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Abstract Cardiomyocytes use glucose as well as fatty

acids for ATP production. These substrates are transported

into the cell by glucose transporter 4 (GLUT4) and the fatty

acid transporter CD36. Besides being located at the sar-

colemma, GLUT4 and CD36 are stored in intracellular

compartments. Raised plasma insulin concentrations and

increased cardiac work will stimulate GLUT4 as well as

CD36 to translocate to the sarcolemma. As so far studied,

signaling pathways that regulate GLUT4 translocation

similarly affect CD36 translocation. During the develop-

ment of insulin resistance and type 2 diabetes, CD36

becomes permanently localized at the sarcolemma,

whereas GLUT4 internalizes. This juxtaposed positioning

of GLUT4 and CD36 is important for aberrant substrate

uptake in the diabetic heart: chronically increased fatty

acid uptake at the expense of glucose. To explain the dif-

ferences in subcellular localization of GLUT4 and CD36 in

type 2 diabetes, recent research has focused on the role of

proteins involved in trafficking of cargo between subcel-

lular compartments. Several of these proteins appear to be

similarly involved in both GLUT4 and CD36 translocation.

Others, however, have different roles in either GLUT4 or

CD36 translocation. These trafficking components, which

are differently involved in GLUT4 or CD36 translocation,

may be considered novel targets for the development of

therapies to restore the imbalanced substrate utilization

that occurs in obesity, insulin resistance and diabetic

cardiomyopathy.
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Introduction

We previously reported that known signaling mechanisms,

such as insulin and contraction, similarly affect myocyte

GLUT4 and CD36 trafficking [1]. However, in insulin

resistance and type 2 diabetes CD36 permanently relocates

to the sarcolemma, while GLUT4 internalizes [2, 3]. As a

corollary there must be mechanisms which selectively

recruit either GLUT4 or CD36. Therefore, we began to

investigate distinct intracellular processes involved in

vesicular transport to uncover mechanisms that are differ-

ently involved in GLUT4 and CD36 trafficking [4, 5].

We revealed coat-proteins, actin filaments, the cellular

pH gradient and vesicle-associated membrane proteins

(VAMPs) to be involved in GLUT4 and CD36 trafficking,

and, importantly, indeed found mechanisms that are dif-

ferently involved in glucose and fatty acid uptake in

cardiomyocytes.

In this review, we first describe how cardiac glucose and

fatty acid uptake are regulated and which alterations occur

during insulin resistance and type 2 diabetes. Then, we

address signaling pathways and subcellular trafficking

components that are involved in GLUT4 and CD36 trans-

location. Finally, we focus on components that are
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differently involved in glucose and fatty acid uptake and

describe novel targets to restore metabolic disturbances in

type 2 diabetes.

Regulation of cardiac glucose and fatty acid uptake

Glucose and fatty acids are of fundamental importance for

energy production in all eukaryotic cells. In cardiomyo-

cytes, the continuous supply of both substrates is especially

crucial to maintain contractile activity [6]. Cardiomyocytes

are metabolically flexible, i.e., they preferably use fatty

acids, but can also use glucose, ketone and lactate to pro-

duce ATP [7]. These different substrates cannot sufficiently

enter cardiomyocytes by diffusion and thus have to be

taken up by facilitated transport. Glucose uptake into cells

involves a family of glucose transport proteins—called

GLUTs—which shuttle sugars across plasmalemmal

membranes through their aqueous pore [8]. The GLUT

family consists of several members which are expressed by

various cell types [9]. In cardiomyocytes, GLUT family

members 1 and 4 fulfil this function. While GLUT1 is

mainly involved in basal glucose uptake, GLUT4 translo-

cates to the plasma membrane to enhance glucose uptake in

response to extracellular stimuli like insulin or increased

cardiac work. Cellular fatty acid uptake is facilitated by

several membrane proteins with high-affinity binding sites

for fatty acids [1], but the exact mechanisms by which

these proteins mediate transmembrane passage of fatty

acids is not known [10]. In cardiomyocytes, the most

important fatty acid transporters are fatty acid translocase

(FAT), also referred to as CD36 [10, 11], and two members

of the family of 6 fatty acid transport proteins (FATP), i.e.,

FATP 1 [12] and 6 [13].

Both GLUT4 and CD36 are integral membrane proteins.

GLUT4 consists of 12 transmembrane domains with both

termini in the cytoplasm and one large intracellular and one

large extracellular loop [14]. CD36 has a hairpin-like

structure with two transmembrane regions and both the

C-terminal and N-terminal tails in the cytoplasm [1]. The

translocation of both proteins from intracellular storage

compartments to the plasma membrane, and vice versa,

relies on a complex trafficking system, schematically rep-

resented in Fig. 1 [15]. Immunoadsorption studies in rat

cardiomyocytes showed that GLUT4 resides in two distinct

pools, one of which is called GLUT4 storage vesicles

(GSV) that does not contain CD36 and is sensitive to

insulin [16]. On the other hand, CD36 appears to reside in

one subcellular pool which does not contain GLUT4 [16],

suggesting that GLUT4 and CD36 are stored separately and

travel independently.

