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Abstract
A type of “matched filter” (MF), used extensively in the processing of one-dimensional spectra, is
defined by multiplication of a free-induction decay (FID) by a decaying exponential with the same
time constant as that of the FID. This maximizes, in a sense to be defined, the signal-to-noise ratio
(SNR) in the spectrum obtained after Fourier transformation. However, a different entity known
also as the matched filter was introduced by van Vleck in the context of pulse detection in the
1940's and has become widely integrated into signal processing practice. These two types of
matched filters appear to be quite distinct. In the NMR case, the “filter”, that is, the exponential
multiplication, is defined by the characteristics of, and applied to, a time domain signal in order to
achieve improved SNR in the spectral domain. In signal processing, the filter is defined by the
characteristics of a signal in the spectral domain, and applied in order to improve the SNR in the
temporal (pulse) domain. We reconcile these two distinct implementations of the matched filter,
demonstrating that the NMR “matched filter” is a special case of the matched filter more
rigorously defined in the signal processing literature. In addition, two limitations in the use of the
MF are highlighted. First, application of the MF distorts resonance ratios as defined by
amplitudes, although not as defined by areas. Second, the MF maximizes SNR with respect to
resonance amplitude, while intensities are often more appropriately defined by areas. Maximizing
the SNR with respect to area requires a somewhat different approach to matched filtering.

Introduction
A widely used technique for improving signal-to-noise (SNR) in 1-D NMR spectroscopy is
to multiply a free-induction decay signal (FID) by an exponential with the same decay time
constant. This operation, which we will denote the NMR matched filter (NMR-MF), can
strictly be applied only when the signal consists of a single exponential component, that is,
when the corresponding spectrum consists of a single Lorentzian spectral line. It is
nevertheless implemented empirically when multiple, and possibly non-Lorentzian, lines are
present through multiplication by an exponential which roughly matches the decay of the
FID; of course, the resulting SNR will then differ somewhat from that obtained in the ideal
case. The NMR-MF can be understood intuitively by noting that SNR is greatest at the
beginning of an FID and decreases over the acquisition period, so that preferential weighting
of the initial part of the signal leads to an increase in spectral SNR after Fourier
transformation. Multiplication by many functional forms would result in such preferential
weighting; the fact that among exponentials, maximum SNR results from multiplication as
described above has been demonstrated in many places (1–3). It is important to note that the
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SNR maximized in this way is defined according to maximum spectral line amplitude, rather
than area.

However, the concept of an SNR-optimizing MF predates pulse NMR and has a long history
in signal processing (4,5). This filter, which we denote the SP-MF, maximizes the SNR of a
time domain signal and is derived by considering the FT of that signal (5,6). In contrast, the
NMR-MF maximizes the SNR of a spectrum, and is derived by considering the FID, which
is the inverse FT of that spectrum. At face value, then, the NMR-MF and the SP-MF are
distinct constructs, although one suspects an intimate relationship. Given the fact that the
ideal NMR lineshape, the Lorentizian, is the Fourier transform of a decaying exponential, it
is tempting to state that the relationship between the NMR-MF and the SP-MF is trivial and
follows from the convolution theorem. This is not quite the case. In fact, when queried, well-
known NMR signal processing experts have stated that the NMR-MF and the SP-MF are
quite different entities.

Our goal is to reconcile the SP-MF with the NMR-MF, demonstrating that contrary to
appearances and common belief, they are equivalent. We demonstrate this from both a
signal-domain approach and a transform-domain approach after first establishing our
notation for the Fourier transform and reviewing the required concepts of convolution, the
convolution theorem, and signal filtering.

Finally, we describe a modification of the MF which maximizes spectral SNR defined with
respect to signal area rather than amplitude. The derivation of this modified matched filter
(MMF) is based on the fact that spectral line area is proportional to the amplitude of the first
point of the FID, which is also the position of maximal SNR.

