assess the validity and performance of our proposed methods in controlled situations, we
simulate case control data with complete residential histories. The design of the current
simulation gives us control over several important factors. First, we decide on the source(s)
of exposure, as well as a radius of influence of exposure for each source. Second, we control
the percent of cases whose infection we attribute directly to these point-sources (to vary the
strength of the signal in the noise), and these in turn determine the magnitude of the cluster.
Third, we control the residential mobility, imposing a model on the number of years the
subjects spend at each address throughout the designated time span, as well as the total
length of time for which we keep a history.

For the results presented, we simulate situations with both one and two point-sources located
in the unit square, our study region. We impose an exposure radius of 0.1 units around each
point-source. This exposure radius defines which cases are part of the clusters. Of the Nc
cases generated, we designate a proportion p of these cases as “exposed cases”, meaning that
these individuals are part of a cluster induced on the background population, the signal in
the noise, the remainder of the cases are part of the background. We vary the proportion of
cases considered to be exposed: p = {0.00, 0.10, 0.25, 0.35, 0.50, 0.75, 1.00}. Each of the
pNc, “exposed cases” are guaranteed to have at least one address from their residential
history located within the exposure radius of a point-source: this is our definition of an
“exposed case”. The remaining (1 − p)Nc cases may have an address within the exposure
radius as well, but are not part of the cluster. These would be the naturally occurring
background cases. A control may also have an address within the exposure radius, but never
develop disease.

For both the one-source and two-source settings, we generate individual residential histories
under two scenarios. To study the influence residential mobility has on our statistic, we vary
the mean number of moves per year, m, from m = 0.25 (roughly corresponding to an
estimated median duration of residence of 3.8 to 4.7 years, the current mean in the United
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States) to m = 0.10 (to model the effect on less mobile populations). The length of time each
individual spends at each address is modeled as a Poisson process where the inter-arrival
times are distributed exponentially with mean μ = 1/m. Using a 20 year history length, we
generate a set of ni times, Ti = {Ti0, Ti1, …, Tini} for each individual, i = 1, …, N. These ni
times represent when an individual’s address changes.

An address for each time in an individual’s residential history, is randomly generated on the
uniform square. Though we assume a homogeneous population density, the M-statistic is
effective at identifying the presence of clustering in situations involving heterogeneous
population structures [38]. Here we make the simplifying assumption of a closed population
with no movement into, or out of, the study region. Thus the address history for individual i
is listed as Ai = {Ai1, Ai2, …, Aini }, where Aij = (xij, yij), the coordinates of address Aij. If
individual i is an “exposed case,” then one of these addresses will be guaranteed to be
located within the exposure radius of a point-source. This guaranteed address is selected
according to the incubation distribution we use in this simulation, and the address location is
randomly generated within the exposure radius of the point-source.

Consider an incubation distribution, lognormally distributed with a median of 6.4 years and
a dispersion factor of 1.71 years, the estimates from a leukemia study presented by Court
Brown and Doll [39]. To determine which address will be the “exposed address” we use
multinomial selections with probabilities associated with picking each address equal to the
weights under the incubation distribution, Cik. For the example, if the residential history of
individual i is comprised of three addresses, we would select the cluster address based on a
realization of the multinomial random variable taking the values (Ai1, Ai2, Ai3) with the
respective probabilities (Ci1, Ci2, Ci3). Using the multinomial distribution to select which
address should be restricted to a cluster site insures that the method of weighting by the
incubation distribution is being evaluated fairly.

In practice, cluster investigations are not conducted on an on-going basis, but are generally
only performed when there is sufficient cause for alarm, often when a concerned citizen
notices an abundance of cases within a close proximity to each other. We also consider the
power of using the incubation weighted residential histories versus just the address at
diagnosis in these potential cluster situations, to further examine the benefit of incorporating
this additional information. We define two distinct potential cluster situations, both
determined by the spatial distributions of the cases’ addresses at diagnosis, and simulated in
the single point-source setting.

In summary the process described above simulates a closed sample of cases and controls on
the unit square. Each individual in the sample has a random number of addresses, and
spends a random amount of time at each address. Of the simulated cases, a proportion of
them, which we vary, are guaranteed to have at least one address in their residential history
located within a pre-specified radius of a point-source of exposure. Our simulation varies the
parameters governing the average length of time an individual lives at an address, and the
percent of the cases considered exposed. We present the performance of the weighted M-
statistic under these different scenarios. We compare the performance of the incubation-
weighted M-statistic to the performance of the M-statistic in the currently more accepted
situation when one simply uses the address at the time of diagnosis (as is done in [8], for
example).