Physiological stimuli, with circulating plasma insulin

concentrations and increased cardiac work being the most

important, stimulate the heart to quickly alter cardiac

substrate utilization via reversible translocation of GLUT4

and CD36 from intracellular membrane compartments to

the sarcolemma (Fig. 2a) [1, 10]. In contrast to CD36, the

other fatty acid transporters FATP1 and FATP6 do not

traffic between intracellular storage compartments and the

sarcolemma in cardiomyocytes [17–19]. Therefore, FATP1

and FATP6 do not contribute to inducible fatty acid uptake.

In addition, other studies have disclosed that these trans-

porters also have a minor contribution to basal fatty acid

uptake. From experiments with cardiomyocytes from wild-

type and CD36 null mice, it is known that the contribution

of CD36 to fatty acid uptake is about 70% [17]. In addi-

tion, in cardiomyocytes treated with the specific CD36

inhibitor sulfo-N-succinimydyl-oleate (SSO), the insulin/
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Fig. 1 The endomembrane system of cardiomyocytes consists of

several functionally different compartments. In the translocation

process (red arrows) proteins are synthesized in the endoplasmic

reticulum and further modified in the Golgi apparatus. There, the

budding of transport vesicles occurs and vesicles are transported to

the endosomal system. GLUT4 is further transported to specific

insulin-responsive GLUT4 storage vesicles (GSV). GLUT4 and

CD36 can be stimulated to translocate from their compartments to

the sarcolemma. In the endocytosis process (blue arrows), sarcolem-

mal proteins are taken up into the cell again and transported through

the early endosomes and directed towards lysosomes for protein

breakdown or towards the recycling endosomes for renewed use at the

sarcolemma
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contraction-mediated increase in fatty acid uptake was

totally blocked, meaning that CD36 is irreplaceable in

stimulus-induced fatty acid uptake [20]. The system of

regulated substrate uptake is crucial during exercise to

supply cardiomyocytes with a sufficient amount of sub-

strates, or to quickly replenish intracellular substrate

storage pools after a meal. A dysfunction in this system of

regulated glucose and fatty acid uptake into muscle, adi-

pose tissue, beta cells and heart contributes to the

development and progression of type 2 diabetes [10, 21].

The amount of glucose and fatty acid transporters

present at the sarcolemma is a major regulatory factor of

cardiac glucose and fatty acid utilization [22]. This impli-

cates that the metabolic machinery is more than adequately

suited to process all incoming substrates. Accordingly,

intracellular concentrations of fatty acids and glucose will

remain low. This is also true for the diabetic heart in which

intracellular concentrations of these substrates are not

markedly increased [1, 23]. Hence, in both the healthy and

the diabetic heart, the sarcolemmal presence of GLUT4

and CD36 determines cardiac substrate flux [24].

Alterations in transporter location in insulin resistance

Obesity, insulin resistance and type 2 diabetes show a

strong association with changes in lipid metabolism [2, 25].

Permanent relocation of CD36 to the sarcolemma and

increased fatty acid uptake were strongly linked in rodent

models for insulin resistance [2, 26, 27] and obese humans

[26, 28, 29]. Furthermore, the sarcolemmal content of

CD36 correlated well with increased uptake of fatty acids,

increased intramuscular triacylglycerol [28, 30, 31] and

reduced insulin-stimulated GLUT4 translocation and glu-

cose uptake [32]. Cardiac in vivo positron-emission

tomography (PET) in humans with type 2 diabetes showed

increased fatty acid uptake and oxidation, and reduced

insulin-stimulated glucose uptake, paralleled by decreased

diastolic function as compared to age-matched healthy

controls [33].

The increase in intramyocardial lipid concentrations

cannot just be attributed to a reduction in mitochondrial

fatty acid oxidation, since studies have shown that cardiac

fatty acid oxidation remained unchanged, slightly reduced,

or even increased in several rodent models of obesity and

insulin resistance [10]. Inhibition of CD36-mediated fatty

acid uptake with SSO normalized fatty acid utilization in

different rodent models of insulin resistance [26]. This

indicates that the increase in intramyocardial lipid con-

centrations in insulin-resistant cardiomyocytes is caused by

increased CD36-mediated fatty acid uptake. We and others

showed that the surface presence of CD36 was increased in

rodent models for insulin resistance and in skeletal muscle

of obese humans [2, 3, 32]. The increase in surface pres-

ence of CD36 is not due to increased tissue expression, but

instead to a permanent relocation from its intracellular

storage compartment. This permanent CD36 relocation

appears to be an early event in the sequence of maladaptive

changes in the hearts of rodents with type 2 diabetes. We

also obtained evidence that there is no decrease in cardiac

mitochondrial function in this early pre-diabetic stage.

