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Hepatocellular carcinoma (HCC) is a common malignancy
in the world with high morbidity and mortality rate. Iden-
tification of novel biomarkers in HCC remains impeded
primarily because of the heterogeneity of the disease in
clinical presentations as well as the pathophysiological
variations derived from underlying conditions such as cir-
rhosis and steatohepatitis. The aim of this study is to
search for potential metabolite biomarkers of human HCC
using serum and urine metabolomics approach. Sera and
urine samples were collected from patients with HCC (n �
82), benign liver tumor patients (n � 24), and healthy
controls (n � 71). Metabolite profiling was performed by
gas chromatography time-of-flight mass spectrometry
and ultra performance liquid chromatography-quadrupole
time of flight mass spectrometry in conjunction with uni-
variate and multivariate statistical analyses. Forty three
serum metabolites and 31 urinary metabolites were iden-
tified in HCC patients involving several key metabolic
pathways such as bile acids, free fatty acids, glycolysis,
urea cycle, and methionine metabolism. Differentially ex-
pressed metabolites in HCC subjects, such as bile acids,
histidine, and inosine are of great statistical significance
and high fold changes, which warrant further validation as
potential biomarkers for HCC. However, alterations of
several bile acids seem to be affected by the condition of
liver cirrhosis and hepatitis. Quantitative measurement
and comparison of seven bile acids among benign liver
tumor patients with liver cirrhosis and hepatitis, HCC pa-
tients with liver cirrhosis and hepatitis, HCC patients with-
out liver cirrhosis and hepatitis, and healthy controls re-

vealed that the abnormal levels of glycochenodeoxycholic
acid, glycocholic acid, taurocholic acid, and chenodeoxy-
cholic acid are associated with liver cirrhosis and hepati-
tis. HCC patients with alpha fetoprotein values lower than
20 ng/ml was successfully differentiated from healthy
controls with an accuracy of 100% using a panel of me-
tabolite markers. Our work shows that metabolomic pro-
filing approach is a promising screening tool for the diag-
nosis and stratification of HCC patients. Molecular &
Cellular Proteomics 10: 10.1074/mcp.M110.004945, 1–13,
2011.

Hepatocelluar carcinoma (HCC)1 is the fifth most common
cancer (1) and the third leading cause of cancer-related death
(2) with a five-year survival rate of less than 7% (3). The
morbidity of HCC in Southeast Asia and sub-Saharan Africa is
greater than 20 cases per 100,000 population, whereas in
North America and Western Europe is much lower, less than
5 per 100,000 population (4). However, a dramatically increas-
ing incidence of HCC in the world, especially in the United
States has been reported in recent years, primarily because of
chronic alcohol use and chronic hepatitis C infection (5).
Diabetic and metabolic diseases of the liver have been known
to contribute to an increased incidence of HCC in recent years
(6, 7). Despite significant progress in cancer diagnosis and
treatment, the morbidity and mortality rate of liver cancer
remains high because early diagnosis is still a challenge. Early
and accurate diagnosis of HCC is of central importance for
timely treatment and five-year survival rate (38.1% at stage I,
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1 The abbreviations used are: HCC, Human hepatocellular carci-
noma; FDG-PET, fluorodeoxyglucose-positron emission tomography;
AFP, alpha fetoprotein; HPLC, high performance liquid chromatogra-
phy; LC-MS, liquid chromatography-mass spectrometry; GC-MS, gas
chromatography-mass spectrometry; GC-TOFMS, gas chromatogra-
phy-time-of-flight mass spectrometry; UPLC-QTOFMS, ultra-perfor-
mance liquid chromatography-quadrupole time-of-flight mass spec-
trometry; OPLS-DA, orthogonal partial least squares-discriminant
analysis; PCA, principal component analysis; UC, urea cycle; VIP,
variable importance of the project; ES�, positive ion mode; ES–,
negative ion mode; TMCS, trimethylchlorosilane; BSTFA, Bis(trimeth-
ylsilyl) trifluoroacetamide.
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3.9% at stage IV) (8). Therefore, considerable efforts have
been devoted to search for biomarkers for early diagnosis of
HCC and patient stratification. Glypican-3, a cell surface-
linked heparan sulfate proteoglycan, is one of the potential
biomarkers in serum currently under investigation for HCC (9).
At present, the most clinically used serum biomarker for HCC
is alpha fetoprotein (AFP); however, clinicians are unsatisfied
with it because of its high false positive and false negative
rates (10).

Genomics and proteomics have merged as biochemical
profiling tools to provide important insight into the biology of
various cancers (11). Although these profiling approaches
focus on upstream genetic and protein variations, metabolo-
mics captures the global metabolic changes that occur in
response to pathological, environmental or lifestyle factors
(12). Consequently, metabolomics complements the informa-
tion obtained by genomics and proteomics (13) and has al-
ready shown promise in identifying metabolite-based bio-
markers in prostate (14), breast (15), ovarian (16), brain (17),
and oral (18) cancers. Recently metabolomic study of HCC
has been performed by high resolution magic-angle spinning
1H nuclear magnetic resonance spectroscopy (19) and a
panel of 13 differential tissue metabolites, including alanine,
leucine and glucose were identified. Several serum and urine
metabolites as potential markers in a small number of HCC
patients (n � 20) were identified by gas chromatography mass
spectrometry (GC-MS, LC-MS) (20, 21), including nucleo-
sides, butanoic acid, ethanimidic acid, glycerol, isoleucine,
valine, aminomalonic acid, glycine, tyrosine, threonine, etc.

It is generally accepted that a single analytical technique
could only identify a limited number of the metabolites, and
therefore, multiple complementary analytical platforms are
needed for an enhanced metabolic visualization. We reported
an enhanced metabolomic profiling study using a combined
GC-MS and LC-MS analytical platform in 2007 on the meta-
bolic disruption associated with nephrotoxicity by aristolochic
acid intervention in a rat model (22). We have recently dem-
onstrated that a combination of gas chromatography time-of-
flight mass spectrometry (GC-TOFMS) and ultra-performance
liquid chromatography quadrupole time-of-flight mass spec-
trometry (UPLC-QTOFMS) significantly increased the number
of serum metabolite markers identified in a clinical metabolo-
mic study of colorectal cancer (23).

In this study, we conducted a comprehensive analysis of
the serum and urine metabolites in 177 participants (71
healthy individuals, 24 benign liver tumor patients, and 82
HCC patients diagnosed as stage I, II, III, and IV, detailed
information is listed in Table I) using GC-TOFMS and UPLC-
QTOFMS. The metabolic variations in HCC patients with dif-
ferent cancer stages were comprehensively investigated. The
differential metabolites identified in HCC patients were cross
checked by the two analytical methods as well as by the
results from two biological specimens, serum, and urine.

