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Abstract
Although the importance of selecting cases and controls from the same population has been
recognized for decades, the recent advent of genome-wide association studies has heightened
awareness of this issue. Because these studies typically deal with large samples, small differences
in allele frequencies between cases and controls can easily reach statistical significance. When,
unbeknownst to a researcher, cases and controls have different substructures, the number of false-
positive findings is inflated. There have been three recent developments of purely statistical
approaches to assessing the ancestral comparability of case and control samples: genomic control,
structured association, and multivariate reduction analyses. The widespread use of high-
throughput technology has allowed the quick and accurate genotyping of the large number of
markers required by these methods.

Group 13 dealt with four population stratification issues: single-nucleotide polymorphism marker
selection, association testing, non-standard methods, and linkage disequilibrium calculations in
stratified or mixed ethnicity samples. We demonstrated that there are continuous axes of ethnic
variation in both datasets of Genetic Analysis Workshop 16. Furthermore, ignoring this structure
created p-value inflation for a variety of phenotypes. Principal-components analysis (or
multidimensional scaling) can control inflation as covariates in a logistic regression. One can
weight for local ancestry estimation and allow the use of related individuals. Problems arise in the
presence of extremely high association or unusually strong linkage disequilibrium (e.g., in
chromosomal inversions). Our group also reported a method for performing an association test
controlling for substructure when genome-wide markers are not available to explicitly compute
stratification.
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Introduction
We are reminded of Justice Potter Stewart's famous opinion from the 1964 Supreme Court
case Jacobellis v. Ohio dealing with pornography. He wrote: “I shall not today attempt
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further to define the kinds of material I understand to be embraced… But I know it when I
see it…” So it is with the main issue addressed by most of the contributions in Group 13
(Population Stratification and Patterns of Linkage Disequilibrium), to wit: What is the
definition of a human breeding population and what are its boundaries? Unfortunately,
unlike Justice Stewart, most of us do not know what a “breeding population” is – even when
we “see” it.

No natural population, human or otherwise, is “homogeneous” in the sense of being
uniformly homozygous. The evolutionary forces of mutation, drift, migration, and selection
have shaped all human groups and produced unique patters of variation. What is clear is that
human groups more or less differ from one another depending on the length of time since
they shared common ancestry. Today, most markers used in linkage studies or case-control
genome-wide association studies (GWAS) appear to be selectively neutral. This is true for
most variable-number tandem repeats, microsatellites, and single-nucleotide polymorphisms
(SNPs). Furthermore, human groups differ in their allele frequencies for these markers (e.g.,
Goddard et al. [2000]).

Genetic association tests identify differences in allele frequency between cases and controls.
True positives occur when the marker in question is related to disease status. False positives
occur when the apparent difference in allele frequency is due to measurement error or when
an actual difference in allele frequency is unrelated to disease status. Thorough data cleaning
can help eliminate or reduce many false positives due to measurement error. Genotyping
errors and missing genotypes that are not erroneous or missing completely at random (such
as plate effects or missingness due to degraded samples) can create false positives when
cases and controls are located on different plates or cases and controls have different DNA
extraction methods. Cryptic relatedness or cryptic duplicates skew allele frequency estimates
because observations are not independent. When cases and controls are drawn from different
randomly mating breeding populations, allele frequencies truly are different, but these
differences may not be related to disease status. In practice, we distinguish between two
types of population stratification. The first type, well studied by the field, is that of
genetically, and usually geographically, distinct populations. An example would be controls
of European ancestry and cases of Native American ancestry. An individual's self-reported
ancestry may be sufficient to control for this stratification. The second type, only recently
studied, is that of continuous genetic variation. An example would be when the sample is of
European ancestry, but if cases tend to be from Northern Europe while controls tend to be
from Southern Europe, false-positive rates will be elevated due to true differences in allele
frequency. Multiple continuous axes are possible (Eastern and Western European, for
example), and in practice a complex mix of discrete and continuous stratification may be
observed.

Although the importance of selecting cases and controls from the same breeding population
has been recognized for decades [Suarez and Hampe, 1994], the recent advent of large scale
GWAS has heightened awareness of this issue because relatively small differences in allele
frequencies (such as found in subtle continuous stratification) can reach statistical
significance when large samples are studied. This is particularly true for control samples that
have been collected with the intention that they will be used repeatedly in a variety of
different GWAS. (A recent example is the publicly available control sample collected by a
marketing research company (Knowledge Networks, Menlo Park, CA), for the NIH
(http://www.nimhgenetics.org).) The strategy of using and reusing an all-purpose, “one-size-
fits all” control sample is attractive from a budgetary perspective. However, differences in
ascertainment can create subtle differences in ancestry, thereby creating allele frequency
differences that are unrelated to the disease of interest. Indeed, one of the datasets from the
Genetic Analysis Workshop – the North American Rheumatoid Arthritis Consortium
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(NARAC) data – may fall into this category. Thus, while the case sample was gathered from
rheumatology clinics across North America, all of the controls were selected from
participants of the New York Cancer Project [Plenge et al., 2007].