The Fourier Transform (7)
The relationships between a continuous complex-valued function of time, f(t), and its
Fourier transform (FT) F(ν), which is a function of frequency, are

(1)

and

(2)

The variablest and ν are called conjugate variables; according to these definitions, they must
have reciprocal units. We will generally take f(t) to be real; F(ν) will nevertheless be
complex in general. F(ν) will be called the spectrum of f(t); other definitions may be found
in the literature. The real and imaginary parts of F(ν) define the amplitudes and phases of the
frequency components comprising f(t). From Eq.(2),

(3)

In the case of one-dimensional NMR, in which f(t) is the FID and F(ν) is the spectrum, this
means that spectral line area is proportional to the initial value of the FID.

The FT is a map between function spaces and may be written
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(4)

with inverse mapping

(5)

Designating the variable labels in Eqs. (4) and (5) is not strictly necessary, but is often done
for clarity to indicate functions in the domain and range of the FT. A common choice is t
and ν, as in the above.

The FT operation, when composed with itself, does not yield the identity:

(6)

Rather,

(7)

Similarly,

(8)

The presence of the (−) signs in Eqs. (7) and (8) accounts for much of the difficulty in
establishing the relationship between the NMR-MF and the SP-MF.

Convolution and the Convolution Theorem
The convolution of two functions f(t) and g(t) is defined by:

(9)

and has the property

(10)

Convolution is of central importance because convolution in the time domain is equivalent
to multiplication in the frequency domain, and conversely (7). For functions f(t) and g(t)
with FT's F(ν) and G(ν) , the time convolution theorem is

(11)

while the frequency convolution theorem is

(12)
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Signal Filtering
We consider a time domain signal, denoted s(t), and its spectrum S(ν). Many filtering
operations on S(ν) can be defined as increasing or decreasing the amplitude of S(ν) over
particular frequency ranges corresponding respectively to desired or undesired frequency
components. Such filtering is conveniently achieved by multiplication of S(ν) by a transfer
function, G(ν), so that the filtered spectrum SF(ν) is

(13)

Examples include low-pass filters designed to reduce or eliminate high-frequency noise;
G(ν) is then large in the region of the frequency axis origin, that is at low frequencies, and
smaller, perhaps zero, away from the origin towards higher frequencies. An ideal low-pass
filter which eliminates all frequency components with |ν| > B while leaving all lower
frequencies intact is the top-hat function

(14)

A high-pass filter designed to emphasize rapid changes in the signal and de-emphasize slow
drift, or a bandpass filter designed to emphasize the components of a signal within a certain
frequency band, may be defined analogously. The SNR-maximization property used below
to derive the SP-MF is an example of a design criterion more subtle than tailoring of
frequency response.

Although filter characteristics are usually specified by a transfer function defined in the
frequency domain, the filtering step is often applied to the time-domain signal directly so
that desirable signal properties are presented to downstream processing steps. We can
describe the time-domain operation corresponding to frequency filtering by using the
convolution theorem. Applying the inverse FT to Eq. (13) and using Eq. (11), we find for
the time-domain filtered signal sF(t):

(15)

where . The function g(t) is called the impulse response function of G(ν),
since for an impulse signal s(t) = δ(t), where δ denotes the Dirac delta function, one has sF(t)
= g(t).

In summary, we have described two formulations of filtering a signal s(t) with spectrum
S(ν). Filtering in the time domain by a filter with impulse response function g(t) is defined
by the convolution

(16)

with corresponding spectrum
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(17)

. Equivalently, filtering can be described in the frequency domain through multiplication by
the corresponding transfer function

(18)

where the impulse response function and the transfer function are related by Fourier
transformation:

(19)

Derivation of the SP-MF
We now derive the SP-MF following Turin (5). Consider a waveform x(t) consisting of a
desired signals(t) corrupted by stationary white noisen(t):

(20)

The waveform xF(t) resulting from application of a filter with impulse response g(t) to x(t)
will consist of components due to the desired signal and to the noise:

(21)

We wish to determine the g(t) that maximizes the ratio of the output power of the desired
component of the filtered signal at some time t = Δ, sF(Δ), to the noise power. Let S(n)
denote the unfiltered spectrum of the desired signal and G(n) the transfer function of the
filter. G(n)S(n) is the spectrum of the desired signal after filtering:

(22)

with the amplitude of the corresponding filtered output at t = Δ given by:

(23)

The power in the filtered signal at time D is the square of this.