However, it is very well possible that mitochondrial dys-

function develops at later stages which can lead to even
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Fig. 2 Alterations in transporter localisation in diabetic cardiomyo-

cytes compared to healthy cardiomyocytes. a Substrate uptake in

healthy cardiomyocytes. The entry of glucose and fatty acids is

facilitated by glucose transporter 4 (GLUT4) and fatty acid

transporter CD36. The heart can acutely react to a change in energy

demand by reversible translocation of these transporters from

intracellular storage compartments. Once these substrates have

entered the cell they can be used for ATP production by mitochon-

drial oxidation or they can be stored as glycogen (not shown) or in

lipid droplets. b Substrate uptake in diabetic cardiomyocytes: during

the development of insulin resistance and type 2 diabetes, the

localisation of GLUT4 and CD36 permanently alters. CD36 presence

at the sarcolemma increases which associates with increased fatty

acid uptake. In addition, fatty acid storage increases which is thought

to interfere with insulin-stimulated glucose uptake
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more lipid storage. Moreover, it has been shown that

relocation of CD36 was specific for this fatty acid

transporter because such changes were not observed for

plasmalemmal FABPpm, FATP1 or FATP4 [10]. Thus,

permanent relocation of CD36 to the sarcolemma is

important in the development toward diabetic cardio-

myopathy.

It is becoming evident that the increased intramyocar-

dial triacylglycerol content is not the main contributor to

the development of insulin resistance and cardiac dys-

function. Other lipid metabolites, such as ceramides and

diacylglycerols, appear to be the main contributors to

reduced insulin sensitivity (see [34, 35] for excellent

reviews on this topic).

Collectively, obesity, insulin resistance and type 2 dia-

betes impose metabolic stress on the heart [36–39], which

may ultimately lead to cardiac metabolic inflexibility,

lipotoxicity, and subsequent development of diabetic car-

diomyopathy [3, 32] (Fig. 2b).

Signaling pathways involved in GLUT4 and CD36

translocation

As mentioned above, postprandial increases in circulating

plasma insulin levels and an elevated cardiac work are the

most important physiological stimuli to enhance cardiac

glucose and fatty acid uptake via induction of GLUT4 and

CD36 translocation, respectively [1]. However, the meta-

bolic fates of glucose and fatty acids are quite different

during insulin-stimulation versus contraction-stimulation.

Both substrates are preferentially stored under insulin-

stimulated conditions, and preferentially oxidized upon

increased contraction [1]. Since translocation of GLUT4

and CD36 are similarly induced by insulin and contraction,

these translocation processes do not contribute to the dif-

ferent metabolic fates of both substrates during insulin-

versus contraction-stimulation. Rather, upon intracellular

trapping of both substrates [glucose via hexokinase and

fatty acids via acetyl-CoA synthase (ACS)], the metabolic

fates of glucose and fatty acids are determined by the

activation state of key metabolic enzymes. Specifically,

glucose and fatty acids are directed towards storage via

insulin-induced activation of glycogen synthase (GS) and

glycerol-3-phosphate acyltransferase (GPAT), respectively

[1]. In addition, the contraction-induced drop in the intra-

cellular ATP concentrations triggers phosphofructokinase,

pyruvate dehydrogenase and TCA cycle progression for

acceleration of glucose oxidation, and also carnitine-pal-

mitoyl transferase-1 for acceleration of fatty acid oxidation

[1]. Despite differential effects of insulin and contraction

on the metabolic machinery, both stimuli similarly induce

translocation of GLUT4 and CD36 to the sarcolemma [1].

This similarity in responsiveness of both transporters to

both physiological stimuli suggests that similar signaling

mechanisms are involved in GLUT4 and CD36 transloca-

tion. In addition, it suggests that GLUT4 and CD36 migrate

together to the sarcolemma in response to each of the

stimuli. However, increasing numbers of studies report

differences in the regulation of both substrate transporters,

leading to a more differentiated understanding of GLUT4

and CD36 traffic.

Exactly how insulin and increased workload achieve

increased abundance of GLUT4 and CD36 at the sarco-

lemma is unclear, but there are two primary candidates:

increasing exocytosis or inhibiting endocytosis [40–43].

Insulin is proposed to stimulate fusion of intracellular

GLUT4 containing-vesicles with the plasma membrane in

cardiac and skeletal myocytes while it does not affect the

rate of endocytosis [42, 44, 45]. In myocytes, fusion of

intracellular membranes with the plasmalemmal membrane

is considered to be inducible, while endocytosis of GLUT4

and CD36 is regarded a housekeeping process which can-

not be regulated. However, it has been reported that

decreased endocytosis in response to insulin regulates

GLUT4 translocation in adipocytes [46]. Some studies

found that, in line with the effect of insulin on GLUT4

translocation, contraction increases GLUT4 translocation

[44, 45]. In contrast, another study found that GLUT4

endocytosis is inhibited [42]. In summary, the exact

mechanism by which insulin and contraction increase

presence of CD36 and GLUT4 at the plasma membrane

requires further studies aiming at the rate of endocytosis

and/or the rate of translocation.