EXPERIMENTAL PROCEDURES

Clinical Samples—A total of 82 HCC patients, 52 males and 30
females, aged 29 to 76 years old, and 24 benign, 13 males and 11
females, aged 18 to 65 years old, were enrolled in this study. The
proportion of females in this cohort is higher than the national average
number (the ratio of males/females is about 3:1) in favor of males. No
significance is attached to the high proportion of females in the study
population because the patients were taken from sequentially pre-
senting patients in a single unit. Patient characteristics, staging of
disease and other parameters are shown in Table I. The clinical
diagnosis and pathological reports of all the patients were obtained
from Zhongshan Hospital, Fudan University, Shanghai, China. Control
samples were collected from a total of 71 healthy volunteers (39
males and 32 females, aged 42 to 65 years old) using the same
sample collection protocol, and any subjects with inflammatory con-
ditions, steatohepatitis, or gastrointestinal tract disorders were ex-
cluded. The average level of serum AFP in the HCC group is 5010.84
ng/ml ranging from 1.3 to 60,500 ng/ml, any AFP values higher than
60,500 ng/ml were recorded as 60,500 ng/ml. Ten serum enzyme
levels correlating to liver function for HCC patients and benign liver
tumor patients were measured (detailed information is provided in
supplemental Table S1 and S2). Tumor invasion of neighboring or-
gans, lesion nature and dimension, and presence of angiolymphatic
or perineural invasion were also recorded. Serum and urine samples
were collected in the morning before breakfast from all the partici-
pants. Serum samples were placed into clean tubes and kept at
�80 °C until analysis. The collected urine samples were centrifuged
at 3000 rpm for 10 min at 4 °C to remove suspended debris, and the
resulting supernatants were immediately stored at �80 °C without
any preservatives. The protocol was approved by the Zhongshan
Hospital Institutional Review Board and written consents were signed
by all participants before the study.

Serum Sample Preparation and Analysis by GC-TOFMS—Serum
samples were derivatized and subsequently analyzed by GC-TOFMS
following our previously published protocols (23). A 100 �l aliquot of
serum sample was spiked with two internal standards (10 �l L-2-
chlorophenylalanine in water, 0.3 mg/ml; 10 �l heptadecanoic acid in
methanol, 1 mg/ml) and vortexed for 10 s. The mixed solution was
extracted with 300 �l of methanol/chloroform (3:1) and vortexed for
30 s. After storing for 10 min at �20 °C, the samples were centrifuged
at 10,000 rpm for 10 min. An aliquot of the 300 �l supernatant was
transferred to a glass sampling vial to vacuum dry at room tempera-
ture. The residue was derivatized using a two-step procedure. First,
80 �l methoxyamine (15 mg/ml in pyridine,) was added to the vial and
kept at 30 °C for 90 min followed by 80 �l BSTFA (1%TMCS) at 70 °C
for 60 min.

Each 1 �l aliquot of the derivatized solution was injected in spitless
mode into an Agilent 6890N gas chromatography coupled with a
Pegasus HT time-of-flight mass spectrometer (Leco Corporation, St
Joseph, MI). Separation was achieved on a DB-5MS capillary column
(30 m � 250 �m I.D., 0.25-�m film thickness; (5%-phenyl)-methyl-
polysiloxane bonded and crosslinked; Agilent J&W Scientific, Folsom,
CA) with helium as the carrier gas at a constant flow rate of 1.0
ml/min. The temperature of injection, transfer interface, and ion
source was set to 270 °C, 260 °C, and 200 °C, respectively. The GC
temperature programming was set to 2 min isothermal heating at
80 °C, followed by 10 °C/min oven temperature ramps to 180 °C,
5 °C/min to 240 °C, and 25 °C/min to 290 °C, and a final 9 min
maintenance at 290 °C. Electron impact ionization (70 eV) at full scan
mode (m/z 30–600) was used, with an acquisition rate of 20 spec-
trum/second in the TOFMS setting.

Urine Sample Preparation and Analysis by GC-TOFMS—Urine
samples for GC-TOFMS analysis was processed according to our
previously published protocol (24). Each 600 �l aliquot of standard
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mixture or diluted urine sample (urine/water � 1:1, v/v) was added to
a screw-top glass tube. After adding 100 �l of L-2-chlorophenylala-
nine (0.1 mg/ml), 400 �l of anhydrous ethanol, and 100 �l of pyridine
to the urine sample, 50 �l of ethyl chloroformate was added for first
derivatization at 20.0 � 0.1 °C. The pooled mixtures were sonicated
at 40 kHz for 60 s. Subsequently, extraction was performed using 300
�l of chloroform, with the aqueous layer pH carefully adjusted to 9–10
using 100 �l of NaOH (7 M). The derivatization procedure was re-
peated with the addition of 50 �l ethyl chloroformate into the afore-
mentioned products. After the two successive derivatization steps,
the overall mixtures were vortexed for 30 s and centrifuged for 3 min
at 3,000 rpm. The aqueous layer was aspirated off, whereas the
remaining chloroform layer containing derivatives were isolated and
dried with anhydrous sodium sulfate and subsequently subjected to
GC-TOFMS analysis.

The derivatized extracts were analyzed with an Agilent 6890N gas
chromatography coupled with a Pegasus HT time-of-flight mass
spectrometer (Leco Corporation). A 1-�l extract aliquot of the extracts
was injected into a DB-5MS capillary column coated with 5% di-
phenyl cross-linked 95% dimethylpolysiloxane (30m � 250 �m i.d.,
0.25-�m film thickness; Agilent J&W Scientific, Folsom, CA) in the
split mode (3:1). Either the injection temperature or the interface
temperature was set to 260 °C; and the ion source temperature was
adjusted to 200 °C. Initial GC oven temperature was 80 °C; 2 min after
injection, the GC oven temperature was raised to 140 °C with 10 °C/
min, to 240 °C at a rate of 10 °C/min, to 290 °C with 15 °C/min again,
and finally held at 290 °C for 3 min. Helium was the carrier gas with a
flow rate set at 1 ml/min. The measurements were made with electron
impact ionization (70 eV) in the full scan mode (m/z 30–550).

Serum Sample Preparation and Analysis by UPLC-QTOFMS—Se-
rum sample preparation and analysis with UPLC-QTOFMS was per-
formed according to our published report (23). Each 100 �l of serum
was used for metabolite extraction before UPLC-QTOFMS analysis.
The metabolite extraction procedure was carried out after adding 100
�l of water (containing 0.1 mg/ml L-2-chlorophenylalanine as the
internal standard) and 400 �l of a mixture of methanol and acetonitrile
(5:3) to 100 �l of serum. After vortexing for 2 min, the mixture was
stored at room temperature for 10 min, centrifuged at 12,000 rpm for
20 min. The supernatant was filtered through a syringe filter (0.22 �m)
and transferred into the sampling vial pending UPLC-QTOFMS
analysis. A 5 �l aliquot of the filtrate was subjected at a random
order into a 100 mm � 2.1 mm, 1.7 �m BEH C18 column (Waters,
Milford, MA) held at 40 °C using an ultra performance liquid chro-
matography system (Waters). The column was eluted with a linear
gradient of 1–20% B over 0–1 min, 20–70% B over 1–3 min,
70–85% B over 3–8 min, 85–100% B over 8–9 min, the composi-
tion was held at 100% B for 0.5 min. For positive ion mode (ES�)
where A � water with 0.1% formic acid and B � acetonitrile with
0.1% formic acid, whereas A � water and B � acetonitrile for
negative ion mode (ES-). The flow rate was 0.4 ml/min. All the
samples were kept at 4 °C during the analysis.

The mass spectrometric data were collected using a Waters Q-TOF
premier (Manchester, UK) equipped with an electrospray source op-
erating in either positive or negative ion mode. The source tempera-
ture was set at 120 °C with a cone gas flow of 50 L/h, a desolvation
gas temperature of 300 °C with a desolvation gas flow of 600 L/h. In
the case of positive and negative ion mode the capillary voltage was
set to 3.2 kV and 3 kV, and the cone voltage of 35 V and 50 V,
respectively. Centroid data were collected from 50 to 1000 m/z with
a scan time of 0.3 s and interscan delay of 0.02 s over a 9.5 min
analysis time. MassLynx software (Waters) was used for system con-
trolling and data acquisition. Leucine enkephalin was used as the lock
mass (m/z 556.2771 in ES� and 554.2615 in ES-) at a concentration
of 100 ng/ml and flow rate of 0.2 ml/min for all analyses.

