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Summary
Transfusion-related acute lung injury (TRALI) is the most common cause of serious morbidity and
mortality due to hemotherapy. Although the pathogenesis has been related to the infusion of donor
antibodies into the recipient, antibody negative TRALI has been reported. Changes in transfusion
practices, especially the use of male-only plasma, have decreased the number of antibody-
mediated cases and deaths; however, TRALI still occurs. The neutrophil appears to be the effector
cell in TRALI and the pathophysiology is centered on neutrophil-mediated endothelial cell
cytotoxicity resulting in capillary leak and ALI. This review will detail the pathophysiology of
TRALI including recent pre-clinical data, provide insight into newer areas of research, and
critically assess current practices to decrease it prevalence and to make transfusion safer.

Introduction
Transfusion-related acute lung injury (TRALI) is the most common cause of transfusion-
related death world-wide. First described in the 1950s’ the clinical term was not coined until
1985 (1). The initial reports of TRALI occurred in relatively healthy patients with the first
large series reported on patients who required transfusion after recent surgery. Newer animal
models have been developed and in vitro assays using primary human cells to mimic the
condition have been used. TRALI can certainly be caused by a number of mediators and
each requires some specific constraints and must be thought of in context to the blood
product from which it originates.

Diagnosis and Treatment
TRALI is a clinical diagnosis, and while laboratory data may support the diagnosis it is not
required (2;3). TRALI occurs within 6 hours of transfusion with the majority of cases
presenting during the transfusion or within the first 2 hours (1;4;5). TRALI is the insidious
onset of acute pulmonary insufficiency presenting as tachypnea, cyanosis, and dyspnea with
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acute hypoxemia, PaO2/FiO2<300 mmHg, and decreased pulmonary compliance, despite
normal cardiac function (1;4-8). Radiographic examination reveals diffuse, fluffy infiltrates
consistent with pulmonary edema (1;7). TRALI is the new onset or worsening of pulmonary
function with hypoxemia that satisfies the international criteria for ALI (PaO2/FiO2<300
mmHg) with a chest x-ray consistent with pulmonary edema occurring during or 6 hours
within transfusion (2;3). What differs between the National Heart Lung and Blood Institute
(NHLBI) and the Canadian Consensus Conference definitions is that the in the NHLBI
definition other risk factors for ALI may be present, while the Canadian Consensus
Conmference defitinition designates these conditions as “possible TRALI” (2;3). In any
case, transfusion must be envisioned as the inciting event (2;3). All blood components have
been implicated in TRALI; however, plasma containing blood components are most
commonly implicated with fresh frozen plasma (FFP) and whole blood-derived platelet
concentrates (WB-PLTs) having caused the largest number of reported cases (5;7;9). In
addition, plasma is considered one of the most hazardous transfused components, mainly
because of it association with TRALI, and at most centers the plasma is platelet-rich plasma
because most blood collection facilities do not make platelet concentrates (PCs) from whole
blood collections (10). This use of platelet-rich plasma is significant for it allows for the
infusion of platelet fragments and all endogenous growth factors and other mediators which
are platelet-derived. Many of these compounds are effective activators of PMNs and innate
immunity including soluble CD40 ligand, from platelet membranes, ADP, ATP, and
regulated on activation, normal T-cell expressed and secreted (RANTES) (11-16).

The treatment for TRALI is supportive and consists of aggressive respiratory support with
supplemental oxygen and mechanical ventilation if required at low enough pressure and
tidal volume to not induce barotrauma (4;5;17;18). Two separate consensus conferences
have occurred to define TRALI, and in short, diuretics may cause decreases in intravascular
volume and are not indicated (2;3).

