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Purpose: To determine whether the co-injection of extracellular matrix degrading enzymes improves retinal transduction
following intravitreal delivery of adeno-associated virus-2 (AAV2).
Methods: AAV2 containing cDNA encoding enhanced green fluorescent protein (GFP), under the control of a chicken
β-actin promoter, was delivered by intravitreal injection to adult mice in conjunction with enzymes including collagenase,
hyaluronan lyase, heparinase III, or chondroitin ABC lyase. Two weeks later, retinal flatmounts were examined for GFP
expression using confocal microscopy.
Results: Without the addition of enzymes, transduction was limited to occasional cells in the retinal ganglion cell layer.
The addition of heparinase III or chondroitin ABC lyase greatly enhanced transduction of the retinal ganglion cell layer
and increased the depth of transduction into the outer retina. Hyaluronan lyase had a limited effect and collagenase was
ineffective. Electroretinograms survived with higher concentrations of heparinase III and chondroitin ABC lyase than
were required for optimal retinal transduction.
Conclusions: AAV2-mediated retinal transduction is improved by co-injection of heparinase III or chondroitin ABC
lyase. Improved transduction efficiency may allow intravitreal injection to become the preferred route for delivering gene
therapy to both the inner and outer retina.

To date, adeno-associated virus (AAV) has been the most
effective vector for retinal gene delivery because it elicits
minimal immune response and can mediate long-term
transgene expression in a variety of non-dividing retinal cell
types. AAV is a nonhuman pathogen of the Parvoviridae
family possessing a single-stranded DNA genome (4.7 kb)
with two open reading frames, rep (for replication) and cap
(encodes capsid proteins), flanked by two symmetric inverted
terminal repeats. Recombinant AAV vectors are generated by
replacing rep and cap with the required cDNA [1].

The prototype and the most studied AAV is serotype-2
(AAV2). This has been used in clinical trials, with very
encouraging results, to treat Leber congenital amaurosis by
transducing the retinal pigment epithelium with RPE65 cDNA
[2-4]. In addition, a variety of other AAV serotypes and hybrid
forms have been shown to be capable of retinal transduction
[1,5]. In most studies to date, subretinal injection has been
used to deliver AAV to the retina.

This delivery method creates a temporary separation bleb
between the neurosensory retina and the retinal pigment
epithelium, providing gene delivery to neighboring cells.
Intravitreal delivery has potential advantages over this
subretinal approach because it is less technically challenging
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and is less prone to complications, particularly through
surgical manipulation of thin degenerating retinas, which may
cause retinal hemorrhage, tear or detachment. Furthermore,
the intravitreal approach can potentially deliver more
widespread transduction across the retina when compared to
localized subretinal blebs.

Intravitreal injection has been used to transduce retinal
ganglion cells and bipolar cells, but at present this approach
produces relatively low efficiency retinal transduction. One
potential limit to the efficacy of intravitreal viral injection
stems from the physical barriers formed by the vitreous,
internal limiting membrane (ILM), retinal extracellular matrix
(ECM), and cell surface proteoglycans. The vitreous, ILM,
and retinal ECM all contain glycosaminoglycans (GAGs),
while the vitreous and ILM contain collagens. The vitreous is
a highly hydrated ECM that contains GAGs and a low
concentration of collagen fibrils [6]. The predominant GAG
in vitreous is hyaluronan (HA), but it also contains small
amounts of chondroitin sulfate proteoglycans (CSPGs). The
ILM contains a basement membrane called the internal
limiting lamina (ILL); this is a sheet-like extracellular matrix
containing type IV collagen, laminins, nidogen-1 and 2, and
heparan sulfate proteoglycans (HSPGs) that include type
XVIII collagen, perlecan, and agrin [7]. The neurosensory
retina contains chondroitin and heparan sulfate proteoglycans,
but a mouse retina does not contain HA [8,9]. Cell surface
heparan sulfate proteoglycans are present in the retina,
particularly on the neurites of neuronal cells. Chondroitin
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sulfate proteoglycans are present in the ILM, in the nerve
fiber-rich layers of the retina, which include the inner and
outer plexiform layer, and in the interphotoreceptor matrix
(IPM) [8].