If the noise power density is P0, the power density Y of the filtered noise is (8)

(24)

so that the total output noise power across all frequencies is
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(25)

Therefore, the SNR ratio we wish to maximize is

(26)

This can be accomplished through the Schwarz inequality (9), which states that for two
complex-valued functions f1 and f2

(27)

with equality holding if and only if , for k an arbitrary constant and with the
asterisk denoting complex conjugate.

We identify G(ν) and S(ν)ei2πΔν with f1(x) and f2(x), respectively, obtaining for the
numerator of Eq. (26):

(28)

Eq. (26) then becomes

(29)

By inspection, equality in Eq. (28), maximizing the SNR ρ, holds for

(30)

Here and in the following, multiplicative constants in the definitions of filters and transfer
functions represent arbitrary scaling and are of no significance.

Thus, the transfer function of the SP-MF, Eq. (30), is, except for an arbitrary multiplicative
constant, equal to the complex conjugate of the spectrum of the desired signal, multiplied by
an adjustable phase factor which defines the time, D, at which the filtered signal maximum
is to occur. The designation “matched filter” refers to the fact that G(ν) is just a scaled and
phase-shifted version of(S(ν))*. Eq. (30) also accounts for another common name for the SP-
MF, namely the Fourier conjugate filter. It is of central importance that G(ν) is independent
of n(t), depending solely upon s(t).

Eq. (30) defines the SP-MF in the frequency domain. We now wish to derive the equivalent
time-domain representation, in accordance with Eq. (16), through signal convolution with
the inverse FT of Eq. (30). We make use of the following relations. Denoting as usual Á[f(t)]
(n) ° F(n) for a real-valued function f, we have
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(31)

and, if we define

(32)

then

(33)

The impulse response function corresponding to G(ν) defined in Eq. (30) is then

(34)

that is, g(t) is a shifted and time-reversed version of s(t). Therefore, the filtered signal in the
time domain is

(35)

with Fss(t) denoting the autocorrelation function of s(t).

It might be thought that application of this time-domain filtering to the special case of the
FID will provide the NMR-MF. However, the above calculation was based on maximizing
the SNR of a time-domain signal, not a spectrum, and calculations were performed in the
frequency domain only for convenience in obtaining the final expression, Eq. (30), or
equivalently, Eq. (34).

In summary, application of the SP-MF to the waveformx(t) = s(t) + n(t) is accomplished by
convolving it with a filter function g(t) constructed froms(t) as specified in Eq. (34). The
SNR of the time-domain filtered signal is thereby maximized, as appropriate for detection
and characterization of a pulse, such as a radar signal. The calculations leading to Eq. (30)
were performed in the frequency domain, but otherwise the spectrum of the signal was not
of independent interest. This is in contrast to NMR spectroscopy, where it is the SNR of the
spectrum of a time-domain signal that is to be maximized. In effect, in NMR, the “pulse”
which is to have its SNR maximized is on the frequency, rather than the time, axis. Before
showing that the NMR-MF and the SP-MF are equivalent, we briefly review the effect of
exponential multiplication of the FID in one-dimensional NMR and then discuss the
derivation of the NMR-MF.
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The FID and the Spectrum
We review well-known facts to establish our framework and notation. The FID for
uncoupled spins is given by a superposition of damped sinusoids:

(36)

where i labels the i − th signal component, with FID amplitude 2M0i, offset frequency ν0,i,
and decay time constant T2,i. Eq. (36) is written for single-phase detection; for quadrature
detection, cos 2πν0,it is replaced by e−2πν0,it.

The signal for a single-component on-resonance FID is:

(37)

with corresponding spectral line

(38)

having real and imaginary parts:

(39)

and

(40)

The spectral lineshape described by Eq. (39) is the Lorentzian line with area M0. For a line
with frequency offsetν0,ν in Eqs. (39) and (40) is replaced by Δ ν ≡ − ν0. The maximum
amplitude of SRe(ν) occurs at ν = 0 and is

(41)

The full-width at half-maximum (FWHM) is

(42)

Exponential Multiplication of the FID
The signal after exponential multiplication (EM) by r(t) = e−t/τ is:
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(43)

Comparison of Eq. (43) with Eq. (37) shows that we can obtain the spectrum and FWHM of

sEM(t) by replacing 1/ T2 in Eqs. (39) – (42) with . Thus,

(44)

(45)

(46)

and

(47)

Derivation of the NMR-MF
Since SNR is the main consideration in deriving the NMR-MF, the above approach must be
modified to account for noise; data acquired after the FID has largely decayed is
predominantly noise, so that SNR analysis must incorporate acquisition time.