Prevalence and Mortality
TRALI has been reported as commonly as 1/1,333-1/5,000 per unit transfused in North
America with lesser rates in Europe (1;2;5;19;20). The reported mortality from TRALI is
5-35%, with lower mortality rates (5-10%) being more common (4;7;9;21;22). However,
recent prospective data from critically ill patients in the intensive care units have
documented TRALI rates as high as 8%; therefore these patitns appear to have the highest
risk for dvelopping TRALI (23). Most patients recover within 72 hours; however, the data
regarding TRALI are limited, and the attendant morbidity and mortality may be under
appreciated due to both lack of recognition and under reporting (4;7;9;21). Autopsy
specimens have demonstrated widespread PMN infiltration with interstitial and intra-
alveolar pulmonary edema, hyaline membrane formation, and destruction of the normal lung
parenchyma consistent with the acute respiratory distress syndrome (ARDS) (4;24-29). In
addition, in epidemiological studies of ARDS, transfusion was implicated as the most
common predisposing factor for ARDS, and a number of these cases may be TRALI
(24;30-32). A recent analyses of all reported cases of TRALI concluded that antibody-
mediated TRALI may represent a more clinically severe form as compared to those reported
reactions secondary to lipids and other biologic response modifiers (BRMs) (33). However,
because most centers require the presence of antibodies against HLA or granulocyte
antigens to make the diagnosis, such an analysis of BRM-mediated TRALI may be invalid
due to selection bias (33). Importantly, this bias probably reflects the availability of antibody
(anti-HLA or anti-HNA) testing services and in contrast the scarcity of laboratories that
investigate BRMs, such that investigation of the role of BRMs in TRALI should be
promoted.
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Neutrophils and TRALI
Popovsky and Moore first postulated that the PMN is the effector cell in TRALI and the
murine and rat models of in vivo TRALI have reaffirmed that TRALI is PMN-mediated;
thus, a review of PMN physiology is required (1;9;34;35). In response to an infection in the
tissues signals are sent out that cause pro-inflammatory activation of the vascular
endothelium in a concentration dependent fashion (Fig. 1A) (36-39). These signals induce
the increased surface expression of the selectins on the endothelial cell (EC) surface and
shedding of L-selectin on the PMNs, resulting in loose attachment of PMNs to the EC
surface, known as capture in the pulmonary circulation (37;39-41). Closer to the nidus of the
infection the ECs, in response to pro-inflammatory stimuli, synthesize and release
chemokines, e.g. IL-8, which increase the surface expression of cellular adhesion molecules,
especially intracellular adhesion moleducle-1 (ICAM-1) (37;39-41). The chemokines cause
a rapid conformational change in the β2-integrins on the PMNs resulting in the firm
adherence of PMNs to the vascular EC via PMN β2-integrins and ICAM-1 on the ECs
(37;39-43). The change from a non-adherent to an adherent PMN is known as priming and
not only involves PMN adhesion but also augments the release of microbicidal products
from PMNs when activated to kill pathogens (37;39-44). In response to chemotaxins, the
PMNs then diapedese through the EC layer and chemotax along a gradient of mediators to
the nidus of infection where they phagocytize and destroy the invading microbes (36;39). In
PMN-mediated ALI the first few steps are identical except that the stimulus is form the
intravascular space and not the tissues (Fig.1B) (36;38;39). PMNs become firmly adherent
(primed) but do not marginate due to the lack of a chemtoactic gradient (36;38;39)
Therefore, these adherent, functionally hyperactive PMNs are sequestered in the lung and
may predispose the host to ALI if a second stimulus, such as BRMs or antibodies in a blood
transfusion, activates these primed granulocytes causing release of the microbicidal arsenal,
EC damage, capillary leak, and ALI (36;38;39). Such “activating” agents may not have the
capacity to cause activation of the microbicidal arsenal in “quiescent” PMNs but only have
the ability to activate adherent, primed PMNs; otherwise, ALI would be a much more
common event (36;38;39;44). Importantly, many clinical insults linked to TRALI may cause
pro-inflammatory activation of vascular EC including: viral infections (adenovirus or
cytomegalovirus), traumatic injury or major surgery, a “scheduled injury”, which release
significant amounts of tumor necrosis factor–α(TNFα), and massive transfusion, which
exposes the host to large amounts of neutral lipids which activate endothelial cells
(42;45-48).

There are also a number of important issues that are inherent to lung physiology: 1) the lung
is the only organ in which PMN margination occurs in the capillaries (49-55). The
capillaries are narrow and leukocytes, which have a larger diameter than the capillary, and
need to “squeeze” through, such that mechanical sequestration may occur via the exposure
of agents that stiffen PMNs (49-55). 2) There is controversy as to the mechanism of PMN
sequestration whether firm adhesion, selectin-mediated tethering, or mechanical
sequestration is required for PMN-induced ALI (49-55).