We hypothesized that enzymatic degradation of collagen
or specific GAGs would increase retinal transduction
efficiency with AAV2. We therefore tested the efficacy of co-
injecting extracellular matrix degrading enzymes with AAV2
into the mouse vitreous on retinal expression of a reporter gene
(enhanced green fluorescent protein; GFP) contained within
the viral vector. We found that both heparinase III and
chondroitin ABC lyase markedly improved the efficiency of
retinal transduction.

METHODS
Experimental animals: All animal experiments were
conducted in accordance with the UK Home Office
regulations for the care and use of laboratory animals, the UK
Animals (Scientific Procedures) Act (1986), and the ARVO
Statement for the Use of Animals in Ophthalmic and Vision
Research. Adult Opn4-/+ and wild-type C57BL/6J mice were
used for all studies. All mice were kept under a 12 h:12 h light-
dark cycle and were given free access to food and water.
Generation of rAAV vectors: The vector, rAAV serotype 2
(rAVETM), expressing GFP under the control of a chicken
β-actin promoter (AAV-2.CBA.eGFP) was obtained from
Genedetect, Auckland, New Zealand.
Enzymes and dilutions: The following enzymes, all obtained
from Sigma-Aldrich (Dorset, UK), were used: high purity
bacterial collagenase (from Clostridium histolyticum, Type
VII); hyaluronan lyase from Streptomyces (E.C. 4.2.2.1),
which has a high specificity for hyaluronan; Chondroitin ABC
lyase (E.C. 4.2.2.4), which cleaves chondroitin and dermatan
sulfates and has some activity against hyaluronan; and
Heparinase III (E.C. 4.2.2.8) which selectively cleaves
heparan sulfates. All enzyme solutions were made fresh on
the day of injection by dissolving the enzymes in sterile
phosphate-buffered saline (PBS).
Intravitreal injections: Prior to intravitreal injections, mice
were anaesthetized with isoflurane. One drop of 1%
proxymethocaine was applied topically to each eye as a local
anesthesia. A fine glass micropipette connected to a 5 μl
Hamilton glass syringe was passed at the equator through the
sclera and into the vitreous cavity, carefully avoiding the lens.
Each eye received two injections with a combined volume of
0.5 μl. The injections were administered slowly over
approximately one minute. The first injection, containing
0.25 μl of 1×1012 genomic particles/ml of AAV-2.CBA.eGFP
diluted at a ratio 1:5 with PBS (i.e., 5×107 genomic particles),
was followed immediately by a second 0.25 μl injection of
PBS containing either zero or varying amounts of enzyme.
Post procedure buprenorphine (0.1 mg/kg) was administered
subcutaneously for analgesia.

