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Abstract
To detect genetic association with common and complex diseases, two powerful yet quite different 
multi-marker association tests have been proposed, genomic distance-based regression (GDBR) 
(Wessel and Schork 2006, AJHG 79:821-833) and kernel-machine regression (KMR) (Kwee et al 
2008, AJHG 82:386-397; Wu et al 2010, AJHG 86:929-942). GDBR is based on relating a multi-
marker similarity metric for a group of subjects to variation in their trait values, while KMR is 
based on nonparametric estimates of the effects of the multiple markers on the trait through a 
kernel function or kernel matrix. Since the two approaches are both powerful and general, but 
appear quite different, it is important to know their specific relationships. In this report, we show 
that, under the condition that there is no other covariate, there is a striking correspondence 
between the two approaches for a quantitative or a binary trait: if the same positive semi-definite 
matrix is used as the centered similarity matrix in GDBR and as the kernel matrix in KMR, the F-
test statistic in GDBR and the score test statistic in KMR are equal (up to some ignorable 
constants). The result is based on the connections of both methods to linear or logistic (random-
effects) regression models.
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Large-scale genetic association studies have been successful in identifying genetic variants 
associated with complex disease and traits, as evidenced by recent achievements in genome-
wide association studies (GWAS) (Altshuler et al 2008). However, in spite of many 
identified susceptibility loci, they can explain only a small fraction of heritability (Maher 
2008). One possible reason is due to typically small effect sizes of genetic variants on 
complex disease and traits, while often only single-marker tests with limited power are 
applied. Hence, in spite of many existing statistical analysis tools, it remains critical to 
develop and apply more powerful multi-marker tests to existing and incoming genetic data. 
Two novel and powerful multi-marker methods are genomic distance-based regression 
(GDBR) (Wessel and Schork 2006) and kernel machine regression (Kwee et al 2008; Wu et 
al 2010). An interesting feature of GDBR is its approach to capturing genotype or haplotype 
information across multiple loci through a similarity measure between any two subjects. 
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Many possible similarity measures can be used. A suitable similarity measure may be able to 
characterize some complex effects of multiple loci on a phenotype, e.g. epistasis, which may 
be ignored by other more commonly used and simpler models (e.g. main-effects logistic 
regression models, possibly with some low-order interaction terms), leading to reduced 
power. GDBR is unique in its regression analysis relating variation in the measure of 
genomic similarity to variation in their trait values. A recent study by Lin and Schaid (2009) 
demonstrated the high power of GDBR and its superiority over several commonly used tests 
across a wide range of realistic scenarios. In addition, Lin and Schaid (2009) showed that 
GDBR is closely related to the class of haplotype similarity tests (Tzeng et al 2003a,b; Yuan 
et al 2006; Sha et al 2007; Klei and Roeder 2007). Finally, GDBR is general with its 
applicability to other high-dimensional data, such as microarray gene expression data 
(Zapala and Schork 2006) and next-generation sequencing data (Wessel and Schork 2006). 
On the other hand, Kwee et al (2008) proposed a linear KMR method for quantitative traits 
while Wu et al (2010) proposed a logistic KMR methodology for binary traits, showing the 
high power and general applicability of KMR. In particular, the numerical studies of Wu et 
al (2010) provided evidence that logistic KMR was more powerful than GDBR under some 
simulation set-ups. KMR is similar to typical linear or logistic regression in regressing a 
phenotype on genotypes (and possibly other covariates); a distinguishing feature is its 
nonparametric modeling of the effects of genotypes on a phenotype through a kernel 
function or kernel matrix; the kernel function provides a similarity measure on genotypes 
between any two subjects. In spite of their dramatic differences at the first glance, since both 
GDBR and KMR depend on the use of a similarity/kernel matrix to measure the similarity 
between any two subjects based on theor genotypes, the two methods, along with some other 
similarity-based nonparametric methods (Schaid et al 2005; Wei et al 2008; Tzeng and 
Zhang 2007; Tzeng et al 2009; Mukhopadhyay et al 2010), are being recognized to be 
somewhat related, though their specific relationships are still unknown (Schaid 2010a,b). 
Our main reasoning in connecting GDBR and KMR is based on the following observation. It 
has been shown that GDBR for binary traits can be formulated as a logistic regression 
problem (Han and Pan 2010), while KMR is equivalent to fitting a random-effects 
generalized linear model (Liu et al 2008), hence the two methods are related through their 
common connection to a logistic regression model for binary traits. Nonetheless, it is still 
unclear what specific relationship exists between the two methods. For example, is one 
method more powerful than the other, as shown by Wu et al (2010)? In this short report, we 
show that, if a common positive semi-definite matrix is used as the (centered) similarity 
matrix in GDBR and as the kernel matrix in KMR, then there is a striking correspondence 
between the two methods: their test statistics are equal (up to some ignorable constants).