To further demonstrate the information contained in the residential histories, we also
calculate a uniformly-weighted M-statistic. This uniform-weighted M-statistic is constructed
similarly to the incubation-weighted M-statistic, except each address in an individual’s
residential history is given weight proportionate to the corresponding residential duration.
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This statistic is useful in situations where residential addresses are collected, but the
incubation distribution is unknown. Thus we consider the three weighting schemes: (i)
known incubation distribution based weights (fully informed), (ii) uniform weights (partial
information), and (iii) address at diagnosis (uninformed).

6. Simulation results
We present the results of several simulations, each of which are considered at the α = 0.05
significance level. For each scenario described, we create a null distribution for the M-
statistic, which is calculated by randomly permuting the case/control status of the
individuals in the data set, following the method presented in [37]. A test is considered
significant when the value of the M-statistic obtained is greater than the 95th percentile of
the null distribution. First, consider the situation where a single point-source is generated on
the unit square, and the population has an average residential duration of 4 years, m = 0.25.
Figure 1, top left, shows the dramatic gain in power one achieves by incorporating
residential histories, through the incubation based weighting scheme, compared to simply
using the address at the time of diagnosis. Because this population is so mobile, using the
address at diagnosis time results in a power level which is only marginally better than the
type-1 error rate as the percentage of cases exposed, p, reaches 100%. Clearly, as an
individual’s number of addresses increases, the chance that the exposure occurred at the
address of diagnosis decreases.

Next, we examine the one point-source scenario on a less mobile population, with an
average residential duration of 10 years, m = 0.10, in Figure 1, top right. We see that in the
less mobile population, that as the proportion of cases exposed approaches 1, the power
when using the address at diagnosis also reaches 1, but at a much slower rate and in fact, the
method incorporating incubation based weights results in higher power for all p > 0.

When we consider two point-sources of exposure, the results are similar to the single point-
source setting. From Figure 1, bottom left, we see that in a more mobile population, when m
= 0.25, the power of the address at diagnosis method hovers at the alpha level for all values
of p. However, the power of the incubation based weights method rises sharply with p,
dominating the address at diagnosis method. When m = 0.10, again with two point-sources,
Figure 1, bottom right, shows that the incubation based weighting scheme is consistently
more powerful. These four figures give evidence of the potential power gains when the
residential history is incorporated into the M-statistic to test for differences between two
spatial distributions.

In the scenarios we investigate, the power curves for the uniformly-weighted M-statistic are
bounded above by the incubation-weighted statistic and below by the address-at-diagnosis
method, with the exception of the 10 year duration, single point-source setting. In this
situation, the uniformly-wieghted M-statistic power curve lies approximately on top of the
power curve for the incubation-weight scheme.

In the first potential cluster scenario, we perform both tests when at least eight of the 100
cases have addresses of diagnosis within a distance of 0.1 units of each other. From the
results of this subset of tests, which are shown on the top row of Figure 2, we see slight
power gains for the standard address at diagnosis tests. While one would expect to observe
power gains for the address at diagnosis test, the incubation weighting scheme still
dominates.

In Scenario 2, we only test for spatial differences when ten or more cases reside at addresses
within 0.1 units of each other at the time of diagnosis. We present the results of these tests
on the bottom row of Figure 2. Again, while there are slight gains for the address at
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diagnosis method, the incubation weighted statistic still outperforms it. It is clear from these
power comparison plots that, even in these circumstances, the residential history and the
incubation distribution are crucial factors in the detection of the imposed clusters. Even
when one only investigates if an alarm is raised, here defined as either eight or ten cases
within a 0.1 units of each other, the conventional test underperforms our proposed test.