Electroretinography: Retinal function was evaluated 2 weeks
after intravitreal injection of 800 or 1,600 units of chondroitin
ABC lyase or heparinase III in 6 mice. Both dark- and light-
adapted electroretinograms (ERGs) were recorded. Briefly,
mice were dark adapted overnight and anesthetized with an
intraperitoneal injection of a mixture of ketamine (75 mg/ml,
10%) and xylazine (13.6 mg/ml, 20%). The mice were placed
on a heating pad during the procedure to maintain body
temperature. Pupils were dilated with 1% tropicamide. A gold
wire loop electrode was placed on the surface of the cornea.
A reference electrode was inserted into the left cheek, a
differential electrode was placed under the skin on the
forehead, and a neutral electrode was inserted subcutaneously
near the tail. Electrical signals were amplified using an
amplifier with 104× gain and a bandwidth of 0.1 to 1 kHz (–
3 dB points). Signals were digitized at a rate of 5.12 kHz. ERG
signals were averaged three to six times to reduce noise.
Retina flatmounts: Two weeks after injection, the mice were
euthanized and their eyes were then enucleated and fixed with
4% paraformaldehyde (PFA) for 1 h at room temperature. The
lenses were removed anteriorly under a light microscope. The
aphakic eyes were immersion-fixed in 4% PFA overnight at
4 °C and then washed with PBS. The entire retinas were
carefully dissected from the eyecup under a light microscope,
blocked with PBS containing 0.5% Triton X-100 for 1 h, and
were washed again with PBS buffer. To make flatmounts, the
retinas were mounted on glass slides, making four radial cuts
from the edges to the equator of the retina. A drop of
Vectashield (Vector Laboratories Ltd., Peterborough, UK),
containing DAPI stain, was applied before coverslips were put
in place.
Cryosections: Two weeks post intravitreal injection, the mice
were euthanized and their eyes were enucleated. The cornea
and lens were removed anteriorly under a light microscope
and tissue was fixed with 4% paraformaldehyde (PFA) for 2–
3 h at room temperature. The eyecups were then washed in
PBS and immersion-fixed overnight in 30% sucrose in PBS.
Eyes were then embedded and frozen in an optimal-cutting
temperature medium (Raymond A Lamb Ltd.,
Eastbourne,UK). A cryostat was used to obtain 5–10 µm
sections. These sections were mounted on a glass slide and a
drop of Vectashield (Vector Laboratories Ltd., Peterborough,
UK) containing DAPI stain was applied before coverslips
were put in place.

Microscopy: Flatmounts were examined using a Leica SP5
inverted confocal laser scanning microscope (Argon 405
20%) with a 63× oil-immersion objective. To quantify GFP
expression, serial optical z-sectioning was performed over an
area of 0.056 mm2 on retina flatmounts and through the full
thickness of the retina. All images were taken under identical
conditions of laser intensity, brightness, and contrast. For
analyses of total fluorescence within a given portion of retina
the captured stacks of images were collapsed over the z-axis
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into confocal projections using Leica Microsystems LAS AF
software. These z-sectioned constructs were then processed
using ImageJ Software (downloaded from National Institutes
of Health website).

Briefly, GFP fluorescence intensity was quantified in
pixels per area for each section in a confocal stack. The total
intensity was then summed for each stack. Low level, diffuse,
endogenous background fluorescence was variably present in
the sections in the confocal stacks, which had a distinct
appearance from the fluorescence observed in GFP
transduced cells. Therefore, the threshold was adjusted for
each z-construct to exclude this non-specific background
fluorescence. To ensure equal starting plane depths, the retinal
tissue surface (vitreal side) was first focused by using plain
field light microscopy, and by then switching to the confocal
laser channels. For initial assessments of enzyme activity, four
randomly chosen sites in the mid-periphery of the retinal
flatmounts were analyzed (Figure 1A); for enzyme dose–
response curves, ten evenly spaced samples in a straight line
across the retina, which were centered upon but avoided the
optic nerve head, were analyzed (Figure 1B).

Retinal cryosections were analyzed under an Olympus
BX51 upright microscope using a 20×/0.30 Plan Fln objective
and captured using a Coolsnap ES camera (Photometrics,
Tucson, AZ) through MetaVue Software (Molecular Devices
Ltd. Wokingham, UK). Specific band pass filter sets for Texas
Red (to identify endogenous fluorescence), DAPI (to analyze
nuclei), and FITC (to analyze GFP expression), were used to
prevent bleed through from one channel to the next. Images
were then processed and analyzed using ImageJ.

Statistical analysis: Twelve eyes were injected for the initial
evaluation of each enzyme (three eyes per enzyme
concentration) and four random retinal areas per eye were
analyzed by measuring total fluorescence in collapsed z-
stacks. Geometric mean fluorescence intensity with a 95% CI
was calculated for each enzyme concentration. Data are
presented as the percentage GFP intensity of the specified
enzyme concentrations compared with the control group (0
units - i.e., AAV-2.CBA.eGFP with no added enzyme).
Differences between groups were evaluated using one-way
ANOVA followed by Dunnett’s post-test in GraphPad Prism.
Significance was set at p<0.05.