There are many experimental designs that attempt to minimize ancestry differences between
cases and controls. One can, for instance, match cases and controls on the country of origin
of each individual's four grandparents. Another popular design is to restrict controls to
spouses. In practice, however, experience has shown that these designs are often difficult to
implement and, moreover, neither guarantees that cases and controls come from the same
breeding population. The widespread use of array technology has allowed the quick and
accurate genotyping of tens of thousands to millions of markers per individual. These
technological advances, in turn, have allowed the development of purely statistical
approaches to assessing the ancestral comparability of case and control samples. Three of
these approaches are in common use: 1) genomic control analyses, 2) structured analyses,
and 3) multivariate reduction analyses.

The method of genomic control [Bacanu et al., 2000; Devlin and Roeder, 1999; Devlin et
al., 2001; Reich and Goldstein, 2001; Zheng et al., 2005; Zheng et al., 2006] surveys
markers with a low prior probability of association with disease (“null markers”). These are
preferably a large number of unlinked loci across the genome. The observed median value of
the chi-squared statistic for the null markers divided by the expected median value of the
chi-squared statistic (approximately 0.456 for 1 df tests) is the “inflation factor,” lambda. If
lambda is less than or equal to 1, no adjustment is necessary. When lambda is greater than
one, all subsequent chi-squared statistics on a set of candidate markers are divided by
lambda. In a case of many markers with no particular prior hypotheses (such as a GWAS),
the set of null markers and the set of candidate markers is taken to be the same. This may be
a poor assumption in the case of some polygenic phenotypes such as height and weight that
have established high heritabilities. The genomic control method has the disadvantage of
assuming that stratification creates uniform inflation across the genome, potentially biasing
association tests conservatively in some regions and freely in other regions. Furthermore, the
inclusion of true positives in the null set can overestimate lambda; in the rheumatoid arthritis
(RA) dataset, this occurs if one includes the major histocompatibility complex (MHC)
markers on chromosome 6p in the null set.

The method of structured association [Falush et al., 2003; Falush et al., 2007; Pritchard and
Rosenberg, 1999; Pritchard et al., 2000a; Pritchard et al., 2000b; Satten et al., 2001] uses a
Markov-chain Monte Carlo process to determine allele frequency distribution for each
marker for each of K clusters. Individuals are assigned probability of membership in each
cluster. This method applies to microsatellites as well as SNPs and produces easily
interpreted results. However, the number of clusters must be determined heuristically, and
the method is computationally intractable for more than a few hundred markers. Therefore,
to use this method to discern subtle variation in structure, such as northern to southern
European, it is necessary to use a priori knowledge to select markers that are highly
informative for this variation [Price et al., 2008].

The third method, and the one predominantly used by Group 13, is multivariate data
reduction [Patterson et al., 2006; Zhang et al., 2003; Zhu et al., 2002]. This method is
primarily applied to large-scale SNP data. Although there are a number of possible
approaches, the most frequently used is an application of traditional principal-component
analysis (PCA) implemented in the EIGENSOFT package [Price et al., 2006]. In PCA, for N
individuals and M markers, where M ≫ N, we first create an M × N standardized genotype
matrix, G. In particular, for each marker we recode the three genotypes (1/1, 1/2, 2/2) to the
values (d-a, d, d+a) to have an additive dose effect, where a and d are chosen so that the
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marker has mean zero and standard deviation one. We filter out markers with very rare
minor alleles. This approximates the normalization process from standard PCA. We then
compute GTG, the N × N covariance matrix and perform an eigenvalue decomposition. This
produces a new coordinate system such that the greatest genotypic variance is encoded by
the first component, the second greatest variance by the second component, and so on. One
may then either look for discrete groups (ethnically discrete populations) or use the
components themselves as covariates (for continuous population distributions).

When using the components themselves as covariates, various methods are used to
determine the number of components to retain. Feng et al. [2009] and Kang et al. [2009]
retained the first ten principal components, as suggested by Price et al. [2006]. Hinrichs et
al. [2009] applied a graphical scree analysis. Peloso et al. [2009] retained only the PCs that
were correlated with the disease status. Wang et al. [2009] used the Tracy-Widom statistic.
They found that the number of significant PCs reported by the statistic was inflated if using
all SNPs but was appropriate after removing linkage disequilibrium (LD). The cost of
choosing too few components is an increase in false positives; the cost of choosing too many
components is a reduction of power due to potentially over-fitting the model. However, the
more conservative approach, and one favored by all contributions to the group, is to include
all plausible components despite the risk of over-fitting.