First we need some notation. Given n independent observations (Yi,Xi) with Yi as phenotype 
and Xi = (Xi1, …, Xik)’ as genotype scores at k SNPs for subjecti = 1, …, n, we would like to 
test for any possible association between the phenotype and genotypes. The k SNPs are 
possibly in linkage disequilibrium (LD), as drawn from a candidate region or an LD block.

We summarize the GDBR procedure as the following:

Step 1. Calculate an n × n distance matrix for all pairs of subjects by D = (Dij) = (1 – 
Sij) with 0 ≤ Sij ≤ 1 as an initial similarity measure between subjects i and j;
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Step 2. Calculate � = − ���2 2 ;

Step 3. Obtain a centered similarity matrix G = (I – 11′/n)A(I – 11′/n);

Step 4. Denote y as the n × 1 vector of centered phenotypes with elements �� = ��− �‒ = ��− ∑� = 1� �� �;

Step 5. Calculate the projection matrix H = y(y’y)−1y’;

Step 6. Calculate the F-statistic as

� = �� ����� � − � � � − � ′
where tr(A) is the trace of matrix A.

Since the (asymptotic) distribution of F is unknown, to obtain a p-value, we recourse to 
permutations by shuffling y. If G is an outer product matrix, e.g. when the distance matrix D 
is Euclidean, the above F-test reduces to the usual F-test in multivariate analysis of variance 
(MANOVA); otherwise, it is an extension of MANOVA with any given distance matrix D. 
As discussed by McArdle and Anderson (2001), if G is an outer product matrix, say G = ZZ’ 
with an n × p matrix Z, the above F-test is simply testing �0′ :� = 0 in a multivariate linear 

model � = 1� + �� + ∊, (1)

where 1 is an n × 1 vector of all 1’s, μ is a 1 × p vector of unknown intercepts, y is an n × 1 
vector of centered phenotypes with elements yi, B is a 1 × p vector of unknown regression 
coefficients, and ∊ is an n × p matrix of random errors. Since y is the vector of centered 
phenotypes, we have 1’y = 0, and thus the least squares estimates are

� = �‒ = ∑� = 1� �� . �, � = �′� −1�′�
If G is positive and semi-definite (psd), by Theorem 14.2.1 of Mardia et al (1979, p.397), � = � − 1�11′ �0 for some matrix Z0; that is, the sum of each column of Z is 0. Hence, we 

have � = �‒ = 0; that is, we do not need the intercept term in (1). With the corresponding 
fitted values � = 1�‒ + �� and residuals � = � − � = � − � �, the total sum of squares and 
cross-product (SSCP) matrix can be partitioned into: �′� = �′� + �′�. Then it is easy to 
verify that

� = �� ����� � − � � � − � = �� �′��� �′� = 1�� �′� �� �′�∝ 1�� �′� + �� �′� �� �′� = �� �′��� �′� .
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Since permutations are used to obtain the p-value for the F-statistic while tr(Z’Z) is fixed as 
a constant across all permutations, the inclusion of exclusion of term tr(Z’Z) would not have 
any effect on the p-value. Hence tr(Z’Z) can be ignored from the F-statistic, leading to� ∝ �� �′� = �� �′� −1�′��′� ∝ �� �′��′� , (2)

in which, since y’y is fixed and invariant under permutations, it can be ignored.