Urine Sample Preparation and Analysis by UPLC-QTOFMS—Urine
sample preparation was processed according to our previous work
(25). The collected urine samples were centrifuged at 13,000 rpm for
10 min at 4 °C, and the resulting supernatants were immediately
stored at �80 °C pending UPLC-QTOFMS analysis. Ultrapure water
(500 �l) was added to urine (500 �l) and vortexed for 1 min, and then
filtered through a syringe filter (0.22 �m) for UPLC-QTOFMS analysis.

A 5 �l aliquot of the filtrate was injected into a 100 mm � 2.1 mm,
1.7 �m BEH C18 column (Waters) held at 40 °C using an ultra per-
formance liquid chromatography system (Waters). The column was
eluted with a linear gradient of 1–20% B over 0–1 min, 20–70% B
over 1–3 min, 70–85% B over 3–8 min, 85–100% B over 8–9 min, the
composition was held at 100% B for 0.5 min. For positive ion mode
(ES�) where A � water with 0.1% formic acid and B � acetonitrile
with 0.1% formic acid, whereas A � water and B � acetonitrile for
negative ion mode (ES-). The flow rate was 0.4 ml/min. All the samples
were kept at 4 °C during the analysis.

The mass spectrometric data was collected using a Waters Q-TOF
premier (Manchester, UK) equipped with an electrospray ion source
operating in either positive or negative ion mode. The source temper-
ature was set at 120 °C with a cone gas flow of 50 L/h, a desolvation
gas temperature of 300 °C with a desolvation gas flow of 600 L/h. In
the case of positive and negative ion modes the capillary voltage was
set to 3.2 kV and 3 kV, and the cone voltage of 35 V and 50 V,
respectively. Centroid data was collected from 50 to 1000 m/z with a
scan time of 0.3 s and interscan delay of 0.02 s over a 9.5 min analysis
time. Leucine enkephalin was used as the lock mass (m/z 556.2771 in
ES� mode and 554.2615 in ES- mode) at a concentration of 100
ng/ml and flow rate of 0.2 ml/min for all analyses.

Quantitative Analysis of Bile Acids in Serum and Urine Samples by
UPLC-QTOFMS—To verify the linearity, the spiked standard solution
including chenodeoxycholic acid, deoxycholic acid, taurocholic acid,
cholic acid, glycochenodeoxycholic acid, lithocholic acid, and glyco-
cholic acid was prepared and diluted to appropriate concentration
ranges for the establishment of calibration curves. The limit of detec-
tion (signal to noise ratio (S/N) � 3) and limit of quantitation (S/N � 9)
were determined, respectively. Serum and urine samples were pre-
pared as the method for UPLC-QTOFMS metabolomics analysis de-
scribed in above section. The concentration of each metabolite was
subsequently determined from the corresponding calibration curve.

Data Analysis—The acquired MS data from GC-TOFMS and UPLC-
QTOFMS were analyzed according to our previously published work
(23, 26). The acquired MS data from GC-TOFMS analysis were ex-
ported to NetCDF format by ChromaTOF software (version 3.30; Leco
Co.). CDF files were extracted using custom scripts (revised MATLAB
toolbox hierarchical multivariate curve resolution (H-MCR), developed
by Par Jonsson et al. (27, 28)) in the MATLAB 7.0 (The MathWorks,
Natick, MA) for data pretreatment procedures such as baseline cor-
rection, denoising, smoothing, peak alignment, time-window splitting,
and multivariate curve resolution (based on the multivariate curve
resolution algorithm). The resulting three dimension data sets include
sample information, peak retention time and peak intensities. Internal
standards and any known pseudo positive peaks, such as peaks
caused by noise, column bleed and BSTFA derivatization procedure,
were removed from the data set.

The UPLC-QTOFMS ES� and ES- raw data were analyzed by the
MarkerLynx Applications Manager version 4.1 (Waters, Manchester,
U.K.) using the following parameters. The parameters used were
retention-time range 0–9.5 min, mass range 50–1000 Da, mass tol-
erance 0.02 Da, internal standard detection parameters were dese-
lected for peak retention time alignment, isotopic peaks were ex-
cluded for analysis, noise elimination level was set at 10.00, minimum
intensity was set to 15% of base peak intensity, maximum masses
per RT was set at 6 and, finally, RT tolerance was set at 0.01 min. A
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list of the ion intensities of each peak detected was generated, using
retention time and the m/z data pairs as the identifier for each ion. The
resulting three-dimensional matrix contains arbitrarily assigned peak
index (retention time-m/z pairs), sample names (observations), and
ion intensity information (variables). To obtain consistent differential
variables, the resulting matrix was further reduced by removing any
peaks with missing value (ion intensity � 0) in more than 80% sam-
ples. The internal standard was used for data quality control (repro-
ducibility) and data normalization. The ion peaks generated by the
internal standard were also removed.

The three data sets resulting from GC-TOFMS, UPLC-QTOFMS
ES�, and ES- (expressed as G, P, and N, respectively) were ana-
lyzed and validated by uni- and multivariate statistical methods,
separately (the raw data sets were supplied as a supplemental
Table (Raw data sets-urine-serum.xls)).

Each data set was imported into SIMCA-P 12.0 software package
(Umetrics, Umeå, Sweden). Principle component analysis (PCA) and
orthogonal partial least squares-discriminant analysis (OPLS-DA)
were carried out to visualize the metabolic alterations between HCC
patients and healthy controls after mean centering and unit variance
scaling. In this study, the default 7-round cross-validation was ap-
plied with 1/7th of the samples being excluded from the mathematical
model in each round, to guard against over-fitting. The variable im-
portance in the projection (VIP) values of all the peaks from the 7-fold
cross-validated OPLS-DA model were taken as a coefficient for peak
selection. VIP ranks the overall contribution of each variable to the
OPLS-DA model, and those variables with VIP � 1.0 are considered
relevant for group discrimination (29). Herein, VIP statistics and S-plot
were applied to obtain the significant variables for subsequent met-
abolic pathway analysis (30, 31). Besides the multivariate ap-
proaches, one univariate method, the Student’s t test, was selected to
measure the significance of each metabolite in separating HCC pa-
tients from healthy controls. Several peaks responsible for the differ-
entiation of the metabolic profiles of diseased individuals and healthy
controls could be obtained by comprehensive consideration of these
two coefficients. The corresponding up- and down-regulated trend
shows how these selected differential metabolites varied between the
HCC and the healthy controls.

Metabolites identification from these selected peaks was per-
formed separately. GC-TOFMS metabolites were identified by com-
paring the mass fragments with NIST 05 Standard mass spectral
databases in NIST MS search 2.0 (NIST, Gaithersburg, MD) software
with a similarity of more than 70% and finally verified by available

reference compounds. Metabolites obtained from POS and NEG
mode of UPLC-QTOFMS analysis were identified with the aid of
available reference standards in our lab and the web-based resources
such as the Human Metabolome Database (http://www.hmdb.ca/).