For enzyme dose–response curves (chondroitin ABC
lyase and heparinase III), three eyes were injected per enzyme
concentration and 10 retinal areas per eye were examined as
described above (Figure 1B). The geometric mean (geomean)
of these repeated measures was then calculated for each eye
to estimate the fluorescence for subsequent analysis and
presentation.

RESULTS
Glycosidic enzymes enhance retinal transduction:
Collagenase, hyaluronan lyase, chondroitin ABC lyase, and
heparinase III were coinjected with AAV2.CBA.eGFP and
retinal fluorescence was analyzed using confocal microscopy.
As expected, the low dose of the AAV2 used (5×107 viral
particles) produced patchy, low intensity fluorescence in the
retina, which is indicative of limited GFP expression (Figure
2). Collagenase treatment resulted in decreased GFP
expression compared to AAV2 alone (Figure 2A). All of the
other enzymes tested drove an increase in GFP expression

Figure 1. Schematic representation of
the methodology used to quantify GFP
expression in mouse retina flatmounts.
Confocal z-sectioning (serial optical
sections) was performed in areas of
238×238 μm at 1 μm intervals through
the depth of the retina. All images were
captured under identical conditions of
laser intensity, brightness and contrast.
Slice image stacks were collapsed over
the z-axis into confocal projections
using Leica Microsystems LAS AF
software and processed with ImageJ
software to measure the total (GFP
mediated) fluorescence in pixels per
area through the retinal depth. For initial
analyses of enzymes efficacy, an area
was selected at random in the mid-
periphery of each quadrant (A), and for
dose–response curves ten areas were
selected along a randomly chosen
straight extension across the retina (B).
All analyses were conducted blind to the
amount of enzyme used.
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(Figure 2A). The least effective was hyaluronan lyase, which
nonetheless resulted in a 20-fold increase in retinal
fluorescence at a dose of 100 units compared to the virus alone
and extended the fluorescence signal to cells deeper in the
retina and with more diverse morphology. The two other
glycosidic enzymes, chondroitin ABC lyase and heparinase
III, produced an even greater enhancement in retinal
transduction. Chondroitin ABC lyase resulted in a 40 fold
increase in fluorescence at 50 units, a 65 fold increase at 100
units, and a 150 fold increase at 200 units. Similarly,
heparinase III treatment at 50 units resulted in approximately
a 20 fold increase in AAV2 transduction, with a 50 fold
increase at 100 units, and a 150 fold increase at 200 units. The
chondroitin ABC lyase and heparinase III treatments (Figure
2B,C) resulted in a considerable increase in both the numbers
and types of fluorescent cells compared to AAV2 alone
(retinal images presented are collapsed over the z-axis).
Enzyme dose–response curves: Next, a wider range of
chondroitin ABC lyase and heparinase III concentrations was
investigated to establish an optimal dose for each enzyme.
Injections of six different concentrations were performed for
each enzyme: 0 units (the PBS control), 100, 200, 400, 800,
and 1,600 units. We quantified fluorescence intensity in ten
samples per eye taken in a line across the width of the
flatmounts to account for possible regional variations in cell
transduction between central and peripheral retina (Figure
1B). Similar dose–response curves were observed for both
enzymes that plateaued between 200 and 400 units and had an
ED50 of between 100 and 200 units (Figure 3).
Transduction is observed across the retinal depth: The use of
glycosidic enzymes also increased the depth of retinal
transduction. Images of confocal slices from the inner, central,
and outer retina following coinjection with heparinase III or
chondroitin ABC lyase that demonstrate the different types of
retinal cells transduced are shown in Figure 4. Marked
fluorescence was seen in cell bodies and structures that
resembled nerve fibers proximal to the vitreous. Deeper in the
retina, fluorescence was observed in cells, including large
arborizing neurons. Finally, patchy fluorescence was seen in
the outer retina that co-localized with densely packed cell
nuclei (observed by DAPI stain), suggesting that this
fluorescence was within photoreceptor cell bodies.