To assess possible association between genotype Z and phenotype y (or equivalently, Y ), 
rather than regressing Z on y as in GDBR, following Han and Pan (2010), we regress Y on Z 
via a linear model for quantitative traits:� � = �0+ ��, (3)

or via a logistic model for binary traits:Logit Pr � = 1 = �0+ ��, (4)

where the assessment of possible association can be accomplished by testing on the 
unknown p × 1 vector of unknown regression coefficients in null hypothesis H0 : β = 0. The 
score vector, as shown by Clayton et al (2004) for logistic regression, is

� = �′ � − �‒1 = �′�,
and thus the SSU test statistic (Pan 2009) is���� = �′� = �� �′� = �� �′� = �� �′��′� . (5)

Comparing (2) and (5), we see that the F-statistic and SSU-statistic are equivalent. We 
emphasize that the SSU test here is being applied to model (3) or (4) with genotype 
information coded in Z derived from the centered similarity matrix G, not the usual genotype 
score X.

Note that the above derivation extends the result of Han and Pan (2010) in two aspects. 
First, the result holds for both quantitative and binary traits, not just for binary traits as for 
the case-control design in GWAS. Second, we do not require the condition of equal numbers 
of cases and controls for binary traits. The reason of such a requirement in Han and Pan 
(2010) is due to the use of a non-centered phenotype vector y, as originally used in McArdle 
and Anderson (2001) and others.

For quantitative traits, Kwee et al (2008) proposed linear kernel-machine regression (KMR) 
with a semi-parametric linear model:� �� = �0+ ℎ ��1, …, ��� , (6)
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while for binary traits, Wu et al (2010) proposed logistic KMR with a semi-parametric 
logistic model: Logit Pr �� = 1 = �0+ ℎ ��1, …, ��� , (7)

where h(.) is an unknown function to be estimated, which offers the flexibility in modeling 
the effects of the SNPs on Yi. The form of h(.) is determined by a user-specified positive and 
semi-definite (psd) kernel function K(., .): by the representer theorem (Kimeldorf and Wahba 

1971), ℎ� = ℎ �� = ∑� = 1� ��� ��, ��  with some γ1,…,γn. To test the null hypothesis of no 

association between the phenotype and SNPs, one can test H0: h = (h1(X1), …, hn(Xn))’ = 0. 
Denote K as the n × n matrix with the (i, j)th element as K(Xi,Xj) and γ = (γ1, …, γn)’, then 
we have h = Kγ. Treating h as subject-specific random effects with mean 0 and covariance 
matrix τK, testing H0: h = 0 for no SNP effects is equivalent to testing H0: τ = 0. The 
corresponding variance component score test statistic is (proportional to)

� = � − �‒1 ′� � − �‒1 .
(For quantitative traits, there is a factor 1 �2 in Q as used by Kwee et al (2008), which 
however can be omitted from Q since it is treated as non-random and fixed, and can be 
absorbed into the variance term of Q, which is to be applied to standardize the distribution of 
Q, as for binary traits shown by Wu et al (2010).) Since K is psd, we can decompose K = ZZ’ 
(Magnus and Neudecker 1999, p.21), and have

� = � − �‒1 ′��′ � − �‒1 = ����,
which is the SSU test statistic for linear model (3) and logistic model (4). By the earlier 
result on the equivalence between the F-statistic in GDBR and the SSU statistic, we 
establish a striking correspondence between the F-test in GDBR and the score test in KMR.