Insulin-signaling

From all stimulus-induced transporter translocation pro-

cesses, insulin-induced GLUT4 translocation is the most

intensively studied [47]. Several of the kinases involved in

insulin-induced GLUT4 translocation have been tested on

their additional involvement in insulin-induced CD36

translocation. So far, these kinases seem to play a similar

role in both translocation events, as detailed below. The

insulin-signaling axis is initiated by the binding of insulin

to its receptor and subsequent activation of insulin receptor

substrate (IRS) 1 [48] and IRS2 [49] (Fig. 3a). These

activate the regulatory subunit of phosphatidylinositol-3-

kinase (PI3K), which consists of a catalytic p110 subunit

and a regulatory p85 subunit [50]. Pharmacological

inhibitors (most notably wortmannin) have greatly facili-

tated the investigation of the role of PI3K in GLUT4 and

CD36 translocation, and have pinpointed this lipid kinase

as a key component [51–53]. The main phosphatidylino-

sitol (PI)-phosphate generated by PI3K during insulin

action is PI-3,4,5-trisphosphate (PIP3) [54]. Generation of

2528 L. K. M. Steinbusch et al.

123



PIP3 at the plasma membrane directly drives the activation

of a number of different protein kinases with lipid binding

pleckstrin homology domains [55]. Three of these kinases

play an essential role in insulin-induced glucose uptake: (1)

Akt/protein kinase B (PKB)-isoform 2, (2) protein kinase C

(PKC)-k/f and (3) 3-phosphoinositide-dependent protein

kinase (PDK) [56–59]. Akt/PKB-2 and PKC-k/f have

additionally been implicated in insulin-induced CD36

translocation [24, 59].

Activation of Akt requires dual phosphorylation at Ser473

and Thr308 in addition to PI3K-mediated recruitment to the

plasma membrane [1]. The Thr308 phosphorylation within

the activation loop of Akt is mediated by PDK1 [60] and the

Ser473 phosphorylation by a putative PDK2 [61]. Upon its

activation, Akt phosphorylates TBC1D1 and TBC1D4, also

referred to as AS160, as a final step to induce GLUT4

translocation [62, 63]. Next to Akt, PDK1 also activates

PKC-f upon unfolding of its pseudosubstrate domain and

exposure of the activation loop [64]. The simultaneous and

combined activation of Akt and PKC-k/f is necessary for

insulin-induced GLUT4 translocation in both heart [65] and

skeletal muscle [66], and likely also essential for insulin-

induced CD36 translocation.

To date, GLUT4 and CD36 translocation seem identi-

cally regulated by insulin. However, it is possible to

translocate GLUT4 from insulin-responsive intracellular

compartments in cardiomyocytes without changes in sub-

cellular CD36 localization using the thiol-modifying agent

arsenite [67]. Hence, there are arsenite-sensitive proteins

that contribute to insulin-induced GLUT4 translocation

without affecting CD36 dynamics.

Contraction-signaling

Increased cardiac work results in a rapid rise of both glu-

cose and fatty acid uptake in heart and muscle [1, 68].

Upon increased contraction, the intracellular concentration

of adenosine-monophosphate (AMP), cyclic AMP, reactive

oxygen species (ROS) and calcium increase. Together,

these second messengers activate a complex signaling

system that involves AMP-activated protein kinase

(AMPK), protein kinase A (PKA), atypical PKCs, protein

kinase D (PKD), calcium–calmodulin-dependent protein

kinases (CaMK), and the extracellularly regulated protein

kinases (ERK) 1 and 2 [68] (Fig. 3b). Of all of these,

AMPK, PKD and CaMK have been studied for their effects

on metabolic processes.

AMPK is a heterotrimer consisting of a catalytic

a-domain, a glycogen-binding regulatory b-domain and an

AMP-binding regulatory c-domain. Binding of AMP to the

regulatory c-subunit of AMPK leads to a conformational

change of the kinase, which makes it accessible for

upstream AMPK kinases (AMPKK). These phosphorylate

AMPK at threonine-172 and consequently activate this

kinase. In the heart, activation of the a2 isoform of AMPK

is essential for contraction-induced GLUT4 and CD36

translocation [69]. Kinases with suggested AMPKK

activity include CaMK-kinase (CaMKK) and the tumor

suppressor protein LKB1 [70]. In LKB1-null mice con-

traction-induced GLUT4 and CD36 translocation are

completely abrogated, indicating that LKB1 is essential for

both translocation processes [69]. Additionally, LKB1 is

involved in hypoxia-induced AMPK-mediated cardiac

GLUT4 translocation [71].

CaMK-kinase (CaMKK) is described as an alternative

upstream kinase of AMPK [72]. However, evidence for the

physiological importance of CaMKK in cardiomyocyte

metabolism is scarce. One study reported basal activity and

phosphorylation of AMPK in LKB1-deficient cells that

could be further stimulated by calcium ionophores [72].