7. Discussion
We argue that using the location at the time of diagnosis, though informative for a disease
with a short incubation period, is much less desirable when considering diseases that have
long incubation periods. Most cancers, for example, have long incubation periods and
combining that with the relatively brief time that the average American resides in their
residence, might contribute to why we have not been successful in describing the obvious
non-uniform geographical distribution of cancer cases. To overcome this predicament we
propose a method for the incorporation of residential history into existing methods to detect
the difference between two sets of spatial data, with an eye to disease surveillance. The
information contained in a subject’s residential history can readily be incorporated into the
distance based framework of the M-statistic. The inclusion of residential history allows an
investigator to more accurately assess spatial differences between affected populations and
background populations when the disease of interest may have a long incubation period.
These methods are also useful in situations involving mobile populations, where despite
short lag times, the address at exposure may be different from the address at diagnosis. This
method can also be extended to stationary populations, where individuals remain at the same
address but visit several locations throughout a day–such as work address, home address,
gym address, etc.

Through several simulations, we demonstrate the power gains possible from using the
methods presented. As expected, across all the studied scenarios, the tests that incorporate
incubation based weights outperform the tests that rely solely on the address at the time of
diagnosis. The effects of residential mobility and the incubation distribution of the disease of
interest are significant factors in the detection of spatial differences between study
populations, especially when dealing with a disease with a long incubation period. Even
when the tests are only performed in situations with cause for alarm, the incubation
weighted statistic is much more powerful. This adds evidence to the importance of
collecting (as suggested by the CDC [40]), and using, residential history when attempting to
study the relationships between exposure and chronic disease. The performance of the
uniformly-weighted statistic serves to further enhance the argument that residential histories
must be collected to gain a more complete summary of exposure, even in the situation where
an incubation distribution is unknown.

Enhancing cluster modeling by accounting for residential mobility has begun to appear in
the literature. Jacquez et al. and Meliker et al. present a k-nearest neighbor method for
incorporating residential histories and exposure traces [41, 42]. Their work concentrates on
combining nearest neighbor statistics over varying exposures. Han et al. use kernel density
estimation methods to identify clustering of breast cancer using residential histories [43].
Sabel et al. examine clustering of Amyotrophic Lateral Sclerosis in Finland based on place
of birth and place of death [44]. Gallagher et al. use residential history to asses the affect of
drinking water exposure to breast cancer [45], by examining any previous address where a
study participant was exposed to public drinking water impacted by wastewater. In this
work, we include a model for the incubation period distribution to assign weights to all
available addresses in the residential history. We prefer to look at the spatial distribution in
this manner because it incorporates the likelihood of the time when the disease causing
exposure occurred via the incubation distribution.
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We have made several simplifying assumptions. We assume a single-hit model for the
exposure, similar to the Hiroshima example. This has allowed us to consider the incubation
period as starting at a single time point. However, this assumption can be relaxed by
convolving the incubation period distribution with a specific disease’s exposure curve.
Similarly, we have used the work of [27, 15, 28, 29] to justify our assumption of the
independence of exposure intensity and incubation period. One could remove this
assumption by allowing different incubation period distributions for different subjects,
determined by each specificc exposure history. One could relax both of these stated
assumptions simultaneously, and allow differential exposure intensities to affect the course
of disease development. Also, within each presented simulation, we assume a constant
residential mobility processes. In actuality, residential mobility is affected by several factors
such as age, socio-economic group, and population density [18]. However, we feel this work
shows that incorporating both residential histories and incubation period distributions, even
in these simplified settings, is a worthwhile practice.
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Figure 1.
Power curves for simulations of 100 cases and 100 controls on the unit square. Top left and
top right assume a single point-source. Bottom left and bottom right assume two point-
sources. Top left and bottom left assume an average residential duration of 4 years. Top
right and bottom right assume an average residential duration of 10 years. These plots
present the power curves for the M-statistic using the incubation based weighting system (–
●–) compared to the M-statistic with uniform weights (–·◆–·)and the M-statistic using just
the address at diagnosis (–▲–).
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Figure 2.
Power curves for simulations of 100 cases and 100 controls on the unit square, assuming one
point-source. Plots on the left assume an average residential duration of 4 years, while the
plots on the right assume an average residential duration of 10 years. We only test for a
difference between the cases and the controls when we have a large enough signal to sound
an alarm. For the top row of plots, we define that signal as 8 cases within 0.1 units of each
other, while with the bottom row of plots we define that signal as 10 cases within 0.1 units
of each other. Power of the M-statistic using the incubation based weighting system is
plotted as (●), power of the M-statistic using address at diagnosis is plotted as (▲). The
solid lines (—) represent the calculated power for all simulations, while the dashed lines (– –
–) represent the calculated power for those simulations with N cases (N= 8 or 10) within 0.1
units of each other.
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