To confirm the GFP expression in different retinal layers
and to determine the retinal cell types transduced by the
vector, we analyzed the fluorescence in histological cross
sections of the retina. We co-injected mice with AA2-GFP
and either 200 units of chondroitin ABC lyase (n=4 eyes) or
heparinase III (n=4). The controls were injected with AAV2
and PBS (n=4). A double negative control with no injections
(n=2) was included to show any endogenous retinal
florescence. Our results confirmed that the use of glycosidic
enzymes increased both the number and type of cells
transduced across the retinal layers. Exemplar cross section

images of the retina are shown in Figure 5, Figure 6, and
Figure 7. Figure 5A shows the endogenous autofluorescence
that was sometimes present in the layer containing the
photoreceptor outer segments; this was observed in both the
red and green channels, thereby distinguishing it from GFP
fluorescence, which was observed in the green channel only.
GFP expression was observed in occasional ganglion cells in
eyes only treated with AAV2 without enzymes (Figure 5B).

Co-injection with chondroitin ABC lyase resulted in
greatly enhanced GFP expression in the inner retina (Figure
6A) and there was some expression throughout the retinal
layers, including Müller cells (Figure 6B), INL cells (Figure
6C), and ONL photoreceptors (Figure 6D,E). However, the
pattern of transduction was patchy in most injected eyes.
Similarly, co-injection of 200 units of heparinase III also
produced a marked improvement in transduction across the
retina (Figure 7A-G). GFP expression was most prominent in
retinal ganglion cells (Figure 7A-E,G) and it was also detected
in Müller cells (Figure 7D,E), in INL cells (Figure 7A-G), and
in photoreceptors (Figure 7F,G). All histological sections
appeared morphologically intact, so the enzymes did not
produce an obvious disruption of retinal architecture.
Analysis of retinal function in the presence of enzymes: To test
the effect of glycosidic enzymes on retinal function, we
recorded ERGs after digestion with 800 or 1,600 units of
heparinase III and chondroitin ABC lyase (i.e., higher
concentrations than required for maximal retinal
transduction). ERGs were present and retained all major
components (a-wave, b-wave, and oscillatory potentials) in
mice treated with the AAV2.CBA.eGFP vector in conjunction
with either 800 or 1,600 units of heparinase III or 800 units of
chondroitin ABC lyase (Figure 8). However, a reduction in
ERG amplitude was seen after intravitreal injections of 1,600
units of chondroitin ABC lyase.

DISCUSSION
AAV-mediated gene therapy holds great promise for treating
or preventing visual loss in retinal dystrophies and other
retinal conditions. Recently, remarkable progress has been
made both in experimental approaches using animal models
and in moving this technology into clinical trials. However,
there is a need to improve transduction efficiency to broaden
the applicability of AAV-mediated retinal gene therapy. There
are several possible ways to improve AAV-mediated retinal
transduction. The viral titer can be increased, but levels may
be limited by the potential for immunogenicity [10]. Hybrid
AAV can be constructed using the genome of one serotype,
but using a packing capsid from another [1]. The AAV capsid
can be mutated to enhance tropism and the efficiency of
transgene expression; for example, recent experiments in
which surface exposed tyrosine residues are mutated to
decrease intracellular degradation show considerable promise
[5]. A further approach is to tackle the physical barriers that
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prevent the AAV passing into and through the retina and this
is the strategy explored in this study.

We hypothesized that after intravitreal injection, the viral
particles become trapped in the extracellular matrices and by
the cell surface proteoglycans found in the untreated vitreous,
ILM, and neurosensory retina. These layers can form both

physical and charge barriers that can limit the efficacy of
trans-retinal penetration of macromolecules. Each barrier has
a different GAG content and concentration and therefore leads
to a variable level of viral entrapment [11-13]. HA and CSPGs
in the vitreous; HA, CSPGs, and HSPGs in the ILM; and
CSPGs and HSPGs in the retinal matrix could all inhibit viral