Another study, in which CaMKKb was overexpressed or

pharmacologically inhibited, showed that AMPK can also

be activated by CaMKK [73]. In addition, it was shown

that CaMKK is important for contraction-mediated GLUT4

and CD36 translocation in skeletal muscle [74]. However,

insulin

Contraction

(A) Insulin-mediated signalling

(B) Contraction-mediated signalling

IRS PI3K PIP3 PDK1/2

PKC

Akt

AMP ATP&

AMPK

LKB1
CaMKK

PKC

ERK1/2

PKD

Intracellular
GLUT4 and/or CD36

compartment

Fig. 3 signaling proteins involved in insulin-stimulated (a) and

contraction-stimulated (b) induction of GLUT4 and CD36 trafficking.

a Upon binding of insulin to its receptor the downstream signaling

axis (Akt axis) will be activated which induces the translocation of

intracellular GLUT4 and CD36 vesicles. This signaling axis consists

of insulin receptor substrate (IRS), phosphatidylinositol-3-kinase

(PI3K), PI-3-phosphate (PIP3), 3-phosphoinositide-dependent protein

kinase (PDK), protein kinase C (PKC) and Akt. b Cardiac work

increases the AMP/ATP-ratio and, subsequently, AMP-activated

protein kinase (AMPK) activity. For full activation the action of

upstream kinases, LKB1 or CaMKK, are warranted. Downstream, and

alongside, of AMPK, ERK1/2, PKC and PKD are other players in

GLUT4 and CD36 translocation. For figure simplicity, GLUT4 and

CD36 are drawn in one transport compartment while we know that

they are present in several different compartments
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the importance of CaMKK in cardiac GLUT4 and CD36

translocation remains to be established.

Downstream events of AMPK involve atypical PKCs,

ERK1/2, TBC1D1 and TBC1D4. It was shown that exer-

cise increases glucose transport in skeletal muscle via

AMPK through atypical PKCs. Furthermore, these effects

of atypical PKCs were dependent on the ERK1/2 pathway,

activation of proline-rich tyrosine kinase-2 (PYK2), and

phospholipase D (PLD) [75]. In a muscle-specific knockout

mouse model for the atypical PKC PKCk, glucose transport

was impaired and mice developed the metabolic syndrome

[76]. In rat skeletal muscle, ERK1/2 inhibitors decreased

contraction-induced fatty acid uptake and CD36 translo-

cation [77]. Hence, atypical PKCs and ERKs are involved

in contraction-stimulated substrate uptake in skeletal

muscle. However, their function in substrate uptake of the

heart still needs to be disclosed.

We recently identified involvement of the contraction-

activated protein PKD to be involved in contraction-induced

GLUT4 translocation and glucose uptake [78]. Pharmaco-

logical inhibition of PKD1 in cardiomyocytes inhibited

contraction-stimulated GLUT4 translocation and glucose

uptake [78]. Furthermore, contraction-stimulated PKD1

activation was still able to induce GLUT4 translocation and

glucose uptake in AMPKa2 knockout mice suggesting that

PKD1 acts independently of AMPK [78]. These findings

suggest that contraction-mediated translocation of GLUT4 is

a dual input mechanism which needs both the input of AMPK

and PKD. Future experiments should reveal the role of PKD in

contraction-induced CD36 translocation and fatty acid

uptake. Additionally, upstream and downstream proteins of

PKD1 have not yet been elucidated.

Surprisingly, the two Akt substrates TBC1D1 and

TBC1D4 are also substrates of activated AMPK and

therefore also part of the contraction signaling cascade [66,

79]. Although these data suggest a complementary role of

both TBC1D isoforms, the high expression of TBC1D1 in

muscle compared to fat tissue indicates a pivotal role of

this protein in contractile tissue [79]. Still, further research

is needed to unravel (1) whether the two isoforms are

physiologically relevant, and (2) whether they fulfil similar

functions in CD36 translocation.

In summary, GLUT4 and CD36 translocation seem

identically regulated by increased workload, but the roles

of CaMKK and PKD in contraction-induced CD36 trans-

location still await exploration.

Trafficking machinery involved in GLUT4 and CD36

translocation

The trafficking machinery involved in GLUT4 transloca-

tion [45, 80–85], especially in adipocytes and muscle cells,

has gained much more attention than the trafficking

machinery involved in CD36 translocation [4, 5]. The

isolation of GLUT4 vesicles revealed approximately 50

proteins that regulate vesicle fission, -transport and -fusion,

as well as the specificity of GLUT4 transport [86]. CD36-

containing vesicles have been isolated [16], but not so far

extensively studied with a proteomics approach.

Cellular protein traffic generally involves three major

steps. Firstly, vesicle fission: at the donor compartment, the

membranes will be curved into a bud that will subsequently

excise. This process is dependent on bilayer destabilizing

proteins, coat proteins, Rab GTPases and a number of

adaptor proteins forming a fission complex. Secondly,

subcellular vesicle transport: these newly formed transport

vesicles move along one of the cytoskeletal networks with

the aid of motor proteins which are regulated by Rab

GTPases. And thirdly, vesicle fusion: at the acceptor

compartment, the vesicle membranes fuse with the accep-

tor lipid bilayer requiring the formation of a SNARE

complex and is modulated by Rab GTPases. Both trans-

location and endocytotic routes between endosomes and

the sarcolemma proceed accordingly (Figs. 1, 4).

Although it is generally believed that GLUT4 and CD36

translocation are vesicle-mediated endosomal processes,

GLUT4 localization overlaps only for 30–40% with mark-

ers of this endocytosis system, e.g., the transferrin receptor

and Rabs. In addition, chemical ablation of endosomes does

not fully block insulin-stimulated GLUT4 translocation in

adipocytes [87].