The above correspondence result can be also viewed from another angle. As shown by Pan 
(2009), the SSU test is equivalent to Goeman’s (2006) test, which is derived as a variance 
component score test for logistic regression. Specifically, in model (4), if we assume β as 
random effects from a distribution with E(β) = 0 and Cov(β) = τI, then the permutation-based 
score test on H0: τ = 0 is equivalent to the SSU test. Note that, if we rewrite h = Zβ, then 
model (6) and (7) are equivalent to model (3) and (4), respectively, since their distributional 
assumptions are equivalent:

� ℎ = 0 � � = 0, ��� ℎ = �� ��� � = �� .
In summary, there is a correspondence between the F-test in GDBR and the score test in 
KMR if the same psd matrix is used as the kernel matrix K in KMR and as the centered 
similarity matrix G in GDBR. We emphasize that we require (centered) K = G, not K = S, 
the initial similarity matrix in GDBR. We also note that, centering K (to facilitate its use as 
G) does not change the result for KMR:
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�� = � − 11′ � � � − 11′ � , �� = � − �‒1 ′�� � − �‒1 = � − �‒1 ′� � − �‒1 = �,
since � − �‒1 ′1 = 0. If K is not centered, we center it and use G = Kc in GDBR to achieve 
the same result of KMR.

We did a numerical study to verify the above analytical result. We simulated genotype data 
by discretizing some latent multivariate normal variates with an AR1(0.8) correlation 
structure (Wang and Elston 2007; Pan 2009). There were 11 SNPs in LD, in which the 
center one was the causal SNP. The minor allele frequency (MAF) for the causal SNP was 
fixed as 0.2 while the MAFs for others were randomly chosen between 0.2 and 0.5. A binary 
outcome (i.e. disease status) was generated according to the logistic model:

Logit Pr � = 1 = �0 + log �� �0,
where X0 is the number of the minor alleles at the causal SNP, β0 = log(0.2/0.8) was chosen 
to yield a background disease prevalence of 0.2, and OR = 1 or OR = 2 was used for the 
scenarios of no or strong genetic association. For each simulated dataset, we generated 100 
cases and 100 controls; only the outcome and the 10 SNPs after excluding the causal SNP 
were available in each dataset.

For each dataset, we applied KMR and GDBR with one of the four kernels: linear, quadratic, 
identity-by-state (IBS) or weighted IBS (wIBS) kernel. We used the R function 
implementing logistic KMR by Wu et al (2010), and implemented GDBR in R as outlined in 
the GDBR procedure with B = 1000 permutations. To implement GDBR that was equivalent 
to KMR, we centered a kernel matrix K in KMR as Kc, and took Kcas the centered matrix G; 
the GDBR procedure was modified to run through Steps 4 to 6. In addition, as a comparison, 
we also took the kernel matrix K as the initial similarity matrix S, which was not expected to 
be equivalent to KMR. The Type I error rates (for OR=1) and power (for OR=2) estimated 
from 1000 simulated datasets are shown in Table 1. It can be seen that KMR and GDBR 
with the same kernel matrix and centered similarity matrix (i.e. G = Kc) gave essentially the 
same results. Although the results for KMR and GDBR with S = K were also close, the 
former could be much more powerful than the latter as for the case with a quadratic kernel, 
which was also shown by Wu et al (2010). It is noted that, even if G = Kc, since the p-value 
of a score test in KMR and that of the F-test in GDBR were obtained from the asymptotic 
distribution and permutation distribution respectively, their Type I error rates and power 
would not be exactly the same. For a further examination, The Pearson correlation 
coefficients of the test statistics (i.e., Q-statistic in KMR and F-statistic in GDBR) and p-
values between the two methods are shown in Table 2. We also compared the ranks of the F-
statistics in GDBR and Q-statistics in KMR in Figure 1. It is confirmed that, if G = Kc, 
KMR and GDBR gave essentially the same results. For the p-values, the minor discrepancy 
between the two methods was due to their use of the asymptotic distribution and 
permutation distribution respectively. For the test statistics, note that when we derived their 
correspondence, we ignored some fixed constants (i.e. Z’Z and y’y) in the F-statistic; these 
fixed terms are invariant to permutations and thus ignorable for a given dataset, but are not 
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fixed across different datasets, causing some minor ranking differences across datasets 
between the F- and Q-statistics. The unusually strong agreement between the two methods 
cannot be explained as purely coincident. In contrast, if S = K (and thus G ≠ Kc, though they 
might be close), the two method gave similar but more different results.