One important recurring issue: can genomic regions of high LD dominate the PCA
components? This was a reasonable expectation for a case-control study of an autoimmune
disease like RA with its known MHC involvement. Indeed, among the cases in the NARAC
dataset, a minuscule 2.3% were found to have low-risk genotypes, while 56.4% of the
controls had low risk genotypes. The MHC, coincidently, is a region of extensive LD.
Accordingly, the ascertainment procedure itself could result in the appearance of regional
substructure.

There are four separate questions dealt with by Group 13: first, can one use a subset of SNPs
and how does the selection of a subset affect the outcome; second, how can we control for
case-control association in a stratified sample; third, are there advantages to modifying the
method of dimensionality reduction; and finally, because LD estimates vary by population
and are fundamental to most of these methods, how can one best compute LD? Because all
teams used real data, often a quantile-quantile (Q-Q) plot and a measurement of the inflation
factor (for some phenotype) were generated in order to assess the effectiveness of the
methods. Alternatively, some teams present a comparison to a stratification “gold standard”
(usually PCA).

Methods and Results
For the question of subsets of SNPs, Kang et al. [2009] considered local versus global
ancestry in unrelated individuals from the Framingham Heart Study Offspring Cohort. They
suspected that local genome regions harboring functional polymorphisms may be subject to
subtle forms of population stratification. An important example of this is the lactase (LCT)
gene, which reveals a Northern-Southern European cline and shows a spurious association to
height. To test this hypothesis, they examined the inflation factor (for height as a phenotype)
when adjusting for ancestry with principal components (PCs) derived from SNPs across the
genome (defined as global ancestry) versus SNPs from distinct 20-Mb regions (defined as
local ancestry). Inspection of the Q-Q plot and the inflation factors reveals that including
local PCs as covariates still results in moderate inflation, whereas controlling for either
global PCs alone or global and local PCs combined results in minimal inflation. In the
specific case of LCT, global PCs, local PCs, and combined global and local PCs all
performed well at controlling for spurious association. Local and global PCs provided
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different information about ancestry; however, it is unclear which method of adjustment is
optimal for the polygenic trait, height.

Peloso et al. [2009] also considered PCA using a subset of SNPs in the RA data. In
particular, they considered various levels of thinning to remove LD and examined effects of
the inclusion of the MHC region and the region of inversion on chromosome 8. The first two
PCs (PC1 and PC2) were highly correlated under pairwise comparison for all subsets. For
additional PCs, the inclusion or exclusion of the MHC region made the most significant
impact on consistency. When included in the PCA, SNPs from the MHC region and the
chromosome 8 inversion provided extremely high weights to the components. When these
regions are excluded, only the small region on chromosome 2 containing LCT shows
unusually high weights to the components. Interestingly, the impact of LD seems minimal
with genome-wide data, except for the inversion, which preserves LD across 4 Mb.

Peloso et al. [2009] and colleagues also addressed our second question: how can we control
for case-control association in a stratified sample? They found that logistic regression using
PC1-PC5 as linear covariates produced the smallest inflation factors. Including both linear
covariates and discrete clusters did not improve the inflation. Because this population is all
of self-identified European ancestry, this finding may not generalize to a more ethnically
diverse sample in which ancestral populations are geographically separated.

Feng et al. [2009] proposed a novel segregation model to perform association analyses in
pedigree data. They performed PCA on the parents (or if none had data, then a randomly
chosen pedigree member was used) in the Framingham Heart Study data set and then used
factor loadings to compute PCs for all individuals. A multivariate logistic model was then
used, controlling for 10 PCs, to fit an additive genotype and an index variable indicating
whether an individual was chosen for PCA. Using hypertension as phenotype, they
examined the Q-Q plots and found that their method successfully controls inflation while
simultaneously incorporating pedigree data. This method can also be extended to larger
pedigrees. However, they found that the model would frequently fail to estimate the variance
matrix of all covariates and familial correlations due to insufficient data.

Zhang et al. [2009b] also proposed a novel association test that does not involve directly
computing stratification and can be performed on a single genotyped marker. In particular,
in the presence of subpopulations, a deviation from Hardy-Weinberg equilibrium will be
observed. The value FST is the proportion of the total heterozygosity in the population due to
differences in allele frequencies among each subpopulation. Letting F1 and F2 denote FST in
cases and controls, respectively, they construct a likelihood function where F1 and F2 are
nuisance parameters. This has the general form of a 2-df Pearson chi-square test, but does
not have a closed-form solution. Analysis of the RA data shows that when the estimates of
F1 and F2 are similar for a given marker, the resulting p-values are also similar. However,
discordant values of F1 and F2 (when the case and control populations have different
substructure at a particular marker) reveal dramatic inflation of p-values for the standard
Pearson test while the proposed method appears to control the inflation.