Figure 2. Retinal fluorescence two
weeks after the intravitreal delivery of
AAV2.CBA.eGFP and other different
enzymes. A: Quantitative analysis of
fluorescence following treatment with
the AAV2 and collagenase, hyaluronan
lyase, chondroitin ABC lyase, or
heparinase III in increasing
concentrations. Data are geomeans with
a ±95% CI (n=9 eyes), and show the
percentage fluorescence intensity
relative to that induced by AAV2 alone
(0 unit control group, n=3 eyes). B:
Confocal projection of optical z-
sections demonstrating fluorescence
after co-injection with chondroitin ABC
lyase at the dose indicated. C: Confocal
projection of optical z-sections
demonstrating fluorescence after co-
injection with heparinase III at the dose
indicated.
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transduction. However, electrostatic binding to the negatively
charged GAGs is unlikely to impede vector penetration of the
tissue because at a physiologic pH of 7.35, AAV with an
isoelectric point ranging between 5 and 7 (depending on the
serotype), would have an overall negative charge and would
repel the anionic GAGs [14,15].

The major impedance is therefore likely to be due to the
diffusion barrier caused by the vitreal, ILM, and retinal
matrices (i.e., interphotoreceptor matrix), the external limiting
membrane (ELM), and cell surface proteoglycans [16-18].
Possibly the most important barrier for these matrices is the
inner limiting lamina (ILL), the basement membrane of
Müller cells, which has pore channels varying in size from 10
to 25 nm (in rabbit retina) [17], whereas the AAV viral capsid
has a total radius between 20 and 25 nm [19]. The intraocular
movement of larger particles was investigated by Kamei et al.
[18] who demonstrated that an intravitreally injected 70 kDa
tissue plasminogen activator could not diffuse across the ILM
in rabbits. Another study of antibodies delivered into the
vitreous cavity of rhesus monkey found that Fab antibodies
(48 kDa) diffused across the retina, but full-length antibodies
(148 kDa) did not [20]. A further in vitro study by Jackson et
al. [21] looked at the maximum size of the molecules capable
of freely diffusing across human retina, or the retinal
exclusion limit (REL), using FITC-dextrans of various
molecular weights. They found the REL in human neuroretina
to be 76.5±1.5 kDa (6.11±0.04 nm). Furthermore, they
observed only moderate interspecies variations in animal
studies including those that for pigs, cattle, and rabbits
(60±11.5, 78.5±20.5, and 86±30 kDa, respectively), which are
commonly used to model human disease. Interestingly, they
found that in human retina, the inner and outer plexiform
layers formed the sites of highest resistance to diffusion,

which were even greater than the ILM. Larger molecules were
capable of crossing the retina, although the rate of diffusion
was much reduced.

The wild-type murine retinas show very limited inner
retinal penetration by intravitreally delivered AAV vectors.
This lack of permeability into the outer retina is not dependent
on AAV serotype including types 2, 5, 7, 8, and 9 as shown
in a study by Lebherz et al. [22]. The researchers showed that
after intravitreal injection into mouse eyes, only AAV2 and
AAV8 were able to transduce retinal ganglion cells and
AAV2, 8, and 9 transduced occasional Müller cells. None of
the other vectors tested demonstrated significant retinal
expression after intravitreal injection. Interestingly, viral
particles spread into the outer retina and RPE after intravitreal
delivery in degenerate retinas compared to their accumulation
at the ILM in normal rat retina [23]. Immunohistochemistry
showed changes in the architecture of the ILM, which are
likely to underlie the increased viral transduction in diseased
tissue. Similarly, the lack of retinoschisin (Rs1) causes a
marked change in the permeability of the retina to AAV
vectors, as serotypes including 2, 5, and 8 were able to
penetrate all retinal layers of Rs1-KO mice and even to
transduce the retinal pigment epithelium from the vitreous
[24].