We used 55 HCC patients, 16 benign tumor patients, and 47
healthy controls (sample information are provided in supple-
mental Table S3) to establish the OPLS-DA model for selecting the
differential metabolites in HCC patients, HCC patients (stage I�II),
and HCC patients (stage III�IV), relative to healthy controls. Then, the
performance of the OPLS-DA model and the selected differential
metabolites are tested in a different sample set comprising 27 HCC
patients, 8 benign tumor patients, and 24 healthy controls (see
supplemental Table S4). Potential differential metabolites selected
and identified from the three data sets were normalized, and com-
bined for comprehensive analysis. Aiming to exploring the natural
interrelation between HCC patients and the healthy controls, unsu-
pervised PCA model was build. The original set of metabolites was
reduced to a new set of principal components that retain the vari-
ance-covariance structure of the data, but use less (one or two only)
dimensions of data space. Its stability and performance was validated
by both permutation and new samples test.

Statistical analysis of ANOVA was performed on SPSS PASW
Statistics 18.

RESULTS

Serum Metabolite Profiles and Markers of HCC—Clinical
characteristics of HCC patients and other study subjects are
detailed in Table I. After data normalization, PCA was per-
formed on the dataset, which showed a trend of inter-group
separation on the scores plot (Figs. not provided). Fig. 1A–1C
illustrate scores plots and loadings plots of the OPLS-DA
model of 55 HCC patients (red dots) and 47 healthy controls
(blue squares) based on spectral data of (Fig. 1A) GC-TOFMS;
(Fig. 1B) UPLC-QTOFMS positive ion mode; and (Fig. 1C)
UPLC-QTOFMS negative ion mode (sample information is
provided in supplemental Tables S3–S4). Representative total
ion current chromatograms of GC-TOFMS and base peak
intensity chromatograms in positive ion mode (ES�) and neg-
ative ion mode (ES-) of UPLC-QTOFMS obtained from a HCC

TABLE 1
Clinical information of study cohorts

HCC patients (n � 82) Benign liver tumor patientsa (n � 24) Healthy control (n � 71)

Age (Mean, range) 55, 29–76 44, 18–65 55, 42–65
Male/Female 55/27 13/11 39/32

Stage Ib 33 (M21/F12) / /
Stage IIb 20 (M16/F4) / /
Stage IIIb 22 (M13/F9) / /
Stage IVb 7 (M5/F2) / /

AFP value (mean, range)c 5010.84, 1.30–60500.00 60.74, 1.20–288.20 /
ALT 47.13 33.87 /
AST 52.73 39.04 /

Liver cirrhosis (%) 80.77 25.00 /
HBsAg (positive %) 66.67 45.80 /

a 24 benign liver tumor patients include 8 with hemangioma, 6 with focal nodular hyperplasia of liver, 4 with liver cirrhosis, 2 with liver cyst,
1 with intrahepatic bile duct stone and 1 with recurrent hemangioma after surgery.

b TNM Classification.
c AFP values were provided for 52 (M34/F18) among a total of 82 HCC patients, and 9(M5/F4) among the 24 benign liver tumor patients,

others were labeled as “Negative” or “Positive” but without a specific AFP value; M, male; F, female.
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patient, a benign liver tumor patient (hemangioma) and a
healthy control are shown in supplemental Fig. S1, where
marked variations can be visually observed among the three
serum chromatograms. A total of 324 peaks were obtained
from GC-TOFMS spectra (expressed as G data set), whereas
2626 peaks were obtained from UPLC-QTOFMS ES� mode
(expressed as P data set) and 925 peaks obtained from ES-
mode (expressed as N data set). The OPLS-DA scores plots
(supplemental Fig. S1 A–S1C) showed three clusters of HCC
patients, benign liver tumor patients and healthy controls.
HCC and benign liver tumor patients were clearly separated
from healthy controls. An OPLS-DA model based on the total
spectral data of GC-TOFMS, UPLC-QTOFMS positive ion
mode, and negative ion mode between 55 HCC patients and
16 benign liver tumor patients was established in
supplemental Fig. S2. HCC patients and benign liver tumor
patients can be successfully differentiated by PC1 (the first
principal component of the model) with statistical significance
(supplemental Fig. S2). To further test the performance of this
model, another group of 27 HCC patients and 8 benign liver
tumor patients were used as testing samples. supple-
mental Fig. S2 shows the prediction results of the 32 testing

samples (green squares and blue stars) using the model es-
tablished with the 71 training samples. All the test samples are
correctly classified as HCC or benign liver tumor patients and
clear separation was achieved between benign and HCC. The
permutation test (1000 times) of the OPLS-DA model corre-
sponding to PCA model including correlation coefficient be-
tween the original Y and the permuted Y versus the cumula-
tive R2 and Q2, with the regression line was shown in
supplemental Fig. S2B. The intercept (R2 and Q2 when cor-
relation coefficient is zero) which is correlated with the extent
of overfitting is rather small (R2 � 0.51 and Q2 � �0.19) and
the model is satisfactory. The OPLS-DA model of data from G,
P, and N demonstrated distinctly different metabolite profiles
of HCC patients, HCC patients (stage I� II), HCC patients
(stage III� IV), and benign liver tumor patients, from healthy
controls, with satisfactory modeling and predictive abilities
using one predictive component and three orthogonal com-
ponents (supplemental Fig. S3).

Fifty-one most significantly altered serum metabolites
(supplemental Table S5) in HCC patients relative to healthy
controls were identified from a two-component OPLS-DA
model of the G, P, and N spectral datasets, annotated by the

FIG. 1. OPLS-DA scores plots and loadings plots of 55 HCC patients (red dots) and 47 healthy controls (blue squares) based on serum
spectral data of (A) GC-TOFMS; (B) UPLC-QTOFMS positive ion mode; and (C) UPLC-QTOFMS negative ion mode. On the right side of
the three scores plots, three representative chromatograms of a HCC (red) and a healthy control sample (blue) derived from GC-TOFMS,
UPLC-QTOFMS positive ion mode, and negative ion mode, respectively.
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mass of molecular and fragment ions, among which 38 were
further validated by reference standards available in our lab-
oratory. A summary of metabolite markers identified and com-
pared among HCC patients at stage I and II, HCC at stage III
and IV, and HCC group (all stages) is provided in supple-
mental Table S5.

Urinary Metabolite Profiles and Markers of HCC—Urine
samples obtained from healthy controls, and HCC patients
were analyzed following the procedures described in Experi-
mental Procedures. Thirty-three urinary differential metabo-
lites were identified in HCC patients relative to healthy con-
trols from the G and P datasets using the same statistical
criterion for serum metabolites selection (supplemental
Table S6 and supplemental Fig. S4). A summary of differential
metabolites in the urine samples of HCC patients (stage I and
II), HCC (stage III and IV), and HCC (all stages), relative to
healthy controls, is provided in supplemental Table S6.

As listed in supplemental Tables S5 and S6, five differential
metabolites are found both in serum and urine samples
(supplemental Table S7) in HCC patients. Among them, phe-
nylalanine, altered in different directions, presumably because
of the different metabolic process involving gut microflora in
urine. Because a great portion of HCC subjects are accom-
panied with liver cirrhosis and hepatitis, some of the metab-
olite markers are associated with liver cirrhosis and hepatitis,
rather than HCC (see the following paragraph). Table II
showed a corrected list of the serum and urinary metabolite
markers for HCC.

Metabolite Markers Associated with Liver Cirrhosis and
Hepatitis—As listed in Table III, X differentially expressed
metabolites in liver cirrhosis and hepatitis condition including
inositol, 2,2�-bipyridine, methionine, arginine, stearic acid,
palmitic acid, citric acid, 2-piperidine carboxylic acid, 5-hy-
droxy-tryptophan, and tyrosine were obtained by comparison
among healthy controls, benign liver tumor patients with liver
cirrhosis and hepatitis, HCC with liver cirrhosis and hepatitis,
and HCC without liver cirrhosis and hepatitis. All 10 metabo-
lites were of statistical significance (p � 0.05) and all of them
have the same direction of perturbation (up- or down-regula-
tion) both in liver cirrhosis and hepatitis patients and HCC
patients with cirrhosis and hepatitis but not in the HCC pa-
tients without cirrhosis and hepatitis. They can be considered
potential markers specific for liver cirrhosis and hepatitis, and
therefore were removed from the list of HCC markers.