Following Lindon and Ferrige (3), the spectral line resulting from acquisition of the FID
over a time T is:

(48)

It can be shown either through direct calculation or using the convolution theorem that the
spectral line maximum is attained at n = 0, as for Eq. (38). The maximum line amplitude is
therefore

(49)

The RMS noise amplitude  is given in terms of the time-domain noise fluctuations by:

Spencer Page 9

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(50)

Clearly, spectral domain noise will be proportional to time domain noise, as well as to a
factor of , coming about from addition of random noise over time T. In the spectral
domain, the RMS noise therefore becomes (8)

(51)

so that the SNR, the ratio of Eq. (49) to Eq.(51), is:

(52)

This is maximized as a function of T for T ; 1.25 T2; additional signal acquired beyond this
time is outweighed by additional noise, leading to a decrease in SNR. In fact, Eq. (52) shows
that in the limit of T → ∞, SNR = 0

The SNR of the exponentially multiplied signal is derived similarly, with the integrands in
Eqs. (49) and (50) being multiplied by e−t/τ. One finds for the maximum line amplitude:

(53)

and for the RMS noise amplitude:

(54)

so that the resulting SNR is:

(55)

Maximizing with respect to τ rsults in τ = T2, thus deriving the NMR-MF. Substituting t =
T2, the resulting SNR is:

(56)

In contrast to Eq. (52), SNRNMR–MF increases as a function of T, although it is bounded as T
→ ∞, reflecting the fact that the desired signal component diminishes with time.
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Similarly, from Eqs. (44) and (47) the line shape and linewidth resulting from application of
the NMR-MF are:

(57)

and

(58)

These formulas are those that would be obtained directly from an FID decaying at twice the
rate of that in Eq. (37), that is, from

(59)

Strictly, the NMR-MF can only be derived for and applied to a single, Lorentzian, spectral
line. In a multiple-line spectrum, one could apply the filter corresponding to the linewidth of
the line for which maximizing the SNR is most critical. More commonly, the time constant
of the multiplying exponential, τ, is estimated from the overall decay time constant of the
FID envelope. This leads to a substantial increase in SNR for all spectral lines including
those for which T2,i ≠ τ (3).

Relationship between the NMR-MF and the SP-MF
We can now consider the relationship between the NMR-MF and the SP-MF. We will make
use of the following FT relationships.

(60)

and, from symmetry,

(61)

These expressions have been written for the conventional case in which the FT is applied to
a function of time, t, and produces a function of frequency, ν. Since conjugate variables must
have reciprocal units, the FT of functions of frequency will be functions of a variable with
dimensions of time. However, due to Eqs. (7) and (8), this variable must be distinguished
from that of Eq. (1) and will be denoted . The relationships between the variable labels we
are using is:

(62)
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where , a function of a variable with the dimensions of time, is the FT of a function of
frequency. Functions of ν are in the conjugate FT domain of functions of t, and functions of
 are in the conjugate FT domain of functions of ν. With this notation, Eq. (61) becomes:

(63)

so that we also have, using Eq. (39),

(64)

Given the Fourier transform pair

(65)

we note for later use that Eq. (33) may be written

(66)

so that

(67)

The equivalence of the NMR-MF and the SP-MF can now be demonstrated in both the  -
domain and the ν -domain.

I. Maximizing the SNR of a spectral “pulse”: conjugate domain approach
As noted, the SP-MF is designed to maximize the SNR of a time-domain pulse signal,
although the calculations are carried out in the frequency domain. In NMR, the desire is to
maximize the SNR of a spectral line, and the analogous calculation must again take place in
the conjugate FT domain, that is, in the  domain.