Previous studies have investigated the disruption of
extracellular barriers in ocular gene therapy. Gruter et al.
[25] investigated the effects of enzymatic digestion on the
barrier properties of the interphotoreceptor matrix (IPM)
following subretinal injections of lentiviral vector aimed at
transfecting photoreceptors. Digestion of the IPM with
neuraminidase X, and to a lesser extent with chondroitinase
ABC (digesting mainly cone matrix), resulted in some
improvement in photoreceptor transduction. A recent

Figure 3. Dose–response curves
showing treatment with A: Chondroitin
ABC lyase, and B: Heparinase III.
Values for fluorescence intensity
represent the mean±SD (n=3 eyes). For
both enzymes, the ED50 was between
100 and 200 units.
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Figure 4. Sample confocal slices of retinas treated with AAV2.CBA.eGFP and heparinase III or chondroitin ABC lyase. GFP fluorescence
and DAPI staining are merged and the images correspond to A and D: the inner retina, B and E: the mid retina, and C and F: the outer retina.
Image sizes 238×238 µm.
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publication by Dalkara et al. [26] demonstrated that AAV2
localized at the ILM after intravitreal injection and that
digestion of the ILM with pronase E, a nonspecific protease,
qualitatively improved retinal transduction. It has also been

shown that degradation of intra-retinal GAGs with
chondroitin ABC lyase promotes the migration and
integration of stem cells into degenerating retina [27].
Consistent with other publications [1,26] we observed that

Figure 5. Representative cross-sectional micrographs show both untreated retinas and retinas two weeks after transduction with
AAV2.CBA.eGFP, but with no enzyme treatment. A: Some sections of retina with no treatment (control) showed patchy autofluorescence in
the photoreceptor outer segment layer. This could be distinguished from GFP fluorescence because it was observed in both red and green
channels (see also Figure 6A, Figure 7D,E). B: Retina treated with AAV2.CBA.eGFP vector showed low transduction of the GCL. Texas
Red filter is shown in the left panel; FITC filter is shown in the center panel; DAPI filter is shown in the right panel. Calibration bar 50 μm.
Ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), Outer nuclear layer (ONL),
Outer segments (OS) and Retinal pigment epithelium (RPE). Green arrow shows a retinal ganglion cell.

Molecular Vision 2011; 17:1771-1783 <http://www.molvis.org/molvis/v17/a194> © 2011 Molecular Vision

1778

http://www.molvis.org/molvis/v17/a194


Figure 6. Representative cross sectional micrographs showing various retinal cell types transduced by AAV2.CBA.eGFP after treatment with
chondroitin ABC lyase. A-E: A wide range of cell types were transduced in retinas treated with AAV2.CBA.eGFP vector and 200 units of
chondroitin ABC lyase. GFP fluorescence was observed across the retinal layers, including cells with the anatomic location and morphology
of; A: ganglion cells, B: Müller cells, C: INL cells, and D, E: photoreceptors. FITC filter is shown in the left panel; DAPI filter is shown in
the right panel. Calibration bar 50 µm. Ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), outer segments (OS).
Green arrow shows a retinal ganglion cell. Blue arrow shows a Müller cell. Orange arrow shows cells in inner nuclear layer. Red arrow shows
a photoreceptor cell.
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intravitreally delivered AAV2 alone leads to a low retinal
transduction rate. Collagenase digestion decreased retinal

transduction efficiency, but chondroitin ABC lyase,
heparinase III and, to a lesser extent, hyaluronan lyase

Figure 7. Representative cross sectional micrographs showing various retinal cell types transduced by AAV2.CBA.eGFP after treatment with
heparinase III. A-G: After two weeks retinas treated with AAV2.CBA.eGFP vector and 200 units of heparinase III showed GFP expression
across all retinal layers including cells with the anatomic location and morphology of (A-E, G) ganglion cells, (A-G) INL cells, (D, E) Müller
cells, and (F, G) photoreceptor cells. FITC filter is shown in the left panel; DAPI filter is shown in the right panel. Calibration bar 50 µm.
Ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), outer segments (OS). Green arrow shows a retinal ganglion
cell. Blue arrow shows a Müller cell. Orange arrow shows a cell in inner nuclear layer. Red arrow shows a photoreceptor cell.
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increased expression of the viral reporter gene. It is likely that
the glycosidic enzymes promote viral transduction by
breaking down vitreal and retinal extracellular matrices, thus
increasing the size of the matrix pores and allowing AAV to
move across these barriers with more ease.