Bile Acid Markers in Serum and Urine Samples—As shown
in Table II, higher levels of conjugated bile acids, glycocholic
acid was found in serum and urine and glycochenodeoxy-
cholic acid and taurocholic acid were found in the serum of
HCC subjects compared with healthy controls. Unconjugated
bile acid, lithocholic acid, and deoxycholic acid on the other
hand, was at lower level in HCC patients compared with
healthy controls. Other unconjugated bile acids such as cholic
acid and chenodeoxycholic acid were also shown at lower
levels in HCC patients (Fig. 2). However, the levels of glyco-

cholic acid in serum and urine, and the level of glycocheno-
deoxycholic acid in serum in Table II were inconsistent with
the results in Fig. 2, primarily because of the fact that we used
a subset of samples in Fig. 2.

The alteration of bile acid levels seem to be affected by the
condition of liver cirrhosis. Using our optimized UPLC-
QTOFMS method, a high regression coefficient (r � 0.99)
value of each calibration curve from the spiked seven stand-
ards was obtained, indicating an good linearity in this study
(supplemental Fig. S5 and supplemental Table S8). Bile acid
levels of chenodeoxycholic acid, deoxycholic acid, tauro-
cholic acid, cholic acid, glycochenodeoxycholic acid, litho-
cholic acid, and glycocholic acid were quantitatively deter-
mined and compared among benign liver tumor patients with
liver cirrhosis and hepatitis, HCC with cirrhosis and hepatitis,
HCC without cirrhosis and hepatitis, and healthy controls, as
shown in Fig. 2. Deoxycholic acid was elevated in subjects
with liver cirrhosis and hepatitis by a factor of 1.45 whereas
decreased in HCC patients without cirrhosis and hepatitis by
a factor of 0.23, as compared with the healthy controls. Cholic
acid level decreased in liver cirrhosis patients by 0.95-fold,
but decreased in HCC patients by 0.37-fold (Fig. 2).

AFP Prediction—OPLS-DA model score plots of 55 serum
samples both from G (Fig. 1A), P (Fig. 1B), and N (Fig. 1C)
showed clear separations between HCC patients and healthy
controls, with satisfactory modeling and predictive abilities
(R2X � 0.39, R2Y � 0.944, Q2cum � 0.900 for GCT, R2X �

0.218, R2Y � 0.911, Q2cum � 0.742 for N mode, and R2X �

0.253, R2Y � 0.920, Q2cum � 0.783 for P mode, respec-
tively). Forty-seven healthy controls and 55 HCC patients can
be successfully differentiated by PC1 (the first principal com-
ponent of the model) with statistical significance (Fig. 3). To
further test the performance of this model, another group of
27 HCC patients with AFP values and 24 healthy controls
were used as testing samples. Fig. 3 shows the prediction
results of the 51 testing samples (green triangles and black
stars) using the model established with the 102 training
samples. All the test samples are correctly classified as
HCC or healthy subjects, suggesting that these markers are
of great potential value for HCC diagnosis. Moreover, HCC
patients with AFP values lower than 20 ng/ml can be suc-
cessfully differentiate from healthy controls with 100% ac-
curacy (green triangles with labeled AFP values, see Fig.
3B). The permutation test (1000 times) of the PLS-DA model
corresponding to PCA model including correlation coeffi-
cient between the original Y and the permuted Y versus the
cumulative R2 and Q2, with the regression line was shown
in supplemental Fig. S6. The intercept (R2 and Q2 when
correlation coefficient is zero) which is correlated with the
extent of overfitting is rather small (R2 � 0.21 and Q2 �

�0.28) and the model is satisfactory.
Preliminary Analysis of HCC Stage—A total of 51, 48, and

49 most significantly altered serum metabolites (supplemen-
tal Table S5) in HCC group, HCC at stage I and II group, and
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TABLE II
Summary of the differentially expressed serum and urine metabolites in patients of HCC (all stages) relative to healthy controls. An empty cell
in the table means the alteration of metabolite level is statistically insignificant. G: data obtained from GC-TOFMS, P: data obtained from positive

ion mode of UPLC-QTOFMS, N: data obtained from negative ion mode of UPLC-QTOFMS

Metabolites Metabolic pathway
HCC (Serum) HCC (Urine)

VIPc Pd FC � S.D.e VIPc Pd FC � S.D.e

Deoxycholic acid, N Bile acid metabolism 1.49 2.43E-03 0.36 � 0.1
Glycochenodeoxycholic

acida N
Bile acid metabolism 1.53 1.80E-03 6.67 � 1.59

Glycocholic acida,�P Bile acid metabolism 1.18 3.52E-03 6.4 � 1.66 0.63 9.33E-04 45 � 14.96
Taurocholic acidaN, € Bile acid metabolism 1.17 1.87E-02 25.36 � 6.41
Lithocholic acidaP Bile acid metabolism 0.12 1.45E-02 0.93 � 0.21
Arachidonic acid,G Fatty acid metabolism 1.44 5.38E-08 0.84 � 0.01
cis-5,8,11,14,

17-Eicosapentaenoic
acidaP

Fatty acid metabolism 1.68 5.70E-04 0.43 � 0.08

Docosahexaenoic acida,bG Fatty acid metabolism 1.27 2.43E-06 0.82 � 0.03
Glycerol,G Fatty acid metabolism 1.16 2.00E-05 0.85 � 0.02
Myristic acidaN Fatty acid metabolism 1.84 1.45E-04 0.66 � 0.06
Nervonic acida,bN Fatty acid metabolism 1.39 4.75E-03 0.56 � 0.09
Alaninea,bG Methionine Metabolism 2.12 2.68E-02 0.71 � 0.09
Cysteinea,b�G Methionine Metabolism 1.29 1.81E-06 1.25 � 0.03 1.57 3.34E-03 0.35 � 0.12
Cystinea,b�G Methionine Metabolism 1.91 1.54E-14 1.44 � 0.04 1.09 4.34E-02 1.32 � 0.11
GlycineaG Methionine Metabolism 1.01 2.37E-04 0.86 � 0.02
Serinea,bG Methionine Metabolism 1.16 2.06E-05 0.84 � 0.02
TaurineaP Methionine Metabolism 0.91 2.48E-02 1.45 � 0.15 1.35 1.22E-02 1.43 � 0.13
Aspartic acida,bG Urea cycle 1.26 3.06E-06 0.89 � 0.01
Citrulline.bG Urea cycle 1.51 9.47E-09 0.87 � 0.01
Glutamic acida,b G Urea cycle
Ornithinea,b G Urea cycle 1.55 3.55E-09 0.96 � 0.03
Fumaric acidaG TCA cycle 1.39 2.17E-07 1.28 � 0.04
Succinic acid,G TCA cycle 1.97 4.02E-02 0.63 � 0.12
��Ketoglutaric acid,G TCA cycle 1.18 1.58E-05 1.11 � 0.01
Lactic acida,bG Glycolysis 1.08 7.97E-05 1.16 � 0.03
Pyruvic acidbG Glycolysis 1.26 3.46E-06 1.18 � 0.03
4-Hydroxyphenylacetate,G Gut flora metabolism 1.39 4.51E-02 0.69 � 0.13
Trimethylamine N-oxideaP Gut flora metabolism 1.74 1.09E-03 0.54 � 0.07
Kynureninea,bG Tryptophan Metabolism 1.24 4.76E-06 0.77 � 0.03
Tryptophana,bG Tryptophan metabolism 1.12 4.00E-05 0.76 � 0.03
DopamineaP Tyrosine Metabolism 2.2 2.53E-05 1.64 � 0.11
Homovanillate,G Tyrosine Metabolism 2.73 4.10E-03 0.65 � 0.06
NormetanephrineaP Tyrosine Metabolism 1.48 5.69E-03 0.44 � 0.12
AdenineaP Purine Metabolism 1.45 7.09E-03 0.44 � 0.1
AdenosineaP Purine Metabolism 1.92 2.97E-04 1.6 � 0.11
Hypoxanthinea,bP,€ Purine Metabolism 1.42 8.18E-03 1.42 � 0.13
Inosinea,bN Purine Metabolism 0.93 1.27E-10 40.62 � 19.37
Uric acidaP Purine Metabolism 1.5 5.15E-03 1.61 � 0.16
XanthineaP Purine Metabolism 1.64 2.18E-03 1.61 � 0.16
Carnosine,P Histidine Metabolism 1.28 1.81E-02 0.83 � 0.04
Lysinea,bG Lysine Degradation 1.32 8.93E-07 0.79 � 0.03
Nicotinic acidaP Nicotinate and Nicotinamide