The third question for our group was to examine different methods of dimensionality
reduction. Wang et al. [2009] compared the population structures from PCA and
multidimensional scaling (MDS) and evaluated the performance of the two approaches in
the RA dataset. First, the team performed PCA using all SNPs and examined the PC
loadings on individual SNPs to determine whether these components were dominated by
relatively few chromosome regions with extended LD. The team found that regions of high
LD did dominate the most significant components when all of the SNPs were used. Indeed,
4,413 of 9,980 SNPs that deviated from their expected quantiles with a distance greater than
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1 were in the MHC. A second round of PCA removed SNPs with high loadings and pruned
the remaining SNPs based on LD. This round of PCA identified nine outlier individuals
whose PC loadings were more than six standard deviations away from the mean.

MDS was performed using PLINK [Purcell et al., 2007]. The MDS analyses started with a
list of pruned SNPs based on LD. A pairwise identity-by-state distance analysis was
conducted to identify (and remove) individuals deemed to be population outliers. In the
MDS analysis a small number of subjects (N=7) had to be excluded as outliers. Interestingly,
five of these seven outliers were also among the nine outliers excluded by PCA.

Both PCA and MDS gave similar results for the NARAC data. The correlation coefficients
between the first four components/dimensions exceeded 0.88 before dropping off rather
precipitously. Both methods detected strong (and similar) population stratification, with
genomic inflation parameter estimated at 1.447. Logistic regression with the significant PCs
as covariates for PCA or the leading dimensions for MDS successfully corrected the
inflation factor to 1.037 and 1.045, respectively.

Zhang et al. [2009a] and Hinrichs et al. [2009] both used Laplacian matrices in an attempt to
improve or extend the standard PCA. In the present context, the Laplacian matrix is a
specially formatted matrix, L, which is included in the computation of the covariance:
instead of GTG as previously presented, GTLG is computed and then eigenvalue
decomposition is performed. This is essentially a weighted PCA. The first team used the RA
data (consisting only of unrelated individuals), and defined the weights based on the genetic
correlation between pairs of individuals. More distantly correlated individuals play less of a
role in the final stratification results than more closely correlated individuals. The final
stratification results are then based on local rather than global comparisons. In the case of
the RA data, the results show very clearly two stratification axes rather than the diffuse
cloud observed without this method.

The second Laplacian team used the related individuals in the Framingham Heart Study data
set. In this case, the Laplacian was weighted to allow for related individuals based on the
kinship matrix. In particular, the best linear unbiased estimate [McPeek et al., 2004] used for
allele frequency estimates in related individuals was adapted to compute pairwise
correlation. The results showed consistency with other methods of computation but allowed
for use of more genotyped individuals.

He and Willcox [2009] tackled the fourth and final question: how can one best compute LD?
Starting with 332 genotyped trios (two parents and an offspring) in the Framingham Heart
Study data, they examined LD estimates using different numbers of trios and singletons.
Interestingly, they found that 30 to 40 trios produced LD values very close to the values
produced by all trios, whereas estimates with unrelated individuals were inaccurate with few
or many unrelated individuals. The ability to phase haplotypes with related individuals is
likely key to this observation. This is especially important because of the four commonly
used HapMap samples; the Japanese and Chinese samples contain only unrelated
individuals.

Discussion
Our group dealt with four issues: SNP selection, association testing, non-standard methods,
and LD calculations in stratified or mixed ethnicity samples. We collectively demonstrated
that there are continuous axes of ethnic variation in both the RA and the Framingham Heart
Study datasets, which are populations of European descent. We further showed that ignoring
this creates p-value inflation for a variety of phenotypes. This can be corrected by standard
application of PCA or MDS. One can use local ancestry (as defined above) to assess
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population stratification. Related individuals can also be utilized to assess population
stratification without creating bias from large pedigrees. On the whole, the method is robust
to SNP selection except for areas of extremely high association (such as the MHC region in
the RA data) or unusually strong LD in chromosomal inversions. For association tests in
these data sets, one can simply include PCs or clusters as covariates in a standard logistic
regression. Our group also reported a method for performing an association test controlling
for substructure when genome-wide markers are not available to explicitly compute
stratification. One limitation of the data set analyzed by our group was the lack of
geographically diverse ethnic groups. Our data sets were self-reported Caucasian and the
stratification results throughout are consistent with subtle variation in a European ancestry
population. Therefore, some of the linear corrections may not be suitable in a more diverse
population. Finally, we note that although the LD estimates from the HapMap populations
are widely used, there may be systematic problems due to lack of related individuals in all
but two of the original four samples (and in six of the eleven Phase III HapMap samples).
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