Recently, posttranslational modification of GLUT4 by

ubiquitination was found to be important for its intracel-

lular sorting [88]. CD36 can also be ubiquitinated, but in

this case ubiquitination affects protein expression rather

than localization [89].

Recent data, which will be discussed below, have

revealed the role of these trafficking components in GLUT4

and CD36 translocation.

Coat proteins

Coat proteins are essential players in vesicle fission and

fusion. To inititate vesicle fission, these proteins are

recruited to membrane spots where cargo is concentrated

by adaptor proteins. There, coat proteins form a ‘bulb’ in

the membrane and thus start budding of a vesicle. Once the

vesicle is formed and detached from the organelle, the coat

proteins are released. The following protein families are

known to function as coat proteins: coat protein complex

(COP), clathrin and caveolin, which reside in specific

subcellular compartments [15, 90].

COPI and II are involved in transport from the ER to the

Golgi apparatus, where sorting receptors couple specific

cargo to COPI and COPII transport vesicles [15, 91]. Much
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of the knowledge on COPI vesicle formation is derived

from pharmacological studies using brefeldin-A as a non-

competitive inhibitor of Arf1 [92, 93], although it has also

been reported that brefeldin-A affects clathrin functioning

[94]. Treatment of cells with brefeldin-A results in rapid

fusion of the Golgi apparatus with the ER, which suggests

an important role of these coat proteins in the maintenance

of the distinct organelles [92]. However, the use of bre-

feldin-A in rat adipocytes could not clearly prove an

involvement of COPI in insulin-stimulated GLUT4 trans-

location to the plasma membrane [95–98]. Studies

performed in cardiomyocytes show that COP proteins and/

or clathrin function in stimulus-induced glucose and fatty

acid uptake in cardiomyocytes [4]. Hence, GLUT4 and

CD36 translocation in cardiomyocytes are both closely

related vesicle-mediated processes (Figs. 1, 4).

Caveolins—caveolin-1, -2 and -3—reside in cholesterol-

enriched lipid rafts of the plasma membrane called cave-

olae. Caveolins could play a role in plasmalemmal docking

of GLUT4- or CD36-containing vesicles, and could be

involved in GLUT4 or CD36 internalization [99, 100].

Caveolin-1 [101, 102] has been proposed to play a role in

initiation of GLUT4 endocytosis in adipocytes, but in

skeletal muscle, the muscle-specific isoform caveolin-3

does not colocalize with GLUT4 [103]. Hence, the role of

caveolins in GLUT4 trafficking is unclear. Caveolin-1 has
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subcellular trafficking
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mediated translocation (Akt-

axis): insulin releases the

vesicles from the inhibitory

action of TBC1D1/4 and acts on
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CD36 vesicles. V-ATPase is

only involved in insulin-

mediated GLUT4 translocation

and c contraction-mediated

translocation (AMPK-axis):

contraction also affects

functioning of TBC1D1/4.

Furthermore, VAMP3 is

involved in contraction-

mediated translocation of

GLUT4 and CD36
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been shown to be involved in CD36 localization and

function in smooth muscle cells [104] and fibroblast [105].

However, caveolin-3 does not seem to play a role in CD36

translocation in muscle cells because regulation of cardiac

LCFA uptake was not altered in caveolin-3 knockout mice.

In conclusion, there is evidence that caveolin-1 is involved

in GLUT4 and CD36 translocation in non-muscle cells, but

caveolin-3 most likely does not play a role in translocation

of both transporters in (cardiac) myocytes.

Cytoskeletal filaments

It is well established that reorganization of filamentous actin

beneath the plasma membrane plays a role in insulin-

induced GLUT4 translocation [83, 106–108]. Insulin sig-

naling bifurcates at the level of PI3K towards Akt and Rac.

Insulin activates GTP loading of Rac within 5 min and then

induces reorganization of actin. It has been shown that

agents that disturb actin polymerization, e.g., latrunculin

B or cytochalasin D, inhibit insulin-induced GLUT4

translocation in adipocytes, skeletal muscle cells and

cardiomyocytes [4, 82, 83, 109]. Findings obtained by

these pharmacological approaches were confirmed by

overexpression of a dominant negative Rac mutant [110] or

siRNA-mediated knockdown of Rac [111]. Recently, it was

shown that Arp2/3 is a downstream effector of Rac and

that cofilin regulates actin depolymerization which again

proposes that active actin cycling is essential for insulin-

stimulated GLUT4 translocation [83]. In contrast, latrun-

culin B did not inhibit stimulus-induced CD36 translocation

in cardiomyocytes [4]. Hence, actin filaments are involved

in GLUT4 translocation, but not in CD36 translocation in

the heart.

Microtubule involvement in GLUT4 translocation has

mainly been studied in adipocytes. Controversy exists

about their role in stimulus-induced GLUT4 transloca-

tion. Some groups reported that microtubule-disrupting

agents inhibited insulin-induced GLUT4 translocation in

3T3-adipocytes [81, 112], while others did not find any

effect on this process [113]. However, microtubules do

not seem to play a role in stimulus-induced GLUT4 or

CD36 translocation in skeletal muscle and cardiomyo-

cytes [4, 114].