Metabolism
1.33 1.37E-02 0.24 � 0.1

Glucosamine,G Amino Sugar Metabolism 1.53 6.16E-09 0.62 � 0.03
N-Acetyl-L-Aspartic acidaP Aspartate metabolism 1.09 4.38E-02 1.37 � 0.14
D-(�)-galactose,G Galactose Metabolism
Pyroglutamic acidaN Glutathione Metabolism 0.88 1.53E-03 0.9 � 0.02
Phenylalaninea,b�G Phenylalanine and Tyrosine

Metabolism
1.06 1.22E-04 0.85 � 0.02 1.41 8.64E-03 1.26 � 0.07

CytidineaN Pyrimidine Metabolism 1.02 4.05E-02 0.55 � 0.13
DihydrouracilaP Pyrimidine Metabolism 2 1.50E-04 1.41 � 0.07
Cysteic acida,bP Taurine Metabolism 1.84 5.33E-04 0.4 � 0.05
HypotaurineP Taurine Metabolism 1.55 3.89E-03 1.53 � 0.16
Threoninea,bP Threonine metabolism 2.34 7.18E-06 1.77 � 0.13
Leucinea,bN Valine, Leucine and Isoleucine

Degradation
1.21 1.45E-02 0.83 � 0.05

�-alaninea,bG € �-Alanine Metabolism 0.85 2.45E-03 0.8 � 0.05
PyridoxalaP Vitamine 1.33 1.32E-02 1.99 � 0.32
�-tocopherolaG Vitamine 1.37 3.19E-07 0.96 � 0
2,3-dihydroxy-2(3H)-

furanone,G
Others 1.63 3.37E-10 1.43 � 0.04
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HCC at stage III and IV group were identified from a three-
component OPLS-DA model and determined based on the
mass of molecular and fragment ions, respectively. These
metabolites are listed in supplemental Table S5 along with
the VIP and p values (Student’s t test). There are several
serum metabolites which showed a consistent trend of al-
teration (up- or down-regulation) from stage I to IV of HCC
patients (Fig. 4). Glycochenodeoxycholic acid, and some
metabolites including oleamide, aspartic acid, and 4-keto-
glucose (not shown in Fig. 4) were consistently depleted at
each of the four stages, whereas glycocholic acid and �-ke-
toglutaric acid fluctuated among different stages. Interest-
ingly, some metabolites such as inosine and chenodeoxy-
cholic acid altered differently at stage II (32), presumably
because of the fact that stage II and III have drastically

different pathological phenotypes, such as lymph node in-
vasion. Therefore, inosine and chenodeoxycholic acid
should be further investigated as potential markers for HCC
stratification.

DISCUSSION

Because the metabolomic data typically contains a large
number of variables that are interrelated, multivariate statisti-
cal methods such as PCA and OPLS-DA coupled with uni-
variate statistical methods such as Student’s t test were used
in this study. Therefore, feature selection from variables was
performed using two parameters, a threshold of 1 and 0.05 by
VIP and Student’s t test P, respectively, to identify differential
metabolites with biological significance as endpoints of al-
tered interdependent biochemical pathways.

TABLE II—continued

Metabolites Metabolic pathway
HCC (Serum) HCC (Urine)

VIPc Pd FC � S.D.e VIPc Pd FC � S.D.e

2,3-dihydroxyl-propanoic
acid,G

Others 1.93 6.53E-15 0.79 � 0.02

2-pyrrolidone-5-carboxylic
acidaP

Others 1.2 2.65E-02 0.52 � 0.11

3-amino-2-piperidoneaG Others 1.56 2.71E-09 0.85 � 0.01
4-ketoglucose,G Others 1.74 8.19E-12 0.6 � 0.03
6-Aminocaproic acidaP Others 2.36 5.49E-06 0.09 � 0.02
AgmatineaP Others 1.38 1.06E-02 1.5 � 0.17
Arabinose,G Others 1.98 6.70E-16 0.45 � 0.03
CarnitineaP Others 1.39 5.16E-04 1.36 � 0.07
Creatininea,bG Others 1.6 8.81E-10 0.77 � 0.02
CreatineaP, € Others 2 1.49E-04 0.46 � 0.07
N-Acetyl-neuraminic

acidaP
Others 2.29 1.08E-05 2.43 � 0.26

Oleamide	,G Others 2.67 7.62E-48 0.7 � 0.01
O-Phospho-L-serineaP Others 1.22 2.33E-02 1.36 � 0.11
Phosphoric acid,G Others 1.48 2.36E-08 0.88 � 0.01

a Metabolites validated by reference standards.
b Metabolites that can be identified by GC-TOFMS and UPLC-TOFMS.
c Variable importance in the projection (VIP) was obtained from OPLS with a threshold of 1.0.
d P means p value obtained from Student’s t-test.
e The Fold change (FC) with a value larger than 1.0 indicates a significantly higher level of the serum or urine metabolite in patients while a

FC value lower than 1.0 indicates a lower level, relative to healthy controls.