To maximize the SNR of a frequency “pulse”, i.e., a spectral line, we proceed by analogy to
the development starting with Eq. (20). The frequency domain waveform is denoted

(68)

with SRe(ν) given by Eq. (39). By direct analogy with Eq. (30), the SP-MF is implemented
by multiplying the FT of SRe(ν) by the transfer function
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(69)

so that the transform-domain representation of the filtered signal is

(70)

where we have used Eq. (64). We take the inverse FT to recover the form of the spectral line
after matched filtering:

(71)

As stated, Δ is an arbitrary offset that permits shifting the position of the signal maximum; it
can be set to zero. The identical form of Eq. (71) and Eq. (57) is the desired result,
demonstrating that the SP-MF is equivalent to the NMR-MF.

II. Maximizing the SNR of a spectral “pulse”: spectral domain approach
The equivalence of the SP-MF and the NMR-MF can also be demonstrated in the pulse
domain. In the classic treatment of the SP-MF, this is the time domain; in our case, for
maximizing the SNR of a spectral line, it is the frequency domain. The pulse shape is given
by Eq. (39), so that

(72)

where we have set the arbitrary frequency offset Δν = 0 for simplicity. This is the form of the
filtered “pulse”, that is, the spectral lineshape, and is equivalent to Eqs. (57) and (72)..

III. Equivalence of SNR resulting from the SP-MF and the NMR-MF
The equivalence of the functional forms of the filtered signal resulting from application of
the SP-MF and the NMR-MF has been established; we now demonstrate the equality of the
SNR of the filtered signals.

Spencer Page 13

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The SNR of the spectrum obtained from the SP-MF follows from Eq. (29). We use
Parseval's theorem, stating that the energy in a signal s(t) is equal to the energy in its Fourier
transform S(ν) (7):

(73)

For s(t) given by Eq.(37) and for acquisition over a time T, the equality in Eq. (29), achieved
under matched filtering, may therefore be written

(74)

This is the ratio of the signal power to the noise power , so that in terms of the
amplitude-based SNR:

(75)

in agreement with Eq. (56).

To summarize, the equivalence of the NMR-MF and the SP-MF has now been established
through calculations both in the domain of the NMR spectral line and in its conjugate
domain.

The Matched Filter in Continuous-wave NMR
It is worth mentioning as a historical note that interpretation of the MF in continuous wave
(CW) NMR with field sweeping poses no difficulties (2,10) because the spectral line is
acquired directly as a time domain signal. The absorption of a radio frequency wave is
measured as a function of field strength, with maximum absorption occurring at resonance
and decreasing absorption being observed away from that maximum. For a Lorentzian
spectral line, the signal is of the form

(76)

where α is the sweep rate in Hz/s. The MF is then given by Eq. (34) and the filtered signal
by Eq. (35):
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(77)

where we have again set the arbitrary delay Δ = 0. Thus, the spectral line after MF is again
of the same form as the non-filtered line, but with twice the linewidth. This calculation
follows that of Ernst (10).

Maximizing SNR With Respect to Area Rather than Amplitude
I. Distortion of line amplitude ratios, but not area ratios, by exponential multiplication

The MF as described maximizes SNR when the signal is defined in terms of amplitude; this
is peak height in the case of NMR. However, signal area is the preferred measure of
resonance intensity in NMR. Perhaps the most important reason for this is that lineshape can
vary widely between spectral lines within a spectrum, so that quantification by amplitudes
may not accurately reflect underlying concentration ratios. Another less well-known reason
is that spectral line area ratios, but not amplitude ratios, are invariant under exponential
filtering; concentration ratios can therefore be distorted.

Consider two spectral lines with amplitudes SA,max = 2M0AT2 (A) and SB,mas = 2M0BT2 (B)
(Eq.(41)) and therefore line amplitude ratio

(78)

After exponential multiplication with a decaying exponential of time constant τ, the ratio of
peak amplitudes is instead (Eq. (46))

(79)

yielding an incorrect value except in the special case T2(A) = T2(B). Therefore, line
amplitude ratios are invariant under exponential multiplication only for lines with equal
intrinsic linewidths. Of course this is also the only case in which the MF can be
unambiguously defined for two lines simultaneously.