Although the cytoskeleton is clearly involved in GLUT4

and CD36 translocation in cardiomyocytes, its role in the

altered transporter localization in diabetes has not yet been

studied. However, investigators in other fields of research

have studied the cytoskeleton in the diabetic heart. For

example, in ventricular cells from streptozotocin-induced

diabetic rats, impairment of cytoskeletal function and

structure—actin and microtubules—was found. In their

study, the insulin-deficient conditions affected the cardiac

potassium-current in a cytoskeleton-dependent manner

[115], suggesting that this may also affect insulin-depen-

dent GLUT4 translocation.

Endosomal pH

The acidity of intracellular compartments, such as endo-

somes, is essential for various cellular processes, including

endosomal function and vesicular trafficking [116, 117].

Endosomal acidification is regulated by vacuolar-ATPase

(v-ATPase or V1V0-ATPase), a large multisubunit com-

plex that functions as an ATP-driven proton pump. It has a

similar build-up as the F1F0-ATPase located at the mito-

chondrial membrane; however, it needs ATP to pump

protons whereas the F1F0 needs protons to produce ATP

[118].

Surprisingly, not much is known about the role of

endosomal acidity in trafficking of GLUT4 or CD36. The

role of v-ATPases in GLUT4 translocation has been stud-

ied in 3T3-L1 adipocytes [119], and in cardiomyocytes

[120]. Upon inhibition of v-ATPase with bafilomycin A1 in

3T3-L1 adipocytes, insulin-stimulated glucose uptake was

disrupted and GLUT4 accumulated in intracellular mem-

branes, while Akt and IRS1 signaling were still intact.

From these data, it was concluded that proper regulation of

endosomal pH is important for the formation of small

insulin-responsive vesicles [119]. This has also been

studied in cardiomyocytes, and in these cells, v-ATPases in

the GLUT4-containing vesicles may play a role in insulin-

stimulated increase of GLUT4 translocation and glucose

uptake [120, 121]. When examining GLUT1 in mouse

mammary epithelial cells, it was found that endosomal

acidification was important for directed trafficking of

GLUT1 [122].

We recently used the specific v-ATPase inhibitor

bafilomycin-A and the proton ionophore monensin to study

the role of endosomal acidification in CD36 translocation.

While reducing glucose uptake only in the acutely stimu-

lated state, both compounds already increased basal CD36

translocation and subsequent fatty acid uptake [4]. Thus,

v-ATPase seems to be involved in stimulus-induced, but

not in basal, GLUT4 translocation. This seems to be

opposite for CD36 translocation, where v-ATPase is

involved in basal, but not in stimulus-induced, processes

(Figs. 4 and 5). A novel function of v-ATPase is the

modulation of protein traffic between early and late

endosomes. Here, vATPase acts as a pH sensor interacting

with proteins such as small GTPases of the Arf-family and

their regulatory proteins [123]. Whether this function of

the v-ATPases is involved in GLUT4 and CD36 translo-

cation is not yet known. However, the proton pump

function of the v-ATPases is clearly important since

bafilomycin A and monensin similarly affect GLUT4 and

CD36 localization.
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Taken together, regulation of the endosomal pH seems

an interesting target to restore the metabolic substrate

balance in type 2 diabetes.

Rab proteins

Rab-GTPases are regulators of multiple steps of vesicular

transport (e.g., vesicle formation, transport along the actin-

and microtubule-based cytoskeleton and fusion with target

membranes) by facilitating the formation of SNARE

complexes [124, 125]. Therefore, Rab-GTPases are con-

sidered to play a key role in the control of GLUT4 and

CD36 vesicle trafficking [126]. Adding to the complexity,

19 isoforms of the more than 60 currently known Rabs are

present on GLUT4 vesicles [62]. Examples are Rab4 and

Rab11a, which are involved in the intracellular GLUT4

sequestration and endocytosis of both GLUT4 and CD36,

respectively [127–129]. Interestingly, Rab11a was acti-

vated and recruited to GLUT4 vesicles upon insulin

stimulation [130, 131]. In this context, it was also observed

that Rab11a shifted from microsomal fractions to the

plasma membrane after insulin stimulation. In addition,

Rab4 GTP-loading is also stimulated by insulin, and this

complex is known to bind syntaxin4, which functions in the

docking and fusion of vesicles with the plasma membrane

[132, 133]. Two proteins interacting with Rab11a, i.e.,

FIP2 and Rip11, have been investigated for their role in

GLUT4 and CD36 recycling. FIP2, which functions as an

adaptor for interaction of Rab11 with the motor protein

myosin-Vb [134], mediates endocytosis of both GLUT4

and CD36 in cardiac myoblast cultures [128]. In the same

cell system, Rip11, which colocalizes with Rab11 in

endosomal membranes [135], is involved in CD36 endo-

cytosis, but does not influence GLUT4 dynamics [128].

However, in cultured adipocytes, Rip11 does influence

GLUT4 traffic, indicating a cell type-specific function of

this Rab11a regulator [136].

Rab-GTPase activating proteins (Rab-GAPs) silence Rab

activity by keeping them in an inactive state [137]. TBC1D1

and TBC1D4, two proteins mentioned as Akt- and AMPK

substrates in ‘‘Signalling pathways involved in GLUT4 and

CD36 translocation’’, are Rab-GAPs that silence Rab-func-

tion on GLUT4 translocation [62, 138]. By doing so, they

restrain GLUT4 in its intracellular stores under basal condi-

tions. Insulin releases this brake on GLUT4 translocation by

stimulating Akt-mediated phosphorylation and inactivation of

TBC1D1 and 4. This will promote the formation of GLUT4

transport vesicles and eventually their translocation to the

plasma membrane [63, 139]. As detailed in ‘‘Contraction-

signaling’’, under conditions of increased contractions, acti-

vated AMPK acts analogous to Akt, indicating a common

mechanism of GLUT4 mobilization that is shared by different

signaling pathways [140]. Which Rab isoforms are regulated

by TCB1D1 and TBC1D4, respectively? In vitro Rab-GAP

assays revealed a strong activity of both GAPs against Rab2a,

-8, -10 and -14, and no activity against the above-mentioned

Rab4 and Rab11a [62, 63]. Still, identifying one Rab protein to

be the crucial isoform for GLUT4 translocation remains

challenging, as Rab8a, -10 and -13 all appear to be essential

for complete insulin-dependent GLUT4 translocation to

plasma membrane [141–143]. In addition, if and how

TBC1D1, TBC1D4 and Rabs are involved in CD36 translo-

cation needs further study.

SNARE proteins

Integration of vesicular GLUT4 and CD36 into the plasma

membrane is regulated by soluble N-ethylmaleimide-sen-

sitive factor attachment protein receptors (SNAREs), the

mechanistic core complexes of membrane fusion [144].

Subtypes of the SNARE proteins have been classified

depending on the amino acid residue within the SNARE

motifs which is either a glutamine (Q-SNAREs) or an

arginine (R-SNAREs) [145]. When the vesicle-associated

R-SNAREs interact with a specific subset of Q-SNAREs at

the target membrane, a hetero-oligomeric SNARE complex

is formed which catalyzes the fusion of the vesicle with the

target membrane [145].
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Fig. 5 Endosomal pH is
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transporter translocation.
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Afterwards, GLUT4 and CD36

presence at the cell surface were

assayed. During basal recycling,
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only affects CD36 translocation
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It is well accepted that insulin-stimulated translocation

of GLUT4 in adipocytes, skeletal- and cardiac myocytes

involves the R-SNARE VAMP2 [146], which interacts

with the Q-SNAREs syntaxin4 and SNAP23 at the plasma

membrane (Fig. 4) [147, 148]. We have recently shown

that insulin-stimulated CD36 translocation is also depen-

dent on VAMP2 [5]. Another VAMP isoform, VAMP3,

links contraction signaling to GLUT4 and CD36 translo-

cation, disclosing a strong resemblance of the mechanisms

of GLUT4 and CD36 trafficking [5]. Although present on

GLUT4 vesicles, VAMP3 does not translocate to the

plasma membrane upon increased contraction, pointing to a

rather unclear function of this VAMP isoform in GLUT4

translocation [149]. However, other VAMP isoforms, like

VAMP4 and VAMP7, are differentially involved in the

regulation of GLUT4 and CD36 traffic and could be the

basis for selective regulation of transporter distribution [5].

Still, their physiological function needs to be disclosed.

Concluding remarks

A complex interplay between signaling pathways and traf-

ficking components is involved in the regulation of GLUT4

and CD36 translocation (Fig. 4). The signaling pathways

appear to similarly affect GLUT4 and CD36 translocation

and thus are unsuitable targets for restoring the improper

subcellular localization of both substrate transporters in the

diabetic heart, for example by bringing GLUT4 to the cell

surface and internalizing CD36. However, the subcellular

trafficking machinery is able to discriminate between reg-

ulation of GLUT4 and CD36 translocation, and therefore

could form the basis of a novel approach to restore cardiac

substrate preference in metabolic diseases with altered

substrate utilization. Coat proteins are similarly involved in

GLUT4 and CD36 translocation. Other trafficking compo-

nents are differentially involved in both processes. In detail,

actin organisation and v-ATPase are specifically involved

in GLUT4 translocation, while v-ATPase is specifically

involved in CD36 endocytosis. Future experiments should

explore the possible disturbance of these subcellular traf-

ficking components in animal models and in biopsies from

patients with type 2 diabetes.

Importantly, all these trafficking components that dif-

ferentiate between GLUT4 and CD36 translocation are

novel targets for the development of therapies to restore the

metabolic balance in cardiomyocytes during disease char-

acterized by unbalanced substrate usage (e.g., insulin

resistance, diabetic cardiomyopathy and heart failure).

Another advantage in therapeutically targeting the GLUT4

and CD36 trafficking machineries is that this can be

achieved in a tissue-specific manner because many mem-

bers of the major trafficking protein families display a

tissue-specific distribution pattern [144, 150]. Future

research will undoubtedly unmask more GLUT4 and

CD36-dedicated trafficking proteins that could be added to

the list of novel anti-diabetic targets.
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