TABLE III
Summary of the metabolite markers associated with liver cirrhosis and hepatitis (p � 0.05)

Metabolite
Liver cirrhosis�hepatitis HCC (cirrhosis�hepatitis) HCC

FC � S.D.a Pb FC � S.D.a Pb FC � S.D.a Pb

Inositol 0.73 � 0.07 4.41E-03 0.87 � 0.06 4.44E-02 0.86 � 0.14 4.21E-01
2,2�-Bipyridine 0.85 � 0.03 9.34E-04 0.90 � 0.02 2.50E-04 0.95 � 0.04 3.11E-01
Methionine 0.70 � 0.08 6.31E-03 0.78 � 0.03 1.56E-04 0.81 � 0.02 5.48E-02
Arginine 0.41 � 0.12 3.18E-02 0.48 � 0.08 7.72E-04 0.60 � 0.17 2.87E-01
Stearic acid 0.60 � 0.01 1.96E-02 0.71 � 0.01 4.94E-03 0.82 � 0.005 3.12E-01
Palmitic acid 0.80 � 0.03 8.95E-03 0.82 � 0.04 5.95E-04 0.88 � 0.06 1.02E-01
Citric acid 0.61 � 0.15 2.81E-03 0.79 � 0.05 2.84E-04 0.81 � 0.08 5.16E-02
2-piperidine carboxylic acid 0.86 � 0.06 5.29E-03 0.92 � 0.03 1.66E-03 0.93 � 0.06 2.86E-01
5-Hydroxy-tryptophan 2.23 � 0.31 3.64E-02 2.05 � 0.26 9.40E-03 2.95 � 0.28 3.06E-01
Tyrosine 0.24 � 0.03 4.04E-02 0.31 � 0.10 8.60E-04 0.72 � 0.15 3.12E-01

a FC with a value larger than 1.0 indicates a relatively higher concentration present in HCC patients (or HCC patients accompanied with
cirrhosis and hepatitis, or benign liver tumor patients with cirrhosis and hepatitis) while a FC value lower than 1.0 means a relatively lower
concentration as compared to the healthy controls.

b P means p value obtained from Student’s t-test.
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The cohort of patients with benign liver tumors (see Table
I) collected in our study was highly heterogeneous, there-
fore, the analytical results of benign liver tumor patients are
of little practical use. Because liver cirrhosis and hepatitis
are chronic liver conditions that may have its own charac-

teristic metabolomic markers, we identified a panel of mark-
ers specific for liver cirrhosis and hepatitis which were then
excluded from the list of HCC markers. Altered bile acid
levels associated with liver cirrhosis and hepatitis, HCC
patients with and without cirrhosis and hepatitis were quan-

FIG. 2. Bar charts of quantitative
analysis results of bile acids in serum
and urine samples (Mean � S. E., �g/
ml) (* p < 0.05; **, p < 0.01). (1. HCC
patients; 2. HCC patients with cirrhosis
and hepatitis; 3. liver cirrhosis and hep-
atitis patients; 4. Healthy controls).
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titatively determined and compared among the three con-
ditions in Fig. 2.

Previous HCC metabolomic studies (19–21, 33) were not
able to identify a sufficient number of metabolite markers
because of the limitation in sample size and analytical plat-
form(s) used. A recently published GC-MS based metabolo-
mics study (20) identified eight serum metabolites using a
library without validation of reference standards. Our com-
bined use of two analytical platforms takes advantage of

complementary analytical outcomes and therefore, broadens
the “window” of important metabolic variations identified. An-
other advantage of using the LC-MS and GC-MS in combi-
nation is that we can cross-validate the metabolites mutually
detected by these two analytical platforms. Twenty serum
metabolites, including creatinine, lactic acid, nervonic acid,
aspartic acid, citrulline, cysteine, cystine, serine, kynurenine,
pyruvic acid, phenylalanine, oleamide, pyroglutamic acid, in-
osine, and ornithine, were identified in both analytical plat-

FIG. 3. The OPLS-DA prediction
model of HCC. An OPLS-DA model was
constructed using data from 47 healthy
controls (blue squares) and 55 HCC pa-
tients (red dots) (the ‘‘training set”), this
model was then used to predict HCC of
a further 51 samples including 24 healthy
controls (black stars) and 27 HCC pa-
tients (green triangles) that were not
used in the construction of the model
(the ‘‘testing set”). (A) scores plot; (B)
magnified scores plot of HCC, the labled
numbers are AFP values; (C) loadings
plot with identified compounds.
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forms with the same alteration direction (up- or down-regula-
tion). The consistent results generated from these two
platforms indicate the robustness of the metabolomic proce-
dure used in this study. The OPLS-DA models derived from
our current GC-TOFMS and UPLC-QTOFMS (both positive
and negative ion mode) metabolic analysis showed good and
similar separations between patients with HCC and healthy
controls, highlighting the diagnostic potential of this noninva-
sive profiling approach.

The elevated level of conjugated bile acids appears to be
associated with HCC at stage I, whereas levels of bile acids
were elevated, to a lesser extent, in patients with more ad-
vanced HCC (stage II to IV) (Fig. 4). This was inconsistent with
the quantitative result of bile acids. The reason for such an
abrupt increase in conjugated bile acids at stage I of HCC and
a gradual attenuation at stage II to IV is unknown, but is
presumably associated with “acute” disruption of liver func-
tion at the early stage of tumorigenesis.

In the meantime, significantly lower levels of long-chain
fatty acids and their derivates were observed in serum of
HCC. Oleamide (cis-9, 10-octadecenoamide) was at a con-

sistently low level from stage I to IV. Stearic acid, arachidonic
acid, palmitic acid, myristic acid, etc. were down-regulated in
the serum of HCC patients with great statistical significance.
Apparently, the impaired liver function resulting from HCC
impacts fatty acid metabolism and may be associated with a
decreased consumption of conjugated bile acids, which in
turn, resulted in a higher level of conjugated bile acids and a
lower level of unconjugated bile acids in serum.

Blood samples provide an instant metabolome at the time
of collection, whereas urine samples contain an average
metabolomic change within a time course. GC-TOFMS based
profiling identified a panel of 10 differential urinary metabo-
lites, whereas UPLC-QTOFMS identified 28 differential me-
tabolites in HCC patients. Among them, alanine, cysteine,
cystine, cysteic acid, tyrosine, phenylalanine, and threonine
were identified in both analytical platforms with the same
alteration direction (up- or down-regulation).

Using either of the two panels of variables, 43 serum me-
tabolites or 31 urine metabolites, HCC patients can be statis-
tically separated from healthy controls by a three component
PCA scores plot (supplemental Fig. S7), indicating that these

FIG. 4. Bar charts showing fluctuations in integrated intensities of six representative serum differential metabolites and three urine
metabolites among five phenotypic states; healthy, HCC stage I, II, III, and IV. (*, p � 0.05; **, p � 0.01, compared with healthy control).
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metabolites hold the potential to be candidate diagnostic
biomarkers.

Ornithine, citrulline, and arginine were detected significantly
decreased in the serum of HCC patients as compared with
healthy controls (34). Furthermore, ornithine decreased grad-
ually from stage I to IV. Coincidentally, these three amino
acids participate in the urea cycle (UC) (35), which allows for
the disposal of excess nitrogen and takes place only in mam-
mals’ hepatocyte. A recent report on proteomic analysis of
UC revealed the down-regulation of urea cycle enzymes (34),
and the UC activity in HepG2 cells (a cell line of HCC) was also
found decreased (36). As a result, aspartic acid, a nitrogen
supplier in UC, was hence accumulated as the increased level
of aspartic acid was detected in serum of HCC patients.

Similar to the metabolic observations in other cancers (25),
higher levels of pyruvate and lactate were also discovered in
the serum of HCC patients as compared with healthy controls,
presumably because of higher energy consumption involving
glycolysis in the solid tumor tissues.

A decreased level of serum creatinine in HCC patients was
observed, because a reduced rate of creatinine production in
patients with hepatic disease is likely expected because of the
decreased hepatic conversion of creatine to creatinine (37).
Concurrently, methionine and arginine, the amino acids in-
volved in the synthesis of creatine (38), were also found sig-
nificantly decreased in HCC serum. The decreased serum
methionine was consistent with a low level of serine, one of
the amino acid sources of one-carbon groups for tetrahydro-
folic acid to synthesize methionine (THF, methionine cycle). A
low level of cysteine and alanine in urine also suggests the
down-regulation of methionine metabolism.

