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Tracking the Temporal Evolution of a Perceptual Judgment
Using a Compelled-Response Task
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Choice behavior and its neural correlates have been intensely studied with tasks in which a subject makes a perceptual judgment and
indicates the result with a motor action. Yet a question crucial for relating behavior to neural activity remains unresolved: what fraction
of a subject’s reaction time (RT) is devoted to the perceptual evaluation step, as opposed to executing the motor report? Making such
timing measurements accurately is complicated because RTs reflect both sensory and motor processing, and because speed and accuracy
may be traded. To overcome these problems, we designed the compelled-saccade task, a two-alternative forced-choice task in which the
instruction to initiate a saccade precedes the appearance of the relevant sensory information. With this paradigm, it is possible to track
perceptual performance as a function of the amount of time during which sensory information is available to influence a subject’s choice.
The result—the tachometric curve— directly reveals a subject’s perceptual processing capacity independently of motor demands. Psy-
chophysical data, together with modeling and computer-simulation results, reveal that task performance depends on three separable
components: the timing of the motor responses, the speed of the perceptual evaluation, and additional cognitive factors. Each can vary
quickly, from one trial to the next, or can show stable, longer-term changes. This novel dissociation between sensory and motor processes
yields a precise metric of how perceptual capacity varies under various experimental conditions and serves to interpret choice-related
neuronal activity as perceptual, motor, or both.

Introduction
Making a choice on the basis of a perceptual judgment can be
difficult in two fundamentally different ways. First, the sensory
signal may be weak or noisy relative to the sensitivity of the sen-
sory apparatus. For instance, when driving in search of an address
in a heavy downpour, discerning the street names and deciding
where to turn is difficult, even when driving very slowly. Second,
even if the signal is strong, the system may not be able to process
it fast enough. Such is the case when a tennis player tries to return
a 130 mph serve and must decide whether to hit a forehand or a
backhand; now, although the ball is clearly visible, the decision
must be made extremely quickly.

Psychophysical and neurophysiological experiments have fo-
cused on the former situation (Shadlen and Newsome, 2001;
Ernst and Banks, 2002; de Lafuente and Romo, 2005; Gu et al.,
2008) much more than on the latter (Bergen and Julesz, 1983;
Ratcliff and Rouder, 2000; Kiani et al., 2008), possibly because for
fast perceptual judgments, the time that the brain needs to pro-
cess a relevant sensory signal is difficult to determine reliably. The
core of the problem is the high variability of the reaction time

(RT), a key psychophysical quantity that depends not only on
sensory and motor components of a response but also on their
trade-off (Welford, 1980; Luce, 1986; Sanders, 1998). As a result,
it has not been possible to precisely dissociate the time courses of
the perceptual and motor processes that contribute to a choice.

This issue may be crucial for understanding the neural basis of
perceptual decision making, because task-related activity often
correlates with both sensory and motor events associated with
making a choice (Thompson et al., 1996; Gold and Shadlen, 2000;
Shadlen and Newsome, 2001; McPeek and Keller, 2002, 2004).
Many single-unit studies have attempted to circumvent this
problem with tasks designed specifically to disrupt the natural
tendency to rapidly select a sensory goal and immediately re-
spond to it (Murthy et al., 2001; Sato and Schall, 2003; Arai et al.,
2004; Carello and Krauzlis, 2004; Horwitz et al., 2004; Camalier et
al., 2007). Although such studies have revealed neuronal activity
that discriminates sensory events (e.g., a target stimulus versus
competing distracters), its interpretation requires numerous as-
sumptions. For example, the transition from perceptual evalua-
tion to saccadic selection is assumed to occur the moment the
neural discrimination reaches an arbitrary criterion level; but
then, does the degree of discrimination at any given point in time
reflect the current state of the perceptual decision process, the
motor plan, or some combination of the two? This cannot be
answered definitively with current choice tasks because they do
not provide an independent behavioral measure of the covert
perceptual evaluation process that is assumed to precede the mo-
tor report.

Here, we present data from five monkeys trained to perform a
novel task whereby the perceptual capability of a subject can be
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reliably isolated and quantified during fast choices (Stanford et
al., 2010). We investigate how motor timing and perceptual ca-
pacity interact to determine a subject’s behavioral performance
during color discrimination, and how these processes are modi-
fied by motivation and experience. We find that perceptual dis-
crimination is very fast (25–50 ms) and that both the onset of the
discrimination process and its speed may vary substantially from
one trial to the next. These results provide important benchmarks
for interpreting neuronal activity as related to perceptual perfor-
mance, motor execution, or both.

Materials and Methods
Data were collected from five monkeys, G, F, R, Q, and S. One data set
from monkey G and another from monkey S were presented previously
(Stanford et al., 2010) and are included in this study (see Fig. 2) for
comparison purposes. The rest of the data have not been used in any
previous studies.

Behavior. All experimental protocols complied with the National In-
stitutes of Health Guide for the Care and Use of Laboratory Animals,
United States Department of Agriculture regulations, and the policies set
forth by the Wake Forest University School of Medicine Animal Care and
Use Committee. For each monkey, before behavioral training, an MRI-
compatible titanium post was attached to the skull under general anes-
thesia. During subsequent training and data collection sessions, the post
served to restrain the monkey’s head. Eye movements were monitored
either with an implanted eye coil (monkeys F, S, and Q), which provided
an analog signal of eye position at a rate of 500 Hz, or with an infrared
tracking device [an EyeLink1000 (SR Research) for monkey G and an
ISCAN system for monkey R] with a sampling rate of 1000 Hz.

Stimuli were colored spots presented either on a monitor (ViewSonic
P815 for monkey R) or through a custom-made array of tricolor light-
emitting diodes, or LEDs (for all other monkeys). In all cases, pairs of
saccade targets were placed at various positions and orientations around
the central fixation spot, and were separated by 10 –20° of visual angle.
The difficulty of the task was controlled through the time interval re-
ferred to as the gap. This parameter varied between 10 and 250 ms. RT
was measured as the amount of time from the go signal until the velocity
of the saccade reached a cutoff value of 50°/s. Monkeys were allowed to
initiate a response up to 600 ms after the go signal; responses that took
longer caused the trial to be aborted. Correct saccades were rewarded
with a drop of water (0.1– 0.7 ml). During the motivational bias sessions,
for monkeys G and S large rewards were three times larger than small
rewards (3:1 ratio), whereas for monkey R the reward ratio was 2:1. The
high-reward color was kept constant for a block of 150 –250 trials and was
then switched. In all conditions, standard and biased, red and green
targets were presented with equal probability at all target locations.

Data analysis. We define the raw processing time (rPT) as follows:

rPT � RT � gap, (1)

where the gap is a temporal delay that is under the experimenter’s control
(see below). The rPT is the maximum amount of time that, in principle,
is available for processing the sensory cue in a trial. The effective process-
ing time (ePT) is as follows:

ePT � RT � gap � TND, (2)

where the constant TND is the total nondecision time. This constant can
be thought of as the time consumed by all the processes not specifically
related to the perceptual judgment and the associated oculomotor re-
port, averaged over trials. In the race-to-threshold model, it represents
the sum of the afferent and efferent delays of a circuit that generates a
saccadic choice (see below). The tachometric curve is the percentage of
correct responses plotted as a function of either rPT or ePT. Because TND

is a constant, the choice of rPT or ePT simply sets the origin of the plot
differently; the shape of the curve does not change.

Tachometric curves were constructed by calculating the percentage of
correct responses for all the trials within a rPT (or ePT) bin. For all
curves, bin size was 20 ms and bin centers were spaced every 2 ms. To

assess the positions of the tachometric curves along the time axis, as well
as their steepness, we fitted each curve with the following Weibull cumu-
lative function, as follows:

F�t� � Fmin � �Fmax � Fmin��1 � e�� t�t0

a � b�, (3)

where the time t is rPT or ePT, Fmin and Fmax are the minimum and
maximum percentage correct values, and a, b, and t0 are free parameters.
Optimal values for the free parameters were found by nonlinear least-
squares regression, using the Matlab function nlinfit. We refer to the
time at which the curve is halfway between Fmin and Fmax as its center
point; for instance, when Fmin � 50% and Fmax � 100%, it is equal to the
time at which F reaches 75%. Given the parameters of a curve, the center
point is equal to

tctr � t0 � a �log�2��
1

b. (4)

To quantify the steepness of the curve, we use the rise time, which is
given by

trise �
100

Fmax � Fmin

a

b
�log�2��

1

b
�1. (5)

The rise time is the time that it would take for the curve to go from 50 to
100% correct if its slope were always equal to the slope at the center point.
Thus, steeper curves have shorter rise times. In summary, the center
point and the rise time of a tachometric curve are obtained by fitting the
curve to a Weibull function and applying the two expressions above.

Bootstrapping techniques (Efron, 1982; Davison and Hinkley, 2006)
were used to quantify differences between tachometric curves; specifi-
cally, differences in their center points and rise times. Two analyses were
performed. First, we estimated the joint distributions of those two char-
acteristic parameters. For each tachometric curve, this was done by (1)
generating 2000 new curves by resampling with replacement the original
set of experimental trials, (2) fitting each new curve with a Weibull func-
tion, and (3) calculating the corresponding center points and rise times
using Equations 4 and 5. The resulting distributions indicate the likely
spread of tctr and trise for the original curve (see Figs. 6b,d,f, 7b, 9b).

The second analysis was applied to pairs of tachometric curves and was
specifically designed for calculating the significance of the differences
between them. For example, suppose that curves A and B were obtained
with NA and NB trials, that the difference in center points was �tctr, and
that the difference in rise times was �trise (computed so that they are
positive). The significance of these differences was computed by (1) com-
bining all the trials into one set of NA � NB trials, (2) shuffling those NA

� NB trials 10,000 times, (3) generating 10,000 new pairs of tachometric
curves by splitting each shuffled set into two sets of NA and NB trials, (4)
fitting Weibull functions for each new pair of curves and computing the
corresponding differences in center points and rise times, exactly as done
with the original data, and (5) calculating the fraction of repetitions (of
10,000) in which the difference between center points was ��tctr and the
fraction of repetitions in which the difference between rise times was
��trise. These numbers give the probability of having observed the mea-
sured differences �tctr and �trise or larger ones just by chance, when there
was actually no difference between the two data sets.

When plotting a tachometric curve as a function of ePT, another useful
quantity is the time required to reach 75% correct, or t75. This quantity
was read directly from the experimental curves, using linear interpola-
tion if necessary. The variability in t75 was quantified in two ways: (1) by
bootstrapping, as described above; that is, the original data were resa-
mpled with replacement 2000 times, and from the resulting 2000 curves, the
SD of the t75 values was obtained; (2) by running the race-to-threshold
model 2000 times with parameter values that best replicated the experi-
mental data, each time simulating the same numbers of trials per gap as in
the data. A distribution of t75 values was obtained from the simulated
tachometric curves, and an SD was computed from it. The SD values
obtained with these two methods were typically within 1 ms of each other
(and were similar to the SD of tctr as well). In Results, we quote the largest
of the two.

Shankar et al. • Tracking a Perceptual Judgment in Time J. Neurosci., June 8, 2011 • 31(23):8406 – 8421 • 8407



Accelerated race-to-threshold model. All model simulations were per-
formed using Matlab (The Mathworks). The code is available from the
authors on request.

The race model was the same as used in a previous report (Stanford et
al., 2010) (see also Salinas et al., 2010) except for one minor difference
described below. The model consists of two competing variables, xL and
xR, that represent the population activity of neurons triggering move-
ments to the left and to the right, respectively. Each race corresponds to a
behavioral trial in which a saccadic response is produced. In each race,
both variables start with a value of 0, and the winner is the first one to
climb to a threshold of 1000 units, at which point the race is over. The
outcome of the race is considered to be a movement to the left if xL wins,
or a movement to the right if xR wins.

Each race has two parts: a first, precue stage during which the relevant
sensory information is not yet available, and so the competition is ran-
dom, and a second stage during which this information is accessible and
influences the competing variables. Crucially, the sensory cue acts by
favoring a movement toward the target side, such that if the target is on
the right and the distracter on the left, then xR increases toward threshold
more rapidly than xL; and vice versa, if the target is on the left, then xL

speeds up and xR slows down.
Each simulated trial proceeds as follows. The go signal is given at t � 0

and the race starts as soon as this signal reaches the model oculomotor
circuit, which happens after an afferent delay TA. During this first stage,
the rates at which xL and xR change—the buildup rates—are constant and
random; they are drawn from a two-dimensional Gaussian distribution
with mean rG (same for both variables), SD �G (same for both variables)
and correlation coefficient �G. Negative values of �G, as found in all fits,
indicate that the competing variables are anticorrelated; when one in-
creases at a high rate, the other increases at a much lower rate or even
decreases. During this stage, xL and xR evolve as follows:

dxL

dt
� rL

dxR

dt
� rR

rL � rL
0

rR � rR
0 ,

(6)

where rL
0 and rR

0 are the buildup rates drawn initially. In races in which one
of the variables reaches threshold during this stage, the outcome is a coin
toss, because the buildup rates were sampled randomly from a symmetric
distribution. Otherwise, the two oculomotor plans keep changing as pre-
scribed by the above equations until the cue information arrives. The cue
is revealed gap milliseconds after the go signal, at t � gap, so it reaches the
model circuit at t � gap � TA. At this time, the competing variables start
accelerating according to the locations of the target and distracter. If the
target is on the right side, then the buildup rate of xR approaches a large,
positive value rT (for target) and the buildup rate of xL approaches a small
or negative value rD (for distracter). The corresponding equations are as
follows:

dxL

dt
� rL

dxR

dt
� rR

drL

dt
�

rD � rL
0

�
drR

dt
�

rT � rR
0

�
,

(7)

with the added rule that, once the buildup rates reach their new target
values—that is, once rL is equal to rD and rR is equal to rT—they stop
changing, so the last two derivatives become zero. In this way, the accel-
eration is constant but lasts a finite amount of time, which is precisely
equal to �, and rT is the maximum possible buildup rate for the variable
that generates a movement toward the target. The assumption that the
acceleration remains constant (while it occurs) is not only simple but also

computationally convenient because it means that the time to threshold
can be computed analytically.

In the converse situation, when the target is to the left of fixation,
the roles of xR and xL are reversed: when the sensory information
arrives, rL increases toward the high rate rT and rR decreases toward
the low rate rD, so

dxL

dt
� rL

dxR

dt
� rR

drL

dt
�

rT � rL
0

�
drR

dt
�

rD � rR
0

�
,

(8)

in this case, again applying the rule that the last two derivatives become
zero once the equilibrium values are reached. This integration process
continues until xR or xL reaches threshold, and a saccade is assumed to
occur a short efferent delay TE after that. The outcome (saccade direc-
tion) and RT are then recorded for the trial.

Apart from this basic description, there are three additional aspects
of the model that are important. First, we observed that the monkeys
occasionally made mistakes at long ePTs, when they should have had
enough time to make an accurate color discrimination. To account
for such lapses, in each simulated trial there is a small probability pe of
making an incorrect assignment; that is, of associating the target and
distracter rates rT and rD with the wrong (i.e., reversed) locations. This
amounts to exchanging Equations 7 and 8 in a fraction pe of the trials
chosen randomly. In practice, within the range of behaviors explored
here, the parameter pe uniquely sets the maximum value of the tacho-
metric function.

Second, we assume that the afferent delay varies across trials and in-
dependently for the go and cue signals. This variability is Gaussian with a
SD �A, but such that negative delays are not allowed.

Third—and this implementation is slightly different from in the orig-
inal version of the model (Stanford et al., 2010)—the rise to threshold is
interrupted between t � I1 and t � I2. During this interval, neither the
buildup rates nor xL and xR change. This interruption was included to
account for a dip that is often seen in the ePT distributions of the mon-
keys near ePT � 0; its effect on the rest of the curves was generally
modest. The onset and offset times I1 and I2 are constant and are given
with respect to the point in time when the cue information reaches the
circuit. So, if I1 � �10 and I2 � 5, for instance, the interruption starts 10
ms before the cue information arrives and lasts 15 ms.

It may seem strange that such interruption can occur before the cue
information arrives at the circuit, but there are two possible explanations
for this. First, the interruption could be effected by other circuits that
receive the cue information earlier than the model oculomotor circuit.
And second, although the race itself requires color-specific information,
the interruption does not; that is, the interruption could be attributable to
the detection of the cue (“colors changed”) occurring before its content (“red
on the left, green on the right”) is determined. This is consistent with the
general finding that reaction times for detection are generally shorter than
for discrimination (Luce, 1986; Sanders, 1998).

In all, the race model has 11 free parameters that were adjusted to
match each monkey’s data (Table 1). The model does not distinguish
between the afferent and efferent delays; it is only their sum, the total
nondecision time, that matters. The total nondecision time varies across
trials because it inherits the variability of TA. The single parameter TND

represents its mean value averaged across trials. The model produces
different outcomes and RTs from one trial to another primarily because
different initial buildup rates (rL

0, rR
0) are drawn for each trial; the variabil-

ity of TA, which is the only other independent quantity that also changes
in every trial, has a more modest influence on the results.

Model fitting. For each experimental data set, the free parameters of the
race-to-threshold model were optimized to minimize the mean absolute
error between the simulated and the monkey data. Six psychophysical
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curves were used to fit each data set: the psychometric (percentage cor-
rect vs gap), chronometric (mean RT vs gap and SD of the RT vs gap), and
tachometric (percentage correct vs rPT) curves, and the rPT distribu-
tions for correct and error trials. Thus, the error function had the follow-
ing form:

E � �
i, j

�eij � mij�
ni Ni

, (9)

where e and m are experimental and model values, respectively; the index
i � 1, 2, . . . 6 identifies each of the six psychophysical curves; the index j
runs through each point in a curve; the factor ni is the number of points
in curve i; and Ni normalizes the contribution of each curve according to
its range of values. For example, suppose that curve 1 consists of nine
points that vary between 0.4 and 1.0; then n1 � 9 and N1 � 0.6. In this
way, the error contributed by each curve is expressed as a fraction be-
tween 0 and 1.

Best-fitting parameter values were found by exhaustive search; that is,
by establishing a multidimensional grid where each point is a different
combination of parameters, running the model with each combination,
and selecting the one that minimized the above error. For each data set, a
coarse grid covering a wide parameter range was used initially, and pro-
gressively finer grids were used afterward. Separate parameter optimiza-
tions run with different initial conditions typically converged on nearly
identical results. In general, changes in the responses of the model (and in
E) became appreciable when each single parameter varied by �10%, but
two quantities were sensitive to even smaller changes: pe, which deter-
mines quite precisely the maximum value of the simulated tachometric
curve, and TND, which determines the position of this curve along the
x-axis; typically, noticeable changes in the error were produced when
TND deviated by 2 ms or more from its optimal value. Compared with
such sensitivity (�10%), the range of variation of the optimal parameter
values found across all monkeys and conditions (Table 1) was much
larger, suggesting that there was little redundancy in their effects.

Minimal functional model. Given the task design, the psychometric,
chronometric, and tachometric curves are not independent of each
other. In particular, knowing the latter two is sufficient to determine the
former. This statistical relationship is independent of the race model or
any other mechanistic framework. Thus, the minimal functional model
is just a straightforward sampling procedure for inferring the psychomet-
ric curve given Equation 1, the subject’s perceptual capacity (tachometric
curve), and his overall motor performance (chronometric curve). It runs
as follows.

We assume that the tachometric and chronometric curves are known.
Then a series of trials are performed, each consisting of four steps: (1) a
gap is selected and a RT is drawn from the given RT distribution for that
gap, (2) the rPT is calculated by subtracting RT � gap (Eq. 1), (3) the
probability of a correct response for that rPT is read out from the given
tachometric curve, and (4) the outcome of the trial, correct or incorrect,
is set according to that probability. In this way, by averaging over many
trials, one obtains the percentage of correct responses as a function of
gap—the psychometric curve.

The advantage of this reduced model is that it allows us to systemati-
cally explore how different features of the chronometric and tachometric

curves determine a subject’s choice accuracy in the task regardless of the
underlying neural mechanisms. It tells us how observed changes in
choice accuracy correlate with changes in perceptual and motor speed.

Results
The compelled-response paradigm
The sequence of events in the compelled-saccade (CS) task is
shown in Figure 1. First, the subject fixates on a central spot and
its color, red or green, indicates the color of the target. Then two
yellow spots appear, separated by 10 –20°. These are the potential
saccadic targets. Next, the fixation spot disappears; this is the go
signal that instructs the subject to initiate a saccade to one of the
peripheral spots, although at this point both are still yellow. The
identities of the target and distracter are revealed later, after a
time gap that varies between 10 and 250 ms in duration, at the
point marked “cue.” At the cue, one yellow spot turns red, and the
other, green. Finally, once the saccade is executed, if the response
is correct, a drop of liquid is given as a reward. The RT is mea-
sured between the onset of the go signal and the onset of the
saccade, and the key parameter under the experimenter’s control
is the gap duration, which determines the amount of time that the
crucial information is withheld.

The objective of the CS task is to decouple the perceptual-
evaluation and motor-planning stages of the task by triggering all
saccades in the same way but varying their success rate according
to the amount of sensory information that is presented later,
while the oculomotor plan develops. That is, the go signal is
always given first, so once the perceptual information becomes
available, it influences a saccadic choice process that is already
ongoing. The situation is analogous to that faced by players in
tennis and other sports in which a judgment about the trajectory
of the ball must be made extremely fast: to be able to strike the
ball, the player typically starts his or her motion early, before
seeing the ball (Abernethy, 1990; Land and McLeod, 2000; Yar-
row et al., 2009). Note that the version of the task that we have
implemented is based on eye movements, but this is not essential;
the same design could be used with other motor actions instead.

The task and the psychophysical results that follow can be under-
stood intuitively by recognizing that performance should vary con-

Table 1. Model parameter values for each data set

Monkey rG �G
2 �G rT rD � TND �A I1 I2 pe

F 5.6 13 �0.6 150 �140 1600 91 10 �16 3 0.048
Q 4.2 16 �0.7 34 �23 310 150 13 �8 �4 0.105
G 4.5 17 �0.8 340 �220 1600 139 20 �40 �10 0.02
S, set 1 3.8 20 �0.6 43 �23 190 116 8 �5 0 0
S, set 2 6.4 34 �0.7 16 �8 180 106 8 �10 �5 0
G, high reward 4.1 4 �0.95 160 �120 1800 104 14 �15 6 0
G, low reward 5.3 11 �0.8 130 �110 900 136 23 �7 9 0.085
S, high reward 4.7 5 �0.9 20 �12 85 102 11 �16 �3 0
S, low reward 5.7 8 �0.7 17 �14 90 106 16 �16 6 0.02
R, high reward 5.2 14 �0.8 40 �37 180 142 23 �25 5 0
R, low reward 7.0 20 �0.6 22 �31 140 155 26 �20 5 0.03

Figure 1. Schematic of the CS task. In each trial, the subject must make an eye movement to
the peripheral spot that matches the color of the fixation point (red, in this example). However,
the instruction to make the saccade (Go) is given first, before the identities of the target and
distracter are revealed (Cue). Task difficulty is controlled according to the time gap between the
go and the cue (10 –250 ms). In each trial, the maximum amount of time available for viewing
the cue is the rPT.
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tinuously between two extremes. At very short gaps (e.g., zero), the
subject has enough time to view the red and green stimuli and find
the target, so performance is expected to be near 100% correct. In
contrast, at very long gaps (e.g., infinite), the motor response must be
executed before the cue is revealed, so the subject must guess the
target location. Performance is expected to be near 50% correct in
this case. Because gap values are pseudorandomly interleaved
across trials, the timing of the cue is unpredictable, and the
subject’s choices throughout an experimental session are com-
binations of guesses and informed discriminations.

Quantifying perceptual performance
Figure 2 illustrates the behavior of four monkeys trained to per-
form the CS task. The psychometric curves (Fig. 2a) show that
performance is �90% correct at short gaps, when the subjects
have a relatively long time to differentiate target from distracter,
and as the gap becomes longer, performance drops to chance
levels, near 50% correct. Meanwhile, mean RTs show relatively
little variation, particularly considering the large spread in RT at
each gap (Fig. 2b) (error bars indicate 	1 SD). Therefore, in the
compelled-response condition, large changes in performance are
relatively decoupled from systematic changes in RT.

Although performance clearly varies as a function of gap, the
gap is a period of time during which the relevant sensory infor-
mation is absent from the visual display. What is most important
is the complement of the gap, the interval of time during which
the cue information is available for viewing. The maximum pos-
sible length of this complementary interval in any given trial is

equal to the RT minus the gap. We call this quantity the raw
processing time, or rPT (Eq. 1, Fig. 1). Note, however, that in each
trial there may be other intervals beside the gap period during
which the cue information is either unavailable or not being pro-
cessed. For instance, any transmission delays between the retina
and the circuits that generate the saccadic choice should also be
subtracted from the rPT. We refer to the effective processing
time, or ePT, as the rPT minus the total time TND consumed by
any nondecision processes (Eq. 2). We will explain in a moment
how, through a model, TND may be estimated.

The ePT is the crucial quantity that determines performance
in the CS task because it corresponds to the amount of time that
the subject effectively has for viewing and analyzing the relevant
sensory information in each trial. Indeed, when plotted as a func-
tion of ePT, performance varies much more sharply than as a
function of gap (Fig. 2, compare a, d, noting difference in time-
scale). We refer to the resulting curve (Fig. 2d) as a “tachometric
curve” because it directly reveals the speed of a subject’s percep-
tual processing. For instance, monkeys F and Q required 50 	 3
ms (	1 SE, from bootstrap) (see Materials and Methods) and
46 	 3 ms, respectively, to go from chance to 75% correct. In
contrast, monkeys G and S, whose data were reported previously
(Stanford et al., 2010), had somewhat sharper tachometric curves
and so discriminated faster: they reached 75% correct in 42 	 2
and 26 	 2 ms, respectively.

The distributions of ePT values for correct and error trials also
have distinctive features that are consistent with the constraints
of the task (Fig. 2c). For ePT 
0, the distributions of correct and

a

b

c

d

e

Figure 2. Psychophysical performance of four monkeys in the CS task. a, Percentage of correct responses as a function of gap (psychometric curve). b, RT as a function of gap (chronometric curve).
Data points are mean values, which include both correct and incorrect trials at each gap; error bars indicate 	1 SD. c, Distributions of ePT values for correct (blue and black bars) and incorrect
(magenta traces) trials. Bin size, 20 ms. A value of 1 corresponds to the maximum number of observations in correct trials. d, Percentage of correct responses as a function of ePT (tachometric curve).
Bin size, 20 ms. e, Distributions of RT values in correct (blue and black bars) and incorrect (magenta traces) trials at specific gaps. Gap values are indicated on top right corners. Bin size, 40 ms. For each
monkey, the same model parameters were used in all panels (Table 1). Experimental results are based on a total of 7935, 5609, 6676, and 5231 trials for monkeys F, Q, G, and S (set 1), respectively.
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error responses are practically identical. This is to be expected
because a negative ePT corresponds to a trial in which the subject
had no time to view the red and green stimuli, and so was forced
to guess. In contrast, longer, positive ePTs mean that the subject
had time to view the stimuli and hence made an informed deci-
sion. So, the proportion of correct versus incorrect responses
increases sharply after ePT � 0 (in fact, if one plots the rPT
distributions, which are identical except for a shift along the
x-axis, the point at which the error and correct distributions split
from each other is always within a few milliseconds of the TND

value inferred from the model, which represents the time at
which the sensory information starts to have an effect on perfor-
mance). The tachometric curve is closely related to the distribu-
tions in Figure 2c: it is obtained by dividing (pointwise) the curve
for correct trials by the total number of trials at each point (i.e., by
the sum of the curves for error and correct trials).

The data in Figure 2 extend our previous observations (Stan-
ford et al., 2010) and show that behavior in the task is consistent
across subjects.

A race-to-threshold model of the CS task
The interplay that takes place in the CS task between making an
informed decision (at short gaps/long ePTs) and guessing (at
long gaps/negative ePTs) can be easily understood with a simple
phenomenological model (for details, see Materials and Meth-
ods). In the model, a saccadic choice is conceived as a competi-
tion between two variables, xL and xR, that represent the activities
of two populations of oculomotor neurons. An eye movement is

generated when one of the variables
reaches a threshold, as in previous ac-
counts of saccadic response generation
(Carpenter and Williams, 1995; Hanes
and Schall, 1996; Roitman and Shadlen,
2002; Smith and Ratcliff, 2004; Palmer et
al., 2005; Hanks et al., 2006; Lo and Wang,
2006; Wong and Wang, 2006; Boucher et
al., 2007; Ratcliff and McKoon, 2008). Im-
portantly, however, these developing ocu-
lomotor plans are also informed by
sensory input (Horwitz and Newsome,
1999; Gold and Shadlen, 2000; Shadlen
and Newsome, 2001; Churchland et al.,
2008). Here, the essential idea is that,
when the sensory information becomes
available to the oculomotor circuit, its ef-
fect is to speed up the developing saccadic
plan toward the target and slow down the
plan toward the distracter. In this way, the
model produces both random choices
(guesses) and accurate choices, depending
on when that information arrives; that is,
on the gap.

In each simulated trial, the model gen-
erates an outcome, left or right, and a RT.
When xL reaches threshold first, a move-
ment to the left spot is produced; and vice
versa, when xR reaches threshold first, the
response is to the right. Figure 3 shows
various examples of simulated trials in
which xL and xR correspond to green and
red traces, respectively. All the races start
in the same way: a short period after the go
signal (afferent delay, 60 ms in the exam-

ples of Fig. 3), the two variables start increasing with constant
rates. These initial buildup rates are drawn randomly from a
distribution, because the identities of the target and distracter are
initially unknown. The rates are anticorrelated (�G 
 0), so when
xR starts rising very fast xL tends to rise much more slowly or may
even decrease, and vice versa. Then, once the gap period of the
circuit has elapsed, the buildup rates begin changing according to
the target and distracter locations [the gap period of the circuit
has the same duration as the gap but occurs later because of the
afferent delay; it is the period during which the oculomotor plan
proceeds without guidance from the cue (Fig. 3, area marked in
gray)]. So, if the target is, say, on the right, as is the case in all the
shown examples, then the buildup rate of xR increases and that of
xL decreases. That is what happens in Figure 3, a– c, f, and g. Most
of those trials are correct because the variable representing the
target side typically reaches threshold first, even if it rises more
slowly at the beginning, before the cue information is available
(as in Fig. 3b,g). The only exception is Figure 3c, where xL in-
creases so fast initially, that it reaches threshold before xR can
catch up, resulting in an error. In contrast, in Figure 3, d, e, h–j,
the race is over before the end of the gap period of the circuit, so
the winner is determined randomly. Trials like those, which end
before the cue information becomes available, typically occur at
long gaps.

This model is useful in three ways. First, in it the ePT is per-
fectly well defined: it is the time between the end of the gap period
of the circuit and the threshold crossing (Fig. 3, blue bars and ePT

a

b
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g

h

i

j

Figure 3. Ten trials of the race-to-threshold model. Each panel shows the competing variables xL (green traces) and xR (red
traces) as functions of time. In these examples, the target was always red and located to the right of fixation, so trials in which the
red trace (xR) crosses threshold (dotted lines) first are correct and trials in which the green trace (xL) crosses threshold first are errors.
The black triangles and black vertical lines mark when the go signal is given (Go) and when the saccade is initiated (Sac); the interval
between them is the RT. In these examples, each race starts 60 ms (afferent delay) after the go, and a saccade is produced 30 ms
(efferent delay) after threshold crossing, so TND � 90 ms. The gray shadows mark the gap period of the circuit. a– c, Three trials
with a 50 ms gap. d– g, Four trials with a 150 ms gap. h–j, Three trials with a 250 ms gap. The blue bars indicate the ePT period;
numbers below are ePT values. Positive ePTS (dark blue) correspond to races influenced by the sensory cue (a– c, f, g). Negative
ePTs (light blue) correspond to races that end before the cue information is available and thus have random outcomes (d, e, h–j).
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values shown below). Second, the nonde-
cision time is also well defined and is equal
to the afferent plus the efferent delays
(note, however, that what matters for the
model is their sum, so TND is indeed a
single parameter). The mean nondecision
time TND for a particular data set can be
estimated by fitting the model to those
data. For monkeys F and Q, TND was equal
to 91 ms (the smallest in all data sets we
have analyzed) and 150 ms (the second
largest in all data sets we have analyzed),
respectively, which is consistent with the
relatively large difference in mean RT be-
tween the two animals (Fig. 2b). And
third, the model provides an intuitive and
quantitative understanding of the mixture
of informed decisions and guesses that
subjects execute during the CS task. As
can be seen in Figure 2, with the correct
parameter values the model can replicate a
monkey’s behavior quite accurately
(compare data vs model). In particular,
examine the RT distributions for correct
and error trials that are found at each gap
(Fig. 2e). For correct responses, the RT
distribution transitions from unimodal to
bimodal, whereas for incorrect trials, the
peak of the RT distribution typically re-
mains at the same point and coincides
with the early peak of the correct-trial dis-
tribution. The model captured this pro-
gression quite accurately in all the data
sets from the five monkeys.

An important feature of the tachomet-
ric curve that should be kept in mind is
that its shape does not depend on the set
of gap values used in the experiment. Ac-
cording to the model, for a given percep-
tual task, the tachometric curve is an
intrinsic property of the subject. There-
fore, the gaps are chosen experimentally to generate a range of
ePT values that is large enough to yield the full tachometric curve
(and to prevent the subjects from predicting the cue onset), but as
long as the resulting ePT distribution is wide enough, the specific
gap values do not matter. This is manifest in Figure 2. There, the
tachometric curves for monkeys F and Q are fairly similar,
although they were obtained with quite different sets of gaps
(Fig. 2a).

Performance as a result of perceptual and motor processes
Successful performance in the CS task depends both on the speed
of the color discrimination, which is revealed by the tachometric
curve, and on the speed of the motor report. It is precisely the
ability to independently assess the relative contributions of per-
ceptual and motor processing that is a key feature of the CS task.
To better understand how these two factors can interact to deter-
mine performance, Figure 4 shows how various forms of chrono-
metric (i.e., RT vs gap), tachometric, and psychometric curves
relate to each other, as predicted by a minimal functional model.
This is a highly simplified framework, entirely separate from the
race-to-threshold model, that describes the functional relation-
ships between the three curves (see Materials and Methods).

This figure serves as a road map for understanding the various
effects that may be observed when varying the conditions of a
compelled-response experiment.

The basis of this minimal functional model is that perfor-
mance in the CS task is fully determined by the subject’s tacho-
metric and chronometric curves: the former specifies how much
viewing time is needed to achieve a particular success rate and the
latter specifies how much total time is needed to respond given a
particular gap, so by combining them one can derive the success
rate as a function of gap—the psychometric curve. Figure 4 was
created by generating hypothetical chronometric (Fig. 4, left col-
umn) and tachometric (Fig. 4, middle column) curves and apply-
ing the minimal functional model to infer the corresponding
psychometric curve (Fig. 4, right column).

Figure 4a– c illustrates the consequence on performance of
altering the tachometric curve in different ways while the distri-
butions of RTs remain constant. Similarly, Figure 4, d and e,
shows the opposite case, when the tachometric curve does not
change but the RT distributions do. It is easy to see that overall
performance in the CS task can improve through a combination
of four mechanisms: (1) by shifting the tachometric curve to the
left, which means that the discrimination process starts earlier in
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e

Figure 4. Overall performance in the CS task depends on motor timing and perceptual discrimination. Each row shows one or
more hypothetical chronometric curves (left column), one or more hypothetical tachometric curves (middle column), and the
resulting psychometric curves (right column) obtained from the minimal functional model. Only mean RTs are shown, but full
distributions were used. a– c, Variations in performance caused by variations in the onset of perceptual discrimination (a), in the
speed of perceptual discrimination (b), or in the maximum perceptual accuracy (c). d, e, Variations in performance caused by
variations in RT.
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the trial (Fig. 4a); (2) by increasing the steepness of the tachomet-
ric curve, which means that, once begun, the perceptual discrim-
ination progresses more rapidly (Fig. 4b); (3) by bringing the
percentage correct at long viewing times as close to 100% as
possible (Fig. 4c); and (4) by increasing the RT, in which case the
subject has more time to view the stimuli (Fig. 4d). It is also worth
noting that the slope of the chronometric curve partially deter-
mines the steepness of the psychometric curve (Fig. 4e).

The minimum functional model provides a statistical descrip-
tion of the task, not a mechanistic one like the race-to-threshold
model. Because of this, the basic effects shown in Figure 4 do not
necessarily correspond to changes in single parameters of the race
model. There are, nonetheless, important regularities: mecha-
nism 1 (Fig. 4a) corresponds most closely to changes in TND, the
mean nondecision time; mechanism 2 (Fig. 4b) corresponds pri-
marily to changes in the acceleration parameters, rT, rD, and �,
which convey the influence of the sensory cue; mechanism 3 (Fig.
4c) corresponds exactly to changes in pe for the range of behaviors
explored here; and mechanisms 4 and 5 (Fig. 4d,e) correspond
mostly to changes in rG, �G, and �G, which determine the oculo-
motor activity that develops initially, although practically all
other parameters contribute to some degree as well.

Given this catalog of possible effects, we performed experi-
mental variations of the CS task and diverse types of data analyses
to determine whether the expected relationships between psy-
chometric, chronometric, and tachometric curves were actually
observed. If these are indeed the basic psychophysical effects that
a subject may exhibit in a compelled-response situation, such
would provide strong evidence that motor and perceptual con-
tributions to changes in behavioral performance can be clearly
dissociated.

Motivation modulates performance through
multiple mechanisms
To generate changes in the subject’s RTs and performance levels,
we implemented a variant of the task in which the monkey knew
at the beginning of each trial, via the color of the fixation point,
whether a large or a small reward was at stake. In this condition,
correct movements to, say, the red target yielded a high reward,
whereas correct movements to the green target yielded a lower
reward. The association between colors and reward amounts was
kept constant for blocks of 150 –250 trials and then the high- and
low-reward colors were reversed. In this experiment, the target
color is revealed at the beginning of each trial, when the fixation
spot appears, so the subject always knows whether the current
trial can lead to a large or a small reward. Thus, the incentive to
perform the task correctly varies across trials and is set at the start
of each one.

Initially, data in this “motivational bias” experiment were col-
lected from monkeys G and S. Their behaviors, however, were
somewhat different, so to try to gain some additional insight as to
which effect was more common, a third monkey, monkey R, was
subsequently trained. This third subject displayed an effect sim-
ilar to that of monkey G. The results of this experiment are shown
in Table 2 and Figure 5; for ease of comparison, all results are
displayed separately for high- and low-reward trials, although
these were interleaved during task performance.

The psychometric and chronometric curves (Fig. 5a,b) show
that, when working for a small reward, monkeys performed worse
and initiated their responses sooner (Table 2). Consistent with the
hypothetical curves of Figure 4d, the slight but significant increase in
overall RT observed in large-reward trials was accompanied by an
increase in choice accuracy. Perhaps more importantly, there were

differences in the corresponding tachometric curves too (Fig. 5d),
but these were not identical for the three subjects: as explained be-
low, in monkeys G and R the dominant effect was a change in the
onset of the discrimination process, whereas in monkey S there was
a significant difference in perceptual processing speed.

To compare the low-reward and high-reward tachometric
curves of each monkey more carefully and, in particular, to de-
termine whether they differed significantly in steepness, we per-
formed the analysis shown in Figure 6 (see Materials and
Methods). Here, the tachometric curves obtained in high- and
low-reward trials are replotted using rPT on the x-axis. In this
way, the values on the y-axis are the same as before, with ePT, but
the original relative timing is preserved, and more importantly,
because TND is taken out of the calculation, the analysis becomes
insensitive to any error in TND. The thin black lines superimposed
on the purple and orange traces are the cumulative Weibull func-
tions that best fitted the data. To characterize each tachometric
curve, we considered two quantities that were derived from the
respective Weibull fits: the center point and the rise time (see
Materials and Methods). The center point tctr is the rPT at which
performance reaches the midpoint between the minimum and
the maximum percentage correct (Fig. 6a,c, vertical dotted
lines). The rise time trise is inversely related to the steepness of
the curve; it is the time that it would take for performance to
go from 50 to 100% correct if the slope were constant and
equal to the slope at tctr.

The crosses in Figure 6b indicate the values of tctr and trise for
the two tachometric curves of monkey G, and the surrounding
clouds of dots show the values obtained by bootstrapping; that is,
by repeatedly resampling with replacement the original trials and
recomputing the fits (see Materials and Methods). The distribu-
tions of likely center point values (Fig. 6b, histograms at the top)
and rise time values (Fig. 6b, histograms on the right) were ob-
tained from these clouds of points, and their overlap indicates
whether these parameters are significantly different when com-
pared across the two conditions. Note, however, that the corre-
sponding p values were actually obtained through a second
resampling analysis specifically designed for evaluating the sig-
nificance level (see Materials and Methods).

In the case of monkey G, there are three notable results. First,
the tachometric curves are shifted relative to each other by �30
ms (Table 2) and the shift is highly significant, as is apparent by
the lack of overlap in the distributions of tctr values in Figure 6b
(top histograms). This means that the decision-making process
starts �30 ms later in low- than in high-reward trials. This effect
is precisely the one shown in Figure 4a, and it is consistent with
more accurate performance in high- than in low-reward trials, as
expected.

Table 2. Behavioral performance in the motivational bias experiment

Monkey G Monkey S Monkey R

High
reward

Low
reward

High
reward

Low
reward

High
reward

Low
reward

Trials 2394 2421 4728 4538 2742 2834
Correct (%) 81 67 81 72 73 67
p (binomial) 10 �15 10 �10 10 �3

RT 	 1 SD (ms) 288 	 39 276 	 43 258 	 35 249 	 39 279 	 44 270 	 43
p (Wilcoxon) 10 �23 10 �39 10 �13

trise 	 1 SE (ms) 91 	 9 98 	 13 40 	 6 60 	 7 68 	 10 68 	 8
p (bootstrap) 0.26 0.0061 0.50
tctr 	 1 SE (ms) 139 	 5 170 	 5 115 	 2 123 	 3 151 	 3 170 	 3
p (bootstrap) 0 0.0015 0

Percentage correct and RT data are averages over all gaps. Significance values from bootstrap are based on 10,000
resamplings.
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The second result to be noted in Figure 6, a and b, is that the
steepness of the two curves was statistically identical. The tacho-
metric curve for high-reward trials had a slightly shorter rise time
(Table 2), but in this case the distributions of likely values ob-
tained from bootstrapping were highly overlapping (Fig. 6b, his-
tograms on the right), and the difference was not significant
(Table 2). Therefore, for monkey G, the speed of the perceptual
process remained essentially constant across the two conditions.

Finally, the third result for monkey G is that the maximum
percentage correct reached by the two curves in Figure 6a was not
the same: the asymptotic performance values were 99% correct
for high- and 90% correct for low-reward trials (p � 10�7, bino-
mial test). This is very much as in Figure 4c. Thus, for trials that
could lead to a large reward, the monkey rarely made a mistake
when provided ample time to view the stimuli, whereas for trials
that could only lead to a small reward, the monkey made signif-
icantly more “careless” mistakes, errors that could not be attrib-
uted to insufficient viewing time.

In summary, then, in high-reward trials monkey G responded
slightly but significantly more slowly, shifted his tachometric curve
to the left, and made fewer mistakes at long processing times. There-
fore, three of the mechanisms in Figure 4 were operating simultane-
ously (Fig. 4a, c, d), all in favor of better performance when a high
reward was at stake. Importantly, the steepness of the tachometric
curve remained constant, which we take to mean that monkey G’s
perceptual processing speed did not change.

Now consider the behavior of monkey S, as depicted in Figure 6,
c and d. In this case, the percentage of correct responses at long
viewing times was again close to the maximum in high-reward trials

(99%) but not in low-reward trials (97%), as with monkey G. The
difference was small but highly significant (p � 10�6, binomial test).
However, the results for this monkey differed in a conspicuous way:
the tachometric curve for high-reward trials was significantly steeper
than for low-reward trials (Table 2). Such an increase in steepness
also leads to higher accuracy (Fig. 4b), so this effect again
implies better accuracy given the potential for a large reward.
Although the tachometric curves of monkey S had different
center points (Table 2), this did not result from a pure shift
along the x-axis, as with monkey G, but rather was a conse-
quence of the change in slope. Consistent with this, the differ-
ence in TND values for the two curves was only 4 ms (Table 1).

We want to stress that the most direct interpretation of a change
in steepness in the tachometric curve is that it reveals a true change in
perceptual processing speed. Alternatively, however, the steepness of
the curve could also depend on the rule that links the outcome of the
perceptual discrimination with the correct motor response as dic-
tated by the design of the task. This possibility is elaborated in Dis-
cussion. In any case, an increase in steepness reflects an effective
increase in sensory processing speed, which, in turn, leads to more
accurate performance, as demonstrated in Figure 4b.

Monkeys G and S behaved somewhat differently in this exper-
iment; the former showed a shift in the tachometric curve, and
the latter, a change in steepness. To get a better sense for the
predominance of these effects, a third monkey was trained in the
CS task and a motivational bias was induced (Fig. 5, monkey R).
The success rate of this subject, monkey R, was again higher when
a high reward was at stake than when a low reward was at stake,
and again the higher performance was accompanied by slower

a

b
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d

Figure 5. Psychophysical performance of monkeys G, S, and R during the motivational bias experiment. At the beginning of each trial, the monkey knew whether a correct response would result
in a small or a large reward. a, Psychometric curves. b, Chronometric curves. c, Distribution of ePT values. d, Tachometric curves. Data are shown separately for high- and low-reward trials, as
indicated. The format is the same as in Figure 2. See Table 2.
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RTs (Table 2). Overall, the tachometric curves in this case were
similar to those of monkey G (Fig. 6e,f): there was a significant
shift to the left of �20 ms in high-reward trials, no significant
difference in rise time across conditions, and a small but signifi-
cant difference in the maximum probability correct at long view-
ing times (99 and 97% correct in high-and low-reward trials,
respectively; p � 0.01, binomial test).

In conclusion, the increased motivation caused by the possi-
bility of collecting a larger reward resulted in a higher fraction of
correct choices through a combination of four mechanisms: a
slight increase in mean RT (three monkeys) (Fig. 4d), a higher
efficiency in using the available sensory information, possibly
because of better attentional control (three monkeys) (Fig. 4c), an
earlier onset of the perceptual discrimination process (monkeys
G and R) (Fig. 4a), and an effective increase in sensory processing
speed (monkey S) (Fig. 4b). Importantly, because high- and low-
reward trials were interleaved in this experiment, the results dem-
onstrate that these mechanisms can vary on a relatively short
timescale, from one trial to the next.

As can be seen from Table 1, the best-fitting parameters found by
the race-to-threshold model in the two reward conditions changed
in a highly consistent manner across monkeys. For instance, the

nondecision times TND were always larger in the low-reward condi-
tion, in agreement with the observation that the tachometric curves
in that case were shifted to the right (Fig. 6). Similarly, the initial
buildup rates, as determined by rG, were always higher in low-reward
trials, consistent with the shorter RTs observed in those trials. Other
parameters that produce less intuitive effects also changed in the
same direction for the three monkeys. For example, the spread in the
initial buildup rates, given by �G, was always larger in low- than in
high-reward trials, whereas the variability in the afferent delays,
given by �A, was consistently larger in low-reward trials too. This
suggests that the differences in the behavior of the three monkeys
were attributable to quantitative differences in how various percep-
tual and motor mechanisms adapted to the reward contingencies,
rather than to the deployment of qualitatively separate mechanisms
across individuals.

Training-related changes in discrimination timing
As shown hypothetically in Figure 4, a and b, and empirically in
Figure 6, a change in effective perceptual performance may be
manifest as a shift (timing) and/or a change in the slope (speed) of
the tachometric curve. To determine whether training history
might lead to a change in either of these two variables, for each
monkey we performed a post hoc comparison of two subsets of
the data, one from the beginning and one from the end of the data
collection period. We found that over the course of the training
period, which typically spanned a few months, the psychophysi-
cal performance of monkeys G, S, Q, and R was highly stable, but
that for monkey F demonstrated important changes.

From the full data set of monkey F, the results of which were
shown in Figure 2, we compared the first third and the last third
of the trials. The resulting psychometric and chronometric curves
were similar to those in Figure 2 (data not shown). The difference
in overall percentage correct was small but revealed a significantly
higher accuracy in the later trials (on average, 69% correct in n �
2632 early trials vs 75% correct in n � 2599 late trials; p � 0.0008,
binomial test). RTs also decreased by a few milliseconds after
training (on average, 237 	 48 ms in n � 2632 early trials vs
231 	 40 ms in n � 2599 late trials; mean 	 SD; p � 0.0001,
Wilcoxon’s rank sum). However, the most pronounced differ-
ence was that between the tachometric curves for early versus late
trials, as illustrated in Figure 7.

As can be seen from this figure, the perceptual performance of
monkey F before and after several weeks of practice in the CS task
showed three prominent characteristics. First, the two curves
were shifted along the x-axis, in this case by �16 ms (tctr � 132 	
4 ms in late trials and tctr � 148 	 4 ms in early trials). This shift
was again highly significant, as can be seen by the very small

a b

c d

e f

Figure 6. Comparison of perceptual performance in high- versus low-reward trials. a, Per-
centage of correct responses as a function of rPT (tachometric curve) for high-reward (purple
trace) and low-reward (orange trace) trials performed by monkey G. The black lines are best
Weibull fits. The vertical dotted lines mark the time points at which the percentage correct is
halfway between the minimum and maximum values (i.e., tctr). The experimental data are the
same as in Figure 5d, except with rPT (�RT � gap) on the x-axis. b, Joint distributions of center
points (tctr) and rise times (trise) obtained from bootstrapping of monkey G’s data. For clarity,
only 1000 points per set are shown. The crosses mark the tctr and trise values of the original fits
shown in a. Histograms at the top and on the right show the corresponding marginal distribu-
tions, based on 2000 resamplings per set. c–f, As in a and b, but for monkeys S and R.

a b

Figure 7. Comparison of the perceptual performance of monkey F during early and late
trials. a, Tachometric curves based on 2632 early and 2599 late trials. b, Joint distributions of
center points and rise times obtained from bootstrapping. The format is the same as in Figure 6.
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overlap in the likely tctr values (Fig. 7b, top histograms) (p �
0.0008, 8 of 10,000 resamplings). Second, the steepness of the two
curves was statistically identical (Fig. 7b, histograms on the right)
(trise � 96 	 13 ms in late trials; trise � 79 	 17 ms in early trials;
p � 0.56; 5571 of 10,000 resamplings). And third, the maximum
percentage correct reached by the two curves in Figure 7a was
again different, so that the outcome of a long viewing period was
more reliable in the later experimental sessions (asymptotic per-
formance was 90 and 96% correct for early and late trials, respec-
tively; p � 0.00014, binomial test). Therefore, this analysis
revealed the same combination of psychophysical effects exhib-
ited by monkey G in the motivational bias experiment (Fig. 6),
although they may have arisen from different sources (see
Discussion).

Long-term changes in discrimination speed
Whereas monkey F demonstrated improved performance, pre-
sumably as a result of practice, a post hoc comparison of two
separate data sets from monkey S revealed diminished perceptual
performance after a prolonged period of inactivity. The first data
set from monkey S comprises trials collected over a period of �3
months; before this data collection period, the monkey had been
performing the CS task continuously for several months. In con-
trast, the second data set was also collected over a 3 month period,
�1 year later, but after the monkey had been inactive, not work-
ing in any laboratory tasks, for �4 months.

The results are shown in Figure 8. As is apparent from the
plots (Fig. 8d), the tachometric curve for data set 1 is quite steeper
than the curve for data set 2, reflecting more rapid discrimina-
tions, but there were other large differences across sets. Judging
from the psychometric curves (Fig. 8a), it is clear that perfor-
mance during set 2 was much worse than during set 1 (on aver-
age, 75% correct, n � 5231 trials in set 1 vs 59% correct, n � 8010
trials in set 2; p � 0, binomial test). The RTs were also much
shorter in set 2 (Fig. 8b) (270 	 56 ms; n � 5231 in set 1 vs 217 	
49 ms, n � 8010 in set 2; mean RT 	 SD; p � 0, Wilcoxon’s rank
sum). Interestingly, although the tachometric curve for set 2 is
less steep than for set 1 (Fig. 8d), the difference is not nearly as
dramatic as are the differences in the psychometric and chrono-
metric curves. In this case, the large change in performance is
primarily accounted for by the decrease in RT, that is, by the
mechanism shown in Figure 4d.

The tachometric curves from data sets 1 and 2 are replotted in
Figure 9a using rPT on the x-axis, as in previous figures. When
superimposed in this way, the curve from set 1 is clearly steeper
than that from set 2. Crucially, the likely distributions of rise
times were almost completely non-overlapping, indicating that
this parameter was indeed significantly different when compared
across the two data sets (trise � 42 	 6 ms for set 1; trise � 71 	 6
ms for set 2; p 
 0.0001; 0 of 10,000 resamplings).

The reason for these results could be the amount of practice
leading to each data collection period. The pattern could not be
explained by differences in other task parameters across the two
data sets, such as the proportions of left and right choices, reward
amounts, target eccentricities, or the relative probabilities of red
and green targets; all of these factors were statistically the same in
the two conditions. However, even if other causes were responsi-
ble, the results are interesting because they confirm that the be-
havioral curves characterizing a subject’s performance in the task
are plastic, that changes in performance can occur through com-
binations of the perceptual and motor mechanisms identified
earlier (Fig. 4), and that these changes can remain stable over
timescales on the order of months.

Reliability of the tachometric curve
The tachometric curve is a powerful diagnostic of perceptual
ability because a subject’s choice accuracy in the CS task varies
much more sharply with processing time than with gap or RT
individually; it is their difference that correlates most strongly
with correct discrimination, as can be easily understood from
the race-to-threshold model. However, it is also important to
consider the sources of error or uncertainty to which the tacho-
metric curve may be subject. We investigated five such potential
sources through model simulations.

a

b

c

d

Figure 8. Psychophysical performance of monkey S during two separate data collection
periods, which resulted in data sets 1 (left column, same data shown in Fig. 2) and 2 (right
column). In all, sets 1 and 2 included 5231 and 8010 trials, respectively.

a b

Figure 9. Comparison of the perceptual performance of monkey S in data set 1 versus data
set 2. a, Tachometric curves. b, Joint distributions of center points and rise times obtained from
bootstrapping. The format is the same as in Figure 6.

8416 • J. Neurosci., June 8, 2011 • 31(23):8406 – 8421 Shankar et al. • Tracking a Perceptual Judgment in Time



First, in the race-to-threshold model, transmission delays
contribute an average of TND milliseconds to the total RT in any
trial. This parameter may also include the time consumed by
other processes that do not directly impact the developing ocul-
omotor choice. Either way, the model assumes that there is vari-
ability in TND, and the consequence of this variability is that the
inferred tachometric curve becomes less sharp, particularly near
ePT � 0, where it starts increasing. This is shown in Figure 10b.
With a SD �A � 10 ms, the effect is small. With �A � 20 ms, the
broadening is more noticeable, although still relatively modest
given such a high variability.

To appreciate this result, it is important to recall that the
simulated tachometric curves were obtained in the same way as
with the experimental data; that is, without knowledge of the time

delays in individual trials. The result is thus different from the
horizontal shift that would be observed just with a change in the
mean onset time (i.e., in TND): the fluctuations in the duration of
the processes that are not directly related to the saccadic choice
“smear” the tachometric curve. Thus, the fact that the percentage
correct rises above chance at ePT � 0 is an artifact caused by the
smearing, which also tends to increase the experimentally mea-
sured discrimination time (t75). Another way to think about this
is that the variability in TND causes uncertainty in each measured
rPT value. With enough data and careful analysis of onset times,
it may be possible to estimate �A based on recorded oculomotor
activity associated with the subject’s choices.

Second, across trials, there are large variations in the initial
oculomotor activity triggered by the go signal, which develops
during the first, precue stage of each saccadic choice. Such varia-
tions are an intrinsic part of the model; in fact, they represent its
main source of variability and are most responsible for generating
different outcomes across trials. They do not need to be consid-
ered further.

Third, the influence of the sensory cue could also vary from
one trial to another, and we have explored this scenario too (Fig.
10c, d). In our model, the parameters rT, rD, and �, which effect
the influence of the cue, normally remain constant for a given
monkey or a given experimental condition. For this simulated
experiment, however, rT and rD varied randomly and indepen-
dently across trials; their SDs were set equal to 25% of their orig-
inal values listed in Table 1 (monkey S, set 1). This amount of
variability is quite high, but as can be seen in Figure 10d, this
manipulation had a negligible impact on the tachometric curve,
and the same was true for the chronometric and psychometric
curves, and for simulations involving variability in �. Thus, the
measures of psychophysical performance we have used, which
are based on averages over trials, are highly insensitive to fluctu-
ations in the flow of cue information across trials, at least as far as
we can tell with the model.

Fourth, in the model, the circuit is committed to a specific
motor response when activity reaches a threshold. This is consis-
tent with neurophysiological evidence (Hanes and Schall, 1996;
Roitman and Shadlen, 2002; Hanks et al., 2006; Kiani et al., 2008)
and is a feature of most accounts of perceptual decision making
(Wang, 2002; Smith and Ratcliff, 2004; Palmer et al., 2005; Wong
and Wang, 2006; Boucher et al., 2007; Ratcliff and McKoon,
2008; Cisek et al., 2009). Interestingly, Reddi and Carpenter
(2000) showed that changes in threshold in their model were
consistent with changes in the speed–accuracy trade-off of sub-
jects making saccades to single, low-visibility targets. This sug-
gests that the threshold may be adjusted according to task
demands, and therefore that it may vary across trials. To investi-
gate the impact of possible variations in threshold, first we in-
creased its value by 50% and found that performance became
better but slower— both the psychometric and chronometric
curves shifted upward by large amounts—and the opposite
changes were seen when the threshold was decreased by 50%
relative to the standard value. This agrees with the speed–accu-
racy trade-off reported previously (Reddi and Carpenter, 2000).
Most importantly, however, neither of these manipulations had a
discernible effect on the tachometric curve. To confirm this, we
performed additional simulations in which the threshold
changed in every trial (Fig. 10e,f). In this case, the psychometric
and chronometric curves changed minimally, but more impor-
tantly, again there was no observable effect on the tachometric
curve, even though the fluctuations were quite large (Fig. 10f).

a

c

e

g
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d

f

h

Figure 10. Possible sources of error in the tachometric curve. Simulations with a standard
set of fixed parameters (monkey S, set 1) (Table 1) are compared with simulations that included
various amounts of intertrial variability in some of those parameters. a, Two simulated trials in
which TND varied by 40 ms. The format is the same as in Figure 3. b, Tachometric curves obtained
with different amounts of variability in TND; �A � 0 (black), 10 (magenta), and 20 ms (blue).
Deviations in TND were normally distributed. c, Two simulated trials in which parameters rT and
rD varied by 50%. d, Tachometric curves obtained with no variability in rT and rD (magenta) or
with Gaussian intertrial variability (black). The SD of rT and rD was equal to 25% of their standard
values. e, Two simulated trials in which threshold varied by 50%. f, Tachometric curves obtained
with no variability in the threshold (magenta) or with Gaussian intertrial variability (black). The
SD of the threshold was equal to 25% of its standard value. g, Two simulated trials, one in which
the subject does not wait (�TW � 0; top), and another in which the subject waits (�TW � 50
ms; bottom). The applied gap was 150 ms in both trials (light gray); the effective gap was
reduced by �TW in the bottom trial (dark gray). h, Tachometric curves obtained with no waiting
(magenta) and with waiting (black). In each waiting trial, �TW was initially drawn from an
exponential distribution with a mean of 75 ms, but then could not exceed the applied gap. The
magenta curve in b, d, f, and h is the same.
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Finally, the monkey’s behavioral strat-
egy is another factor that might seem as a
potential source of uncertainty in the ta-
chometric curve. In particular, what hap-
pens if a monkey tries to wait for the cue?
That is, suppose that, instead of reacting
as soon as he detects the disappearance of
the fixation point, the subject waits a cer-
tain amount of time �TW before initiating
his response selection; would not this
strategy bias the estimate of processing
time and thus the resulting tachometric
curve?

To answer this question, one must de-
fine exactly what is meant by waiting, or
how exactly such a waiting strategy is im-
plemented, but in general waiting is not a
cause for concern, particularly when the
subject’s psychometric performance
ranges from nearly 100% correct to near
chance (Salinas et al., 2010). If waiting
leads to a simple delay in responding but
the cue signal is still able to inform the
ongoing oculomotor plan, then it is harm-
less, as we pointed out previously (Salinas
et al., 2010; Stanford et al., 2010). The ex-
ample shown in Figure 10g illustrates why.
Two things happen when the subject de-
lays the response: (1) the nondecision pe-
riod is extended by an amount �TW, and
(2) the “true” gap is effectively shortened
by the same amount. Therefore, when cal-
culating the difference RT � gap using the
nominal gap value, the result is, on aver-
age, the same as if the subject had not
waited. Over many trials, the effect of
�TW is simply equivalent to having per-
formed the experiment with shorter gaps
(and no waiting), and although this may have an evident impact
on the psychometric and chronometric curves (data not shown)
(Salinas et al., 2010), it has virtually no consequence on the ta-
chometric curve (Fig. 10h). We have also explored other, more
complex waiting mechanisms, but none of them were consistent
with the empirical data obtained in the task (Salinas et al., 2010).

In summary, then, as far as we have observed in the model, the
dominant source of uncertainty in the tachometric curves, and
likely in our calculations of perceptual processing speed, is the
variability in TND, which reflects the internal variability of neural
processes that take place during each trial but are unrelated to the
decision-making steps. This factor tends to widen the tachomet-
ric curve, so it leads to processing speeds that underestimate the
true values. Thus, sensory processing during a red/green discrim-
ination of high-contrast stimuli may be even slightly faster than
we have inferred. Other than this, the tachometric curve is ex-
tremely resilient to various forms of variability.

Expected neural correlates of psychophysical changes
We used the race model to explore some of the possible neural
correlates of the psychophysical phenomena observed during
performance of the compelled-saccade task. That is, given the
various possible changes in the tachometric curve, we analyzed
simulated neuronal responses to predict the corresponding
changes in neuronal activity that should be expected during ac-

tual neurophysiological recordings. To generate such predic-
tions, for each experimental condition, several thousand trials
were run using parameters that fitted or approximated that con-
dition, and the simulated motor plans (i.e., the trajectories of the
xL and xR variables) were saved for all trials. Then, average traces
were computed for the motor plans in the preferred direction of
the neurons and for the plans in the opposite direction. These
average traces were calculated with all trials synchronized either
on the go signal or on the saccade. Also, because the rPT is a
crucial variable in the task, separate averages were generated for
trials with long and with short rPTs. The idea was to replicate the
standard procedures used for analyzing extracellular recordings
from oculomotor cells (Thompson et al., 1996; Port and Wurtz,
2009; Stanford et al., 2010).

The results are shown in Figure 11, which plots the expected
mean oculomotor responses (colored traces) that correspond to
each of the three major effects on the tachometric curve that were
found. According to the race model, a shift of the tachometric
curve along the horizontal axis (Fig. 11a) will manifest as a shift in
the evoked neuronal activity in the same temporal direction, both
when the responses are synchronized on the go signal (Fig. 11b)
and when synchronized on the saccade (Fig. 11c). The latter case
is not expected to appear as a pure shift, however, because the
level of activity immediately preceding saccade onset should be
constant (Hanes and Schall, 1996; Roitman and Shadlen, 2002;
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Figure 11. Neurophysiological predictions of the race-to-threshold model. For each condition (tachometric curve), 16,000 trials
were simulated and sorted according to rPT and movement direction. The model responses xL and xR in each group were aligned
either on the go signal (middle column) or on the saccade (rightmost column) and were then averaged. a, Simulated rightward
shift in the tachometric curve. The model parameters are as in Figure 5d (monkey G), except with pe � 0 in both cases, for clarity.
The gray area indicates short rPTs. b, c, Average neural activity predicted by the model during correct trials with short rPTs. The
continuous and dashed traces are from the same runs as the corresponding curves in a. The red and green lines are for correct eye
movements into and away from the motor field of the neuron, as indicated. The y-axes correspond to normalized firing rate. d,
Simulated decrease in slope of the tachometric curve. The continuous and dashed traces differ by a factor of 2 in the parameter �.
The dashed trace is the same as the continuous trace in a. The gray area indicates long rPTs. e, f, Average neural activity predicted
by the model during correct trials with long rPTs for the two conditions in d, indicated by continuous and dashed traces. g,
Simulated decrease in the maximum percentage correct of the tachometric curve. The continuous trace is the same as in a, and the
dashed trace was obtained by setting pe �0.1. h, i, Average neural activity predicted by the model during error trials with long rPTs
for the two conditions in g, indicated by continuous and dashed traces.
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Stanford et al., 2010). Importantly, although the predictions for
this case are shown for short-rPT trials, similar shifts are also
predicted for long-rPT trials. So, a rightward shift of the tacho-
metric curve should be accompanied by rightward shifts in the
evoked oculomotor activity at all rPTs.

In contrast, when the slope of the tachometric curve decreases
(Fig. 11d), a shift in the opposite temporal direction is expected;
this effect should be clearer for the data aligned on the saccade
(Fig. 11f) and should only be observed for long rPTs, not for
short ones (data not shown). For the data synchronized on the go
signal (Fig. 11e), the difference is expected to be small, and to
arise only at a relatively high level of activity at long rPTs. So, a
shallower tachometric curve, which moves just part of the curve
to the right, should be accompanied primarily by a partial shift to
the left in the evoked oculomotor activity aligned on saccade
onset, and this shift should be seen at long rPTs only.

Finally, according to the model, a decrease in the maximum
percentage correct of the tachometric curve (Fig. 11g) will not
have any impact on the responses evoked during correct trials
(data not shown). Rather, such a change should only be manifest
in the activity levels observed during error trials, and further-
more, only for those trials with long rPTs (Fig. 11h, i).

It should be quite feasible to test these predictions in future neu-
rophysiological experiments using single-neuron recordings. This is
because the three types psychophysical effect discussed, shifts,
changes in slope, and changes in maximum percentage correct,
should lead to characteristic changes in activity that are specific for
temporal direction (earlier vs later), rPT interval (short vs long), and
outcome type (correct vs error).

Discussion
We have described the behavior of five monkeys trained to perform
the CS task, a task that, to a large extent, dissociates the codepen-
dence between RT and behavioral performance that is typically ob-
served in sensory discrimination paradigms. With this design, it is
possible to track the temporal evolution of a perceptual judgment
with little contamination caused by variability in motor execution,
which typically plagues this type of calculation.

Estimating sensory processing times
Previous psychophysical studies based on choice tasks have esti-
mated sensory-integration time windows in the �100 ms range
(Ludwig et al., 2005; Ghose, 2006). In contrast, our results imply
that two highly discriminable colors can be perceptually differen-
tiated much faster, approximately within 25–50 ms, depending
on the subject and the desired criterion level. In fact, our findings
are consistent with estimates of sensory processing times based
on rapid alternation of colored gratings, according to which color
discrimination in humans requires �25 ms (Holcombe and Ca-
vanagh, 2001; Bodelón et al., 2007). This number probably re-
flects pure sensory identification, whereas our task also requires
that the output of the sensory discrimination be associated with
the correct motor action on the fly. Here, the sensory-motor rule
is simple (“move to the spot that matches the color of the fixation
point”), and likely contributes little, but other more complex
rules (e.g., “move to the spot that is different from the color of the
fixation spot”) might require additional processing time. Hence,
the temporal resolution of the tachometric curve may be close to
that of the rapid-grating-alternation method. Crucially, however,
the tachometric curve generates much more than a single number
(perceptual speed): it characterizes the perceptual capacity of a
subject and allows us to pinpoint how various psychophysical
mechanisms contribute to the observed choice accuracy (Fig. 4).

Learning and perceptual optimization
The tachometric curve of monkey S was significantly steeper after
several months of practice than after several months of inactivity
(Fig. 9). This may appear analogous to perceptual learning exper-
iments, whereby extensive practice increases the performance of
a basic perceptual task, such as contrast detection (Fiorentini and
Berardi, 1980; Li et al., 2009), orientation discrimination (Vogels
and Orban, 1985; Yang and Maunsell, 2004), or line alignment
(Li et al., 2004; Gilbert et al., 2009). However, even if we were
certain that it was a consequence of training, the present result is
fundamentally different because it reveals a change in processing
speed.

Previous studies in perceptual learning have documented
changes in the effective sensitivity of subjects after repeated ex-
posure to specific sensory stimuli, and have explained those re-
sults in terms of signal and noise components. In some cases, the
behavioral changes have identifiable neural correlates, such as
sharpening of tuning functions (Jenkins et al., 1990; Recanzone et
al., 1993; Yang and Maunsell, 2004). However, in the current
implementation of the CS task, the red and green spots are bright
and easily discriminable, so color sensitivity is unlikely to be a
performance-limiting factor. Consequently, changes in color
tuning are probably unrelated to the behavioral effects reported
here. Rather, the variation in processing speed displayed by mon-
key S suggests that, with training, the neural circuits that process
sensory evidence and weigh the two motor alternatives are able to
work faster. It is not clear what neural mechanisms account for
such dynamic changes, but it should be possible to explore them
with a more biophysically realistic version of the race-to-
threshold model (Wang, 2002; Beck et al., 2008; Furman and
Wang, 2008; Lo et al., 2009) and additional experiments.

Variability in the onset of perceptual discrimination
A shift in the tachometric curve along the time axis, particularly
when it results from presumptive changes in motivation (Fig. 6),
indicates that the onset of the perceptual discrimination process
can change by at least a few tens of milliseconds from one trial to
the next. This shift is thus relatively large, considering that the
perceptual discrimination itself has a timescale on the order of
25–50 ms (to reach 75% correct).

This result is intriguing. On one hand, the effect suggests that
sensory information required different amounts of time to travel
from the retina to the relevant decision-making circuits. And
indeed, to replicate tachometric curve shifts associated with large
and small rewards, the model required different TND values; for
instance, 104 and 136 ms in the case of monkey G (Table 1). But
given that the sensory inputs were identical, it is unclear how to
account for a �30 ms difference in TND in biophysical terms.
Whatever the underlying mechanism, our finding that the onset
of the perceptual analysis can vary to such a degree is novel and
suggests a new specific way in which neuronal activity can be
linked to context-dependent changes in choice performance.

RTs, reward, and performance
In the motivational bias experiment, larger rewards were associ-
ated not only with better performance but also with slightly lon-
ger RTs (Fig. 5a,b). At first, this seems counter to previous studies
in which the availability of larger rewards was typically associated
with significantly shorter RTs (Takikawa et al., 2002; Watanabe et
al., 2003a). However, such reward-dependent decreases in RT
require a reliable association between reward value and stimulus
location/movement vector. Indeed, when such an association ex-
ists, analogous reward-related RT effects are also obtained in the
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context of the CS task (Stanford et al., 2010). In the present study,
there was no such correspondence between reward and location;
the position of the highly rewarded target varied randomly, and
success always required an accurate color discrimination. Also,
all else being equal, in the CS task longer RTs lead directly to
higher success rates (Fig. 4d). Therefore, the increases in RT dis-
played by our subjects were consistent with higher motivation,
better performance, and the availability of a larger reward. In
future neurophysiological experiments, it will be interesting to
explore how reward affects oculomotor activity under this con-
dition, in contrast to previous tasks in which the typical inverse
relationship between RT and reward is observed (Kobayashi et
al., 2002, 2007; Lauwereyns et al., 2002; Watanabe et al., 2003b).

Sensory information influences a developing motor plan
Our model shares several features with “bounded integrator” or
“drift-diffusion” models of choice tasks: neural activity ramps up
until one of two competing alternatives crosses a threshold, at which
point a particular response is produced (Ratcliff and Rouder, 2000;
Usher and McClelland, 2001; Wang, 2002; Smith and Ratcliff, 2004;
Palmer et al., 2005; Wong and Wang, 2006). In many such models,
sensory-evoked activity is directly integrated, so reaching a threshold
is interpreted as reaching a particular amount of accumulated sen-
sory evidence, or a particular level of certainty (Carpenter and Wil-
liams, 1995; Reddi and Carpenter, 2000; Gold and Shadlen, 2002;
Beck et al., 2008; Brown and Heathcote, 2008).

Our model is different, more conservative, because (1) its dy-
namical variables represent developing motor plans, (2) its pri-
mary source of variability is the initial state of those variables
rather than noise in the sensory input (Drugowitsch and Pouget,
2010) (see also Brown and Heathcote, 2008), (3) the integration
process does not accumulate sensory evidence, but rather directly
advances the motor plans, and (4) reaching a threshold means
that the system has committed to generating a motor action that
can no longer be cancelled, which is consistent with neurophys-
iological data (Hanes and Schall, 1996; Roitman and Shadlen,
2002; Lo and Wang, 2006; Boucher et al., 2007). Our race model
is thus more akin to that of Cisek et al. (2009), in which sensory
information modulates a growing signal that represents the ur-
gency to make a response. However, we propose that the cue
information influences the ongoing saccadic choice through a
specific mechanism— by accelerating and decelerating the neural
discharges that trigger eye movements to the target and distracter
locations, respectively—which is consistent with recordings from
oculomotor cortical neurons (Stanford et al., 2010).

Implications for interpreting neuronal activity
A crucial issue for understanding the neural basis of perceptual
decision making is determining whether task-related activity re-
flects the sensory or motor processes associated with making a
choice (Thompson et al., 1996; Gold and Shadlen, 2000, 2007;
Shadlen and Newsome, 2001; Lovejoy and Krauzlis, 2010). How-
ever, distinguishing an evolving perceptual discrimination from a
developing motor plan is complicated by the conjunction of two
factors: first, as noted in Introduction, there has been no behav-
ioral measure that thoroughly decouples perceptual performance
from motor performance; and second, because many of the same
neurons respond to both sensory and motor events, parsing their
respective neural correlates is very difficult (Thompson et al.,
1996; Wyder et al., 2004; Port and Wurtz, 2009).

The CS task provides two new handles on these problems: a
reliable time stamp marking the moment at which the cue infor-
mation starts influencing a choice, and a temporal profile of the

subject’s percept. Thus, single-neuron activity and behavior can
be correlated through time to investigate how such activity relates
to the perceptual discrimination, the motor plan, or both. More-
over, the precision with which such correlates may be temporally
localized provides a unique opportunity to assess the relative po-
sition of structures (Pasupathy and Miller, 2005) like the superior
colliculus, the frontal eye fields, and others within a functional
hierarchy of visuomotor control.
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