The differences observed in the effects of these glycosidic
enzymes might be explained by regional variations in GAG
content and concentration. The highest concentration of HA
is in the vitreous. However, as the vitreous contains such a
dilute extracellular matrix, it may not greatly impede the
movement of AAV particles, so digestion of the vitreous HA

Figure 8. Electroretinograms (ERGs)
following intravitreal delivery of
AAV2.CBA.eGFP vector and
heparinase III or chondroitin ABC
lyase. A: Dark-adapted ERGs were
intact following enzyme injection of
heparinase III at 800 units. B: Dark-
adapted ERGs were intact following
enzyme injection of heparinase III at
1,600 units. C: Dark-adapted ERGs
were intact following enzyme injection
of chondroitin ABC lyase at 800 units.
D: A higher dose of chondroitin ABC
lyase (1,600 units) impaired retinal
function. Records show average
responses to repeated flash
presentations in individual mice.
Timing of each flash is indicated by the
arrow, with flash intensity (in log10
μW.cm−2) shown to the left of each ERG
trace.
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network with hyaluronan lyase may have a modest effect, as
observed in our study. The ILM has been shown to be a barrier
to AAV entering the retina [26] and a major barrier within this
structure is likely to be the ILL, where the predominant
proteoglycans are thought to be heparan sulfate
proteoglycans.

Therefore, the major effect of heparinase III digestion is
likely to be an increase in permeability of the ILL. However,
a recent study by other researchers in our laboratory has
demonstrated that ILM also contains chondroitin sulfate (CS)
and dermatan sulfate (DS) GAGs (unpublished observation).
This could explain the equally robust effect of chondroitin
ABC lyase in increasing retinal transduction by its action on
the ILL. Furthermore, both CSPGs and HSPGs are abundant
in the other retinal layers, including the nerve fiber layer, the
inner and outer plexiform layers, and in the interphotoreceptor
matrix. Hence, digestion with chondroitin ABC lyase or
heparinase III could make any of these retinal layers more
porous and thus improve the trans-retinal penetration of the
viral vector.

It is of interest to note that heparinase III was effective at
increasing retinal transduction, as infection of cells by AAV2
has been shown to be heparan sulfate dependent [28].
However, cell surface heparan sulfate proteoglycans are not
always required for internalization of AAV2 [28,29], so their
removal by heparinase III digestion may not have
compromised the ability of retinal cells to take up the AAV2.
Alternative explanations are that the digestion of retinal
heparan sulfates was incomplete, or that new cell surface
heparan sulfate proteoglycans were synthesized, permitting
AAV2 entry into the retinal cells after the heparinase III
digestion (which is likely to have a short duration of action)
had disrupted extracellular barriers, facilitating movement of
the virus particles into and within the retina.

The use of intravitreally-delivered glycosidic enzymes
for other purposes has been investigated. Hyaluronidases and
chondroitinase have been tested in animal models for
pharmacological vitreolysis without any reported adverse
effects [30-32]. Furthermore, highly purified ovine
hyaluronidase VitraseTM (ISTA Pharmaceuticals, Irvine,
CA) has been used in clinical trials to aid the dispersion of
vitreous hemorrhage [33]. We investigated whether the
enzymes had functional effects on the retina, by measuring
ERGs, and found that light responses appeared intact after
digestion with 800 units of heparinase III or chondroitin ABC
lyase i.e., at a dose that was considerably higher than the 200
units required for maximal retinal transduction. It is still
possible that these enzymes damage inner retinal function at
doses of 800 units or less, but it is of note that in experiments
with pronase E, measuring ERGs was a more sensitive
indicator of retinal damage than measuring VEPs [26].
Nevertheless, an important element of future work will be to
focus on the more extensive assessment of any acute and/or

chronic effects these glycosidic enzymes may have on retinal
function.

Taken together, our data suggest that heparinase III or
chondroitin ABC lyase greatly increased retinal transduction
by intravitreal AAV2. This approach will be useful for
experimental gene transfer into the retina using rodent models
and may broaden the applicability of AAV-mediated gene
therapy for treating human disease.
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