Alpha-fetoprotein (AFP), the most widely used tumor
marker for detecting liver cancer, is affected by different
pathophysiological conditions, including pregnancy, hepatitis,
and the involvement of other types of cancer. Levels of AFP
exceeding 50 ng/ml occur in only 
40–60% of patients with
HCC (39), and the false negative rate of diagnosis of HCC with
AFP is usually 20–30%. Our metabolomic model was able to
stratify between the HCC patients with AFP values higher than
20 ng/ml and healthy controls. Furthermore, HCC patients
with AFP values lower than 20 ng/ml were successfully clas-
sified into the HCC group with an accuracy of 100%, using a
panel of metabolite markers. Therefore, it is promising and
also technically feasible to develop a panel of metabolite
markers for the clinical diagnosis of the HCC patients, mini-
mizing the false negative rate of diagnosis based on a single
biomarker, such as AFP.

The aim of this study was to search for potential metabolite
markers for human HCC. However, multiple phenotypes, such
as cirrhosis and hepatitis, may complicate the biomarker se-
lection for HCC and result in unique markers independent of
HCC. We identified the markers resulting from cirrhosis and
hepatitis conditions (see Table III) by comparing among be-
nign liver tumor patients with liver cirrhosis and hepatitis, HCC

with cirrhosis and hepatitis, and HCC without cirrhosis and
hepatitis. But we were not able to investigate the metabolic
influence by hepatitis or cirrhosis alone because the majority
of HCC patients are accompanied with both hepatitis and
cirrhosis. Therefore, the metabolic influence of hepatitis or
cirrhosis is not investigated separately, which is a limitation of
this study.

In summary, we have successfully applied a global metabo-
lomic profiling approach to the study of HCC. We identified
significant serum and urine metabolite markers relevant to the
HCC and its different stages. These metabolite markers are
involved in several key metabolic pathways such as bile acids,
free fatty acids, urea cycle and methionine metabolism. Me-
tabolites listed in Table II, such as bile acids, histidine, inosine,
are of great statistical significance (high fold changes), and
therefore, warrant further validation as a single biomarker or a
panel of biomarkers for HCC. Several bile acids, cholic acid,
glycocholic acid, deoxycholic acid and glycochenodeoxy-
cholic acid, altered differently in concentration in the HCC
patients with or without liver cirrhosis and hepatitis, which
hold the potential as markers for the stratification of HCC
subjects with and without cirrhosis and hepatitis (Fig. 2). The
results of our study showed that the metabolomic profiling
approach is a promising screening tool for the diagnosis and
stratification of HCC.

* This work was financially supported by the National Basic Re-
search Program of China (2007CB914700), the National Science and
Technology Major Project (2009ZX10005-020) the Natural Science
Foundation of Shanghai (10ZR1414800) and the National Science
Foundation of China (20775048).

□S This article contains supplemental Figs. S1 to S7 and
Tables S1 to S8.

¶¶ To whom correspondence should be addressed: Department of
Nutrition, University of North Carolina at Greensboro, North Carolina
Research Campus, Kannapolis, NC 28081. Phone: 704-250-5803;
Fax: 704-250-5809; E-mail: w_jia@uncg.edu.

�� These authors contributed equally to this work.

REFERENCES

1. El-Serag, H. B., and Rudolph, K. L. (2007) Hepatocellular carcinoma: Epi-
demiology and molecular carcinogenesis. Gastroenterology 132,
2557–2576

2. World Health Organization. Mortality Database, WHO Statistical Informa-
tion System. Availableat http://www.who.int/whosis/en/; accessed
March 19, 2008

3. Kassahun, W. T., Fangmann, J., Harms, J., Hauss, J., and Bartels, M. (2006)
Liver Resection and Transplantation in the Management of Hepatocel-
lular Carcinoma: A Review. Exp. Clin. Transplant. 4, 549–558

4. Fong, T. L., and Schoenfield, L. J. Hepatocellular Carcinoma (Liver Cancer)
available at http://www.medicinenet.com/liver-cancer/article.htm

5. Anthony, P. P. (2001) Hepatocellular carcinoma: an overview. Histopathol-
ogy 39, 109–118

6. El-Serag, H. B., and Mason, A. C. (1999) Rising incidence of hepatocellular
carcinoma in the United States. N Eng J. Med. 340, 745–750

7. El-Serag, H. B., Tran, T., and Everhart, J. E. (2004) Diabetes increases the
risk of chronic liver disease and hepatocellular carcinoma. Gastroenter-
ology 126, 460–468

8. Onodera, H., Ukai, K., and Minami, Y. (1995) Hepatocellular-Carcinoma
Cases with 5-Year Survival and Prognostic Factors Affecting the Surviv-
al-Time. Tohoku J. Exp. Med. 176, 203–211

9. Coston, W. M., Loera, S., Lau, S. K., Ishizawa, S., Jiang, Z., Wu, C. L., Yen,

Serum and Urine Metabolomics Study of HCC

10.1074/mcp.M110.004945–12 Molecular & Cellular Proteomics 10.7

http://www.mcponline.org/cgi/content/full/M110.004945/DC1
http://www.mcponline.org/cgi/content/full/M110.004945/DC1


Y., Weiss, L. M., and Chu, P. G. (2008) Distinction of hepatocellular
carcinoma from benign hepatic mimickers using glypican-3 and CD34
immunohistochemistry. Am. J. Surg. Pathol. 32, 433–444

10. Colli, A., Fraquelli, M., Casazza, G., Massironi, S., Colucci, A., Conte, D.,
and Duca, P. (2006) Accuracy of ultrasonography, spiral CT, magnetic
resonance, and alpha-fetoprotein in diagnosing hepatocellular carci-
noma: A systematic review. Am. J. Gastroenterol. 101, 513–523

11. Chan, E. C., Koh, P. K., Mal, M., Cheah, P. Y., Eu, K. W., Backshall, A.,
Cavill, R., Nicholson, J. K., and Keun, H. C. (2009) Metabolic profiling of
human colorectal cancer using high-resolution magic angle spinning
nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas
chromatography mass spectrometry (GC/MS). J. Proteome Res. 8,
352–361

12. Nicholson, J. K., Lindon, J. C., and Holmes, E. (1999) ‘Metabonomics’:
Understanding the metabolic responses of living systems to pathophys-
iological stimuli via multivariate statistical analysis of biological NMR
spectroscopic data. Xenobiotica 29, 1181–1189

13. Kuo, Y. T., Li, C. W., Chen, C. Y., Jao, J., Wu, D. K., and Liu, G. C. (2004)
In Vivo Proton Magnetic Resonance Spectroscopy of Large Focal He-
patic Lesions and Metabolite hange of Hepatocellular Carcinoma Before
and After Transcatheter Arterial Chemoembolization Using 3.0-T MR
Scanner. J. Magn. Reson. Imaging 19, 598–604

14. Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu,
J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A.,
Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh,
D., Pennathur, S., Alexander, D. C., Berger, A., Shuster, J. R., Wei, J. T.,
Varambally, S., Beecher, C., and Chinnaiyan, A. M. (2009) Metabolomic
profiles delineate potential role for sarcosine in prostate cancer progres-
sion. Nature 457, 910–914

15. Woo, H. M., Kim, K. M., Choi, M. H., Jung, B. H., Lee, J., Kong, G., Nam,
S. J., Kim, S., Bai, S. W., and Chung, B. C. (2009) Mass spectrometry
based metabolomic approaches in urinary biomarker study of women’s
cancers. Clin. Chim. Acta 400, 63–69

16. Denkert, C., Budczies, J., Kind, T., Weichert, W., Tablack, P., Sehouli, J.,
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