Consider instead the area of a spectral line after exponential multiplication. Using Eq. (44),
one finds

(80)
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independent of linewidth and of τ. Thus, line areas and area ratios are not distorted by
exponential multiplication, including application of the NMR-MF, in contrast to the
distortion that occurs when line amplitudes are used for quantification.

II. The Modified Matched Filter
It is evident from the above that it can be important to maximize SNR based not on line
amplitude, as achieved by the SP-MF and NMR-MF, but rather based on line area. This
leads us to a modified matched filter (MMF).

Derivation of the MMF—We can readily modify the approach of Lindon and Ferrige
outlined above. Using Eq. (80) rather than Eq. (53) as the numerator in the SNR ratio but
retaining Eq. (54) as the denominator, we find, instead of Eq. (55), that

(81)

The units of SNR as defined by Eq. (81) are different from those in Eq. (55), but
maximization with respect to τ may nevertheless be performed. It is clear from inspection of
Eq. (81) that SNR increases monotonically and without bound as τ → 0, that is, for an
infinitely rapidly decaying exponential function. Further, SNR as defined by line area will
be greater than that obtained by use of the NMR-MF whenever τ > T2. These properties
define the NMR-modified matched filter, denoted as the NMR-MMF.

The behavior in the limit τ → 0 can be expected. A weighting function

(82)

with τ → 0 weights the FID maximally at the first point of the FID, where time-domain SNR
is greatest, and de-emphasizes all subsequent times, while preserving line area (Eq. (3)).

The line shape resulting from application of the NMR-MMF is given by

(83)

with amplitude

(84)

The NMR-MMF therefore produces a spectral line with infinite SNR, zero amplitude, and
infinite linewidth (Eq. (47)). This is clearly unacceptable. In fact, the amount of line
broadening permissible in a particular experiment is defined primarily by the requirement to
resolve spectral lines. A more appropriate implementation of the MMF approach is then to
line broaden beyond the usual NMR-MF, but only to the point of maintaining required
spectral resolution.
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As expected, it is also possible to derive the MMF filter using the signal processing
approach. The area of the filtered pulse is obtained from integrating Eq. (23) over Δ, with
this then divided by the total output noise to obtain the SNR. We use the following
representation of the Dirac delta function:

(85)

so that

(86)

We therefore wish to determine the function G(ν) that maximizes:

(87)

G(0) can be taken as any non-zero value, which we will choose as G(0) =1. By inspection,
SNR is maximized when G(ν) is as small as possible for |ν| > 0 . A convenient form is

(88)

with τ → 0.

Eq. (87) was derived for the conventional case of a filter applied to a time-domain function,
with conjugate domain variable n. In NMR, with the pulse waveform in the n domain and
the conjugate domain variable , the transfer function is

(89)

The filtered signal in the  -domain is therefore:

(90)

so that the filtered spectral line is

(91)
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As τ → 0, as required for the MMF, this is Eq. (83) up to a multiplicative constant.

As always, one can instead start from the transfer function in the conjugate  domain and
calculate the ν -domain filter which is to be convolved with the spectral line to implement
the SP-MMF. The transfer function is Eq.(89), so that filtering in theν -domain is
accomplished by:

(92)

which is equivalent to Eq. (91).

The discussion of the MMF highlights the tradeoff between improving SNR and avoiding
excessive line broadening in the application of an apodization function (2). An important
advance in this area has been the introduction of the TRAF functions (11), which are
effective in increasing spectral SNR without significantly increasing linewidth.

Conclusion
The NMR-MF is equivalent to the SP-MF as applied to an FID, but this equivalence does
not follow trivially from the convolution theorem. Derivation requires careful attention to
the definition of the signal domain. In the case of the SP-MF, this is time, with frequency as
the conjugate domain. For the NMR-MF, the signal domain is frequency, with a conjugate
domain variable having units of time, but being distinct from the acquisition time domain. In
addition, although calculation of spectral line areas, rather than amplitudes, is the preferred
method of quantification in NMR, the SP-MF and the NMR-MF maximize SNR according
to amplitude. SNR maximization according to line area requires a slight modification of the
usual MF.
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