Pathogenesis
Three basic mechanisms have been proposed for the pathogenesis, and all require PMNs.
Antibody-mediated TRALI: the infusion of donor antibodies specific for HLA class I and
human neutrophil antigens (HNA) expressed by the recipient. The first clinical series of
TRALI found donor antibodies against HLA class I antigens and granulocyte antigens in
89% and 72% of cases, respectively (1). Most of the granulocyte antibodies did not exhibit
specificity but 59% of the HLA class I antibodies did, and the infusion of specific HLA
antibodies has been confirmed in 50-65% of TRALI cases (1;7;56-58). However, in most
investigation of antibody-linked TRALI, the investigators do not determine if the recipient
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expresses the cognate antigen, although it is a prerequisite for the proposed pathogenesis (1).
Antibody-mediated TRALI requires that donor antibodies bind the cognate antigen in the
host leading to the activation of complement, which causes pulmonary sequestration and
activation of PMNs resulting in the release of cytotoxic agents, endothelial damage,
capillary leak, and ALI (1;7;58). These antibodies are likely to be cytotoxic or pro-
inflammatory, because HNA-3a is not cytotoxic, to confer such biologic activity upon
binding the leukocyte antigen (1;5;59-62). Antibodies have caused TRALI in healthy
humans and these clinical details supported this pathogenesis (63;64).

The in vivo relevance of antibodies to HLA class I antigens was confirmed in a murine
model of TRALI in which a monoclonal antibody to mouse MHC class I antigens caused
reproducible ALI at a dosage of 4.5 mg/kg (35). PMNs were required to recognize
antigen:antibody complexes deposited onto the surface of the pulmonary EC and PMNs
cytotoxicity was accomplished via activation of the murine Fc receptors because Fc
knockout animals did not manifest TRALI when administered this antibody (35). This study
mimicked the clinical time course for TRALI for the mice developed ALI within 2 hours of
infusion; however the mortality was 50% (vs. 10-20% in clinical TRALI), and despite such
a high mortality no blood pressure (BP) recordings or other physiologic parameters were
included from the time of infusion the time of death/euthanasia. Furthermore, there was no
dose-response to the infused antibody, i.e. only the one concentration caused ALI. It would
be improbable for a human to be transfused with a specific antibody at a concentration of 4.5
mg/kg, for this specific antibody would have to comprise >10% of all IgG in 200 ml of FFP,
the average dosage to a 70 kg adult, assuming the normal IgG concentrations (1060-1274
mg/dl) in the plasma and in the transfused host (35).

Interestingly, complement activation was not required for TRALI in this murine model, and
the authors did state that the antibodies did not cause activation of the NADPH oxidase
using a flow-based assay system. This last result is to be expected if the IgGs prime the
PMN oxidase because priming agents, especially those implicated in TRALI, do not activate
the respiratory burst (35;36). Lastly, a recent in vivo model employing the identical antibody
from Looney et al demonstrated a requirement for the capture of platelets and a requirement
of E-selectin to produce TRALI (65). Although this model represents an elegant mechanistic
representation of antibody-induced inflammation, the pathogenesis represented differs
widely from TRALI because of the aforementioned reasons and does not take into account
the requirement for Fc receptor-mediated PMN activation through recognition of immune
complexes on the endothelial surface (65).

Antibodies to granulocyte specific antigens have also been implicated in TRALI, and the in
vivo relevance to these antibodies was confirmed in isolated, perfused rabbit lungs (62). ALI
was characterized by pulmonary edema, and TRALI was precipitated by the infusion of a
mixture of human PMNs (HNA-3a (5b) positive), HNA-3a antibodies, and rabbit plasma as
a complement source (62). Pulmonary edema occurred 3-6 hours following the infusion of
the admixture; however, if any one of the three components were deleted or antibodies
without defined specificity were used, TRALI did not occur (62). The need for complement
has been obviated in a rat model with the infusion of monoclonal antibodies (Mab) to
HNA-2a (CD177) eliciting TRALI if they are infused with PMNs that express a high density
of the HNA-2a antigen (66). The observed mild pulmonary edema with the Mab to HNA-2a
and PMNs which express a high density of HNA-2a was significantly augmented with the
addition of N-formyl-Met-Leu-Phe (66). In addition, using a flow based assay the Mabs to
HNA-2a demonstrated the ability to activate the PMN oxidase in PMNs that express a high
density of HNA-2a without affecting those PMNs with low density or lack of HNA-2a
expression (66). Although eloquently done, one must consider the effects of the tubing on
the infused PMNs in this ex vivo model because the tubing used to introduce PMNs is
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known to prime them, and such stiff leukocytes may become non-specifically sequestered
due to their inability to “navigate” the pulmonary circulation (55;67;68). In addition one
must be careful with antibodies to granulocyte specