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SUMMARY
Sleep is a behavioral state ideal for studying functional connectivity because it minimizes many
sources of between-subject variability that confound waking analyses. This is particularly
important for potential connectivity studies in mental illness where cognitive ability, internal
milieu and active psychotic symptoms can vary widely across subjects. We, therefore, sought to
adapt techniques applied to magnetoencephalography for use in high-density
electroencephalography (EEG), the gold-standard in brain-recording methods during sleep.
Autoregressive integrative moving average modeling was used to reduce spurious correlations
between recording sites (electrodes) in order to identify functional networks. We hypothesized that
identified network characteristics would be similar to those found with magnetoencephalography,
and would demonstrate sleep stage-related differences in a control population. We analysed 60-s
segments of low-artifact data from seven healthy human subjects during wakefulness and sleep.
EEG analysis of eyes-closed wakefulness revealed widespread nearest-neighbor positive
synchronous interactions, similar to magnetoencephalography, though less consistent across
subjects. Rapid eye movement sleep demonstrated positive synchronous interactions akin to
wakefulness but weaker. Slow-wave sleep (SWS), instead, showed strong positive interactions in a
large left fronto-temporal-parietal cluster markedly more consistent across subjects. Comparison
of connectivity from early SWS to SWS from a later sleep cycle indicated sleep-related reduction
in connectivity in this region. The consistency of functional connectivity during SWS within and
across subjects suggests this may be a promising technique for comparing functional connectivity
between mental illness and health.
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INTRODUCTION
The field of functional neuroimaging has increasingly focused on the study of interactions
among brain regions. While considerable information has been gained through identification
and localization of functionally specific cortical areas, a growing body of work suggests that
the emergence of behavior and cognition are dependent upon the existence and integrity of
dynamic neuronal networks, which are conserved across individuals. These studies of
functional connectivity have been performed primarily using functional magnetic resonance
imaging (fMRI), correlating the blood oxygen level-dependent signal either during task-
specific activities or during resting states. Task-negative networks, also known as resting
state or the ‘default mode network’, appear to involve posterior cingulate cortex, medial
prefrontal cortex, inferior temporal cortex and parahippocampal gyrus, as well as lateral
parietal cortex (see Bullmore and Sporns, 2009; Damoiseaux and Grecius, 2009 for recent
reviews of the functional connectivity literature). Methods have also been developed to
assess dynamic synchronous interactions among brain regions using
magnetoencephalography (Langheim et al., 2006; Leuthold et al., 2005). However, none of
these methods is suitable for studies during sleep due to required radiation exposure
[positron emission tomography (PET)], or difficulty achieving sleep due to scanner noise
(fMRI) or discomfort [fMRI and magnetoencephalography (MEG)].

It has been demonstrated that autocorrelation structure inherent to time series data risks the
identification of spurious cortical interactions, and that these confounds may be addressed
prior to correlation analysis through the use of Box–Jenkins autoregressive integrative
moving average (ARIMA) modeling (Box and Jenkins, 1970; Leuthold et al., 2005).
Focusing on synchronous correlations, stable dynamic networks were revealed with
considerable similarity across subjects (Langheim et al., 2006).

Expanding on this previous work, we used ARIMA modeling to analyse high-density
electroencephalographic (HD-EEG) data obtained during overnight sleep studies. The
benefit of HD-EEG over MEG resides in the capacity for more ambulatory data collection,
allowing for longer recording sessions and greater behavioral variability, such as full body
motion and sleep. While concerns regarding signal blurring exist with EEG, the use of HD-
EEG and the development of data analysis methods serve to minimize this (Michel et al.,
2004). As a result, the millisecond temporal resolution of MEG is accessible through HD-
EEG. A secondary benefit to use of HD-EEG is the lower expense of purchasing and
maintaining the equipment, opening this field of inquiry to more laboratories and larger
study populations with the prospect of greater clinical applicability.

Sleep was chosen as a behavioral state as it represents a great equalizer across study
subjects. Slow-wave sleep (SWS) and rapid eye movement (REM) sleep are not dependent
upon participant effort, skill or intellectual capacity, and require little more than willingness
to undergo overnight polysomnography. Conversely, when functional connectivity is studied
during behavioral tasks, their control conditions, or resting wakeful states in which attention
and the internal milieu is not directly focused, significant confounds are introduced. These
features make the study of sleep ideal for future longitudinal studies and work with mentally
ill populations in whom functional connectivity is speculated to be aberrant.

As a preliminary step, we sought to determine the feasibility of using HD-EEG to compare
network connectivity identified during eyes-closed wakefulness to that identified for SWS
and REM stages, anticipating differences in functional connectivity among these behavioral
states. We felt that comparison of three distinct behavioral states would reveal notable
differences in connectivity, and should therefore be undertaken prior to exploring changes
within any one of these states. We hypothesized that synchronous networks identified with
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this methodology in a restful waking state would be grossly similar to those identified with
magnetoencephalography. At the same time, we expected that connectivity in sleep stages
would demonstrate differences from waking data.

Specific challenges to accomplishing these goals with HD-EEG include the existence of
autocorrelation structure within the HD-EEG signals themselves, as well as the potential
overlap between spatial blurring (resulting from volume currents passing through various
tissue types on their way to scalp electrodes) and functional connectivity. To illustrate
autocorrelation influences, consider the redundant information present in the slope and
upper and lower limits of time series fluctuations. The predictability imparted from that
structure represents redundant information, which, in turn, exaggerates correlation. ARIMA
modeling was developed to limit this by minimizing autocorrelation and partial
autocorrelation structure. While the influence of blurred signals may be reduced through
ARIMA modeling, the use of partial cross-correlation (PCC) analysis further minimizes
broad cortical oscillations (whether from strong signals or from spatial blurring) from
influencing encephalographic measures of functional connectivity. Although some
potentially relevant brain signal may be reduced (for instance, some brainstem signal
modulating the entire cortex simultaneously), what is left are more localized interactions.
While the potential loss of information may reduce estimates of functional connectivity, it
does so in a trade-off against identification of spurious correlations.

Therefore, to accomplish the goals of identifying functional connectivity with HD-EEG
while showing variation in this connectivity with wakefulness and sleep stages, we
identified the structure of HD-EEG time series by fitting appropriate ARIMA components.
We then used the model obtained to derive prewhitened residuals of the series (time series
close to stationary white noise devoid of predictable structure). The residuals were then used
to estimate pairwise interactions between series using PCC. The resultant synchronous
networks characterized during quiet wakefulness were compared with those obtained during
REM and SWS.

MATERIALS AND METHODS
Subjects and recordings

HD-EEG was recorded in seven healthy subjects (one woman and six men, mean age 38.6 ±
7.7 years, range 29–54 years). Written informed consent was obtained from each subject
following a screening for medical and psychiatric illness. The study was approved by the
University of Wisconsin Institutional Review Board. Data were collected using a 256-
channel Electrical Geodesics Hydrocel sensor net (Eugene, OR, USA). This net employed
spongeless electrodes filled with conductive gel to improve skin contact and stability of the
net during the recording. Participants were allowed to sleep at their self-reported bedtime.
Fig. 1 displays a two-dimensional projection of the 256-channel array. Data were collected
at 500 Hz (0.1 Hz highpass filter and 200 Hz lowpass filter amplifier settings) during
overnight polysomnography. Electrooculogram and electromyogram (EMG) channels were
derived from the 256-channel net to aid in sleep scoring. Sleep stages were visually scored
for 20-s epochs on the EEG referenced to the mastoid (C3A2 and C4A1 derivations). In
order to maintain channel to channel numerical relationships, all channels were included in
the data analysis despite noise or high impedance, as those characteristics precluded
significant correlations between those and other channels. Time series of eyes-closed
wakefulness preceding sleep onset, as well as scored sleep stages, were visually inspected
for artifacts. Sixty-second segments of low-artifact data were isolated from five different
behavioral states: eyes-closed wakefulness; early SWS; late SWS; REM with low to absent
rapid eye movements; and REM with high numbers of rapid eye movements.
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Data analysis
A specific goal for this study was to assess the interactions between time series in pairs of
sensors. To that end, individual series must be stationary, as non-stationarities in the time
series may lead to spurious correlations (Box and Jenkins, 1970; Priestley, 1981). Our
analyses began with modeling the individual time series to derive relatively stationary
residuals, which could then be used to compute pairwise correlations. Box–Jenkins ARIMA
modeling analyses were performed using SPSS (SPSS for Windows, version 10.1.0, SPSS,
Chicago, IL, USA), and repeated using software written in Matlab (The MathWorks™ Novi,
MI, USA). Autocorrelation (ACF) and partial autocorrelation (PACF) functions were plotted
for 25 lags, corresponding to 50 ms given our sampling rate.

The goal of ARIMA modeling in the context of HD-EEG studies in functional connectivity
is to minimize the influence of signal autocorrelation and spatial blurring on correlation
measures between sensor time series. This is accomplished by removing identifiable and
predictable structure from each time series (Leuthold et al., 2005; Langheim et al., 2006).
Predictable structure may be identified through graphing of ACF and PACF. Analysis of
ACFs and PACFs for individual channels demonstrated a need for first-order differencing
(subtraction of time point n − 1 from time point n), which was applied to all data series as an
initial processing step. Subsequent inspection of ACFs and PACFs of the differenced series
indicated the presence of autoregressive (AR) and moving average (MA) components.
Extensive model fitting and post-processing analyses were performed on a subset of subjects
and channels using programs written for the purpose within Matlab. The number of
significant autocorrelations and partial autocorrelations were minimized over multiple
subjects and multiple sensor data sets within subjects, using from 0 to 50 AR orders in
exhaustive combination with 0 to 20 MA orders, and 0 or 1 order of differencing. For each
of these combinations, autocorrelograms and partial autocorrelograms were examined, and a
nadir was identified among remaining significant time lags from 1 to 25 (Leuthold et al.,
2005; Langheim et al., 2006). Through this evaluation, the optimal model resulting in quasi-
stationarity of residual time series for the majority of data analysed consisted of 40 AR
orders (AR = 40) and one MA order (MA = 1), in addition to the aforementioned first order
differencing (I = 1). After prewhitening of each individual time series using the 40,1,1
ARIMA model, individual pairwise interactions between sensors were calculated using PCC
analysis, taking into account all other pairwise interactions among all other sensors. Plots of
these pairwise interactions were made, demonstrating positive PCCs in green and negative
PCCs in red, using thresholds both of significance corrected for multiple comparisons and
absolute value of the PCC.

RESULTS
ARIMA modeling of HD-EEG data

A total of 8960 time series of 60-s duration were available for analysis (seven subjects by
256 by five time series each). The results of ARIMA modeling are demonstrated with an
illustrative sensor (#70) in Figs 2 and 3. Fig. 2 shows 6 s of raw data, the same data
following first order differencing, and the residual time series after application of the
(40,1,1) ARIMA model for channel #70. While the raw series was non-stationary with
respect to its mean and variance (as evidenced by the great deal of structured variability),
this non-stationarity was considerably reduced after differencing, and further eliminated
through ARIMA modeling. In order to underscore this non-stationarity, Fig. 3 shows ACFs
(upper panels) and PACFs (lower panels) for the same data shown in Fig. 2. The ACFs and
PACFs show non-stationarity in the raw data (demonstrable by the highly significant values
at multiple time lags), and show that this non-stationarity was considerably reduced but not
eliminated following differencing. ARIMA modeling further reduces the degree of non-
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stationarity, as the number of significant values across time lags approaches the standard
error. Results were similar in other sensors within the same subject as well as across all
subjects in wakefulness, REM and SWS.

Cross-correlation analysis
Fig. 4 demonstrates the importance of prewhitening time series before accurate estimates of
cross-correlation values may be calculated. At the far left, the cross-correlation function
(CCF) between two sensor time series of raw data is plotted. The graph consists of large,
highly statistically significant correlation values throughout the entirety of ± 50 ms lag.
Differencing alone of the time series prior to cross-correlation calculation, as demonstrated
by the middle graph, reveals a confounding oscillatory function, which achieves statistical
significance across time lags. In contrast, the CCF computed using the prewhitened series of
residuals following (40,1,1) ARIMA modeling consists of significant interaction within a
focused temporal window of less than 10 ms. It can be seen that, although smaller, these
values extend beyond the 95% confidence intervals of the correlation coefficients. These
differences demonstrate how the CCF computed from raw data reflects the highly
autocorrelated structure of the individual series (see Fig. 3). Considerable information
appears to exist within the resulting data. In addition to zero lag synchronous interactions,
the lagged correlations may allow inferences of directionality of interaction. Consistent with
preceding research, we focused on zero lag interactions between prewhitened sensor time
series (Georgopoulos et al., 2007,2010;Langheim et al., 2006). As we were taking into
account multiple correlations simultaneously, PCC calculations were used to identify zero
lag interactions specific to the two sensors analysed while accounting for all other
synchronous interactions among all other pairwise combinations of sensors (Langheim et al.,
2006).

We found that the majority of pairwise PCC strengths across subjects and behavioral states
were statistically significant well beyond Bonferroni correction for multiple comparisons
(256 by 255 sensors by 30 000 time points or P < 1 × 10−11). Using a threshold of absolute
value of PCC strength greater than 0.1, all calculated P-values were less than 1 × 10−66. At
the same time, P-values were significantly inversely correlated with the absolute value of
the PCC within subjects (range of r2: 0.11–0.2). Due to this high level of significance, we
further verified the stability of identified interactions by comparing the results of analysis of
the first half of each data set with results of the second half of each data set, retaining only
those PCC values wherein each half was within 1% of the value calculated for the full data
set. Given that PCC values of 0.1 account for a limited interaction despite statistical
significance, we chose to use |PCC| ≥ 0.1 as an arbitrary threshold in displaying our results.
Use of the |PCC| ≥ 0.1 threshold resulted in plotting from 369 to 913 pairwise interactions
per subject of the 32 640 possible (mean ± SD; 620 ± 120), or approximately 1.9% of the
interactions.

Fig. 5 illustrates positive and negative PCC-derived synchronous networks calculated from
HD-EEG data in seven subjects during eyes-closed wakefulness as well as an averaged
network map depicting the mean PCC value across all seven subjects. Here one sees positive
clustering in a left fronto-temporal distribution (subjects 1, 3, 5, 7) and right parieto-
occipital cluster (subjects 1, 2, 6 and, to a lesser extent, 4). Negative clustering is notably
more variable across subjects. On average, the synchronization appears to be generally both
localized and positive.

Fig. 6 demonstrates diffuse and distant interactions, both positive and negative, taking place
during REM sleep with minimal eye movements, showing greater variability among
subjects. Positive right parieto-occipital clustering does appear to be present in three subjects
(4, 6 and 7), with a negative correlate in two subjects (2 and 5). This increased intersubject
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variability is most evident in the considerable decrease in the number of significant partial
correlations plotted in the seven subject average. Results from REM sleep with many eye
movements (data not shown) were similar within subjects, save for considerably increased
long-range and bilateral negative interactions with frontal channels.

With respect to SWS, Fig. 7 demonstrates localized clusters of left fronto-temporal positive
PCCs in four subjects (1, 5, 6 and 7) and, to a lesser extent, in two others (3 and 4).
Interestingly, due to significant artifacts present in early SWS stages for subject 4, those data
depicted here represent a low-artifact data set from much later in the night (approximately 5
h 10 min) by comparison to the other subjects (1 h, range 30 min–1 h 50 min, with subject 2
at 1 h 50 min). While each subject of the seven also demonstrates more distant right parieto-
temporo-occipital negative interactions, the degree of variability among subjects reduced
significance below thresholds in the average map.

This SWS finding appears to be considerably attenuated in later SWS cycles, as shown for
both individual maps and on average across subjects in Fig. 8. To further explore those
changes in PCC strength over the course of a night of sleep, the significant interactions
shown in the average first SWS sample were compared across separate and later SWS
samples. All first sample SWS (SWS1) data were taken from cycle 1, except for in subject 4
for whom second cycle data were used as the first cycle was interrupted by multiple
awakenings. These data were from 0.4 h to 3 h following sleep onset (mean 1.2 ± 0.8 h). For
comparison, SWS2 data were taken from the latest and deepest low-artifact SWS cycle for
each subject (from sleep onset: 5.2 ± 1.2 h; time from SWS1: 4.0 ± 1.5 h). Fig. 9 shows
flying box plots of the mean values and distributions of z-transformed PCC strengths in (a)
all subjects individually, and (b) across all subjects for the first and second SWS samples
analysed. This shows that overall strength of PCCs in this region decreased from the earlier
to later SWS cycles. As negative PCCs within this subset were sparse and inconsistent
across subjects, both positive and negative data were included for all 237 interactions in
each subject. In paired t-test, combined data and individual SWS2 means for each subject
were significantly lower than SWS1 means, except for subject 4 (in whom the first sample
set was collected 3 h into sleep).

In order to assess similarity across subjects in another manner, Fig. 10 is a composite figure
of each behavioral state (formatted in rows) in which each column represents the number of
subjects in whom each graphed interaction was present. The far left column shows
interactions significant (|PCC| ≥ 0.1 and Bonferroni corrected) in at least two subjects, while
the subsequent column shows interactions achieving the same in at least three of the seven
subjects. The column furthest to the right depicts averages across all subjects, using the
same thresholds.

There were more significant positive PCCs during waking than either SWS or REM (paired
t-test, P < 0.001 and P < 0.01, respectively), and more significant negative PCCs during
waking than REM (paired t-test, P < 0.03). In addition, the length of the average positive
PCCs in waking (5.43 ± 0.35 cm) was significantly shorter than during SWS (7.20 ± 0.91
cm, paired t-test, P < 0.01) or REM (7.45 ± 1.33 cm, paired t-test, P < 0.02). The length of
the average negative PCCs in waking (10.15 ± 1.23 cm) was significantly shorter than
during REM (12.08 ± 1.97 cm, paired t-test, P < 0.05). A permutation-based cluster analysis
showed a cluster of four electrodes over the right temporal cortex that had significantly
higher mean PCC values (Nichols and Holmes, 2002).

In summary, the waking state demonstrates diffuse localized cortical interactions throughout
much of the cortex across subjects. During REM sleep, localized interactions appear to lose
strength (as reflected in PCC values) in favor of more distant interactions. Conversely, SWS
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reveals a localized cluster of left fronto-temporal connectivity, more consistent across
subjects than clustering noted in either wakeful resting with eyes closed or during REM
sleep.

DISCUSSION
We have used time series analysis methods originally developed for econometric study and
recently applied to MEG data to identify synchronous dynamic networks in wakefulness and
sleep using HD-EEG. Possible confounds of these findings and their interpretation include
the potential correlative effects of spatial blurring and strong EMG signals upon the HD-
EEG data. In addition, established encephalographic (ECG) techniques have focused upon
the contribution of various frequency ranges, whereas the ARIMA modeling utilized in the
present study precludes a clear delineation of which ECG frequencies contribute to the PCCs
and which do not.

Regarding large current distributions and EMG signals, both would likely overwhelm simple
cross-correlations between raw HD-EEG data. Similar concerns existed with respect to
earlier work using MEG, and were mitigated first through the use of low-artifact data,
ARIMA modeling and PCCs (Georgopoulos et al., 2007; Langheim et al., 2006). Widely
distributed signals, such as SWS oscillations and muscle electrical activity, would introduce
large and nearly equivalent correlations among multiple sensors. By selecting low-artifact
data, EMG influences are grossly avoided. Furthermore, as described in the introduction,
ARIMA modeling effectively removes the redundant information present in large sweeping
signal changes. Finally, any surviving influences of large signal changes involving several
sensors are further reduced by employing PCC analysis. PCC differs from simple cross-
correlation in that only the strongest interaction among two time series (sensors) survives the
analysis, while related interactions are subsequently removed from all other pairwise
interactions involving either of those time series (sensors). Indeed, the comparison of
frequent eye movement REM sleep to REM sleep with minimal eye movements
demonstrated significant differences in long-range negative interactions among frontal
channels, underscoring the need for selection of low-artifact data sets for analysis.

A drawback of the methodology used in the present study is the inability to clearly identify
the contributions of various frequency bands to the synchronous networks. In fact,
Butterworth filters are themselves ARIMA models, and the consequences of prewhitening
data already prewhitened in portions of the frequency spectrum would result in model
instability with unpredictable effects upon subsequent PCCs. One alternative, at least for
lower frequency analysis, involves downsampling of the data to various Nyquist
frequencies. For example, taking every 63rd data point results in a sampling rate just under 8
Hz, for which no signal more rapid than 4 Hz may be detected. Decimating the data prior to
ARIMA prewhitening avoids the aforementioned model instability that would arise from
filtering prewhitened data, or prewhitening filtered data. While this approach could lose
statistical power through reducing the number of time points used, Bonferonni correction of
P-values could be employed to mitigate this confound. Indeed, by performing this analysis
after downsampling the data to every 63rd time point, the left fronto-temporal network
identified in the results was no longer present, and identified functional connectivity was
reduced to diffuse nearest-neighbor sensor pairs, which showed no substantial resemblance
across subjects (data not shown). This suggests that ARIMA modeling removed the
otherwise overwhelming correlations that would have come about through correlation of
SWS oscillations in the delta range, while the interactions that contribute to the identified
left fronto-temporal network take place at a frequency greater than 4 Hz.
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The above concerns regarding strong signals and frequency band contributions not
withstanding, the data revealed internal consistency of identified functional connectivity
within subjects, and similarity across subjects during eyes-closed wakefulness. Furthermore,
the positive clustering in a left fronto-temporal and right parieto-occipital distribution during
quiet wakefulness is, overall, similar to previous results in MEG (Langheim et al., 2006), as
well as fMRI (Hagmann et al., 2008) – gross methodological differences limiting the
comparability of these techniques. Taken together, these results suggest that HD-EEG
provides a valid approach to identifying functional connectivity in the form of highly
synchronous dynamic networks. Of course, this is not enough to propose functional
significance apart from this intrinsic validity, which would require specific behavioral
manipulations such as localized learning.

On the other hand, these results show that this connectivity changes across behavioral states,
i.e. wakefulness, REM sleep and SWS, as inferred via strength of synchronous positively-
and negatively-correlated EEG potentials. While REM sleep showed increased variability
across subjects and, in general, appeared somewhat consistent with the networks identified
during eyes-closed wakefulness, SWS showed marked consistency across subjects in the
form of a lateralized left fronto-temporal network of positively correlated synchronous EEG
potentials. This lateralization has not been reported in prior functional connectivity analyses
of EEG. In contrast, prior studies of EEG coherence indicated prominent intrahemispheric
synchrony as compared with interhemispheric coherence in non-REM sleep (Achermann
and Borbély, 1998). Those findings were largely independent of signal amplitude, with the
most prominent coherence peak in the frequency range of sleep spindles. Later work by the
same group identified an anterior increase in slow-wave activity in the first non-REM sleep
period following a 40-h waking period for which the topographic display appeared biased to
the left frontal region (Finelli et al., 2000), though that possible lateralization was not
addressed. Explanations for why coherence measures have not identified the lateralization
seen in the present study include the possibilities that the ARIMA method may be more
sensitive than coherence measures, that the lateralized functional connectivity exists at
frequencies greater than those typically analysed in coherence studies, or that the lateralized
functional connectivity is not frequency specific.

While it is too early to state the significance of the lateralized findings in the current work, it
may reflect a fundamental component of sleep. Though published data during sleep using
PET do not suggest lateralized activity in these particular regions (Braun et al., 1997), as
with fMRI, methodological differences challenge direct comparison across techniques. An
intriguing hypothesis would suggest that these areas, associated with language use
throughout the waking day, may be reactivated significantly more during sleep and
detectable through the increased temporal resolution of HD-EEG. Interestingly, recent work
showed that while slow waves during sleep may originate in either hemisphere, most
appeared to originate in the left hemisphere (Murphy et al., 2009).

Although the present study does not address differences among populations, it does lay the
groundwork for characterizing synchronous neural networks using prolonged and possibly
ambulatory HD-EEG data acquisition followed by ARIMA modeling and PCC analysis.
Should differences in functional connectivity during sleep be demonstrated across various
psychopathologies, a new avenue of diagnostic testing and possible intervention may result.
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Figure 1.
Two-dimensional projection of the 256 sensor Electrical Geodesics Hydrocel layout.
Encircled sensors are #54 (more anterior) and #70 for which data are illustrated in Figures.
2, 3, and 4. L= left, R= right, A= anterior, and P= posterior.
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Figure 2.
Data from sensor #70 (see Figure 1) before and after differencing and full ARIMA modeling
(refer to the text for details). These data are from a 6 second portion of a total 60 seconds
analyzed.
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Figure 3.
Autocorrelation functions (ACF) and partial autocorrelation functions (PACF) for the same
subject and sensor as in Figure 2, before and after differencing and ARIMA modeling (refer
to the text for details).
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Figure 4.
Cross correlation functions (CCF) calculated between sensors #70 and #54. The far left
graph demonstrates values calculated between raw data, while the middle graph illustrates
cross correlation calculated between differenced time series and the far right graph
illustrates crosscorrelation calculated between time series after ARIMA (40,1,1) modeling.
The positive CCF calculated using raw data reflects the autocorrelation structure of
individual sensor time series. The middle CCF demonstrates the temporal focusing of cross
correlation, though oscillatory waves achieve significance across the time lags. The CCF
following ARIMA modeling illustrates a temporally focused interaction, though still
exceeding the 95% confidence intervals as noted by the horizontal lines.
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Figure 5.
Positive (black) and negative (red) synchronous networks synchronous networks of partial
cross correlations during low artifact eyes-closed wakefulness (ECW).
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Figure 6.
Positive (black) and negative (red) synchronous networks synchronous networks of partial
cross correlations during low to no eye movement low artifact episodes of rapid-eye
movement (REM) sleep.
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Figure 7.
Positive (black) and negative (red) synchronous networks synchronous networks of partial
cross correlations during an early low artifact sample of Slow Wave Sleep (SWS1).
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Figure 8.
Positive (black) and negative (red) synchronous networks of partial cross correlations during
a later low artifact sample of Slow Wave Sleep (SWS2).
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Figure 9.
Flying box displays of the means and distributions of SWS1 and SWS2 z-transformed PCCs
in A individual subjects and B combined across subjects, for those interactions significant
on average across subjects in SWS1. Outliers and extreme outliers are not displayed. As
negative PCCs within this subset were sparse and inconsistent across subjects, both positive
and negative data were included for all 237 interactions in each subject.
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Figure 10.
composite figure of behavior state (rows) and increasing commonality across subjects
(columns).
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