A major difference between the GDBR and KMR is that GDBR does not require its 
similarity matrix to be psd while KMR requires its kernel matrix to be psd. From the 
operational aspect, since it is not always guaranteed that a chosen similarity or distance 
metric would result in a psd matrix, GDBR is attractive in this aspect. However, it is not 
clear what are the implications for performance from using a non-psd similarity matrix. In 
particular, GDBR was originally proposed as an extension of the usual F-statistic implying 
the use of a psd similarity matrix, though its ability to use a non-psd matrix was argued to be 
advantageous (McArdle and Anderson 2001). Schaid (2010a) also commented on the 
conceptual appeals of having a psd similarity or kernel matrix. Here we did some simple 
experiments to see the effects of using a psd matrix derived from a non-psd similarity 
matrix. The simulated data were generated in the same way as before, but we modified a 
kernel matrix in two practical ways. First, we randomly chose 0 to 5 SNPs to be missing for 
any individual, and then calculated the IBS and wIBS kernels, which might not be psd 
(Schaid 2010b). Second, for an IBS or wIBS kernel from complete genotype data, we added 
a noise, randomly generated from a uniform distribution between −0.2 and 0.2, to each non-
diagonal element of the kernel matrix, reflecting a scenario of having measurement errors 
for kernels. we applied the GDBR with these non-psd kernels. Alternatively, we used only 
the positive eigen values and their corresponding eigen vectors of a non-psd kernel K to 
construct a new psd kernel K+, which was then supplied to GDBR. The simulation results 
were shown in Table 3. It can be seen that there was barely any power difference between 
using non-psd K and using psd K+, though further studies are needed. It is again confirmed 
that using G = Kc in GDBR had a slight edge over using S = K. More importantly, using an 
un-centered G = K led to a dramatic loss of power; Schaid (2010a) discussed the importance 
of centering a similarity matrix G in GDBR. Table 4 shows the distributions of the positive 
and negative eigen values of non-psd kernel matrix K, indicating a substantial proportion of 
negative eigen values of K.

In spite of the correspondence of the GDBR and KMR approaches in the case without 
covariates, there are some differences between them, as discussed by Wu et al (2010). First, 
it is easy to incorporate other covariates into KMR, while it is difficult for the original F-test 
in GDBR. though it is straightforward to do so in some extensions of GDBR (Li et al 2009; 
Han and Pan 2010). The importance of incorporating covariates to improve power, or adjust 
for population stratification, is well recognized. Second, the F-test in GDBR uses 
permutations to calculate p-values, while the score test in KMR (or an extension of GDBR, 
Han and Pan 2010) is based on its asymptotic distribution. Since permutation can be 
computationally demanding for GWAS while we found that the asymptotic distribution of 
KMR was accurate even for small samples as shown in our simulations, it seems that KMR 
is easier to apply.

In summary, when the kernel or similarity matrix is psd, both methods can be formulated as 
a (random-effects) linear or logistic regression model, in which genotype or haplotype 
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information is derived from a similarity or kernel matrix. In particular, the two methods are 
expected to give essentially the same p-values when a comparable kernel or centered 
similarity matrix is used. This correspondence suggests that, rather than exploring 
differences between the two methods, it may be more productive to focus more on the 
design and choice of suitable similarity or kernel matrices (Schaid 2010b).
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Figure 1. 
Comparison of the test statistics and p-values from KMR and GDBR with linear or IBS 
kernel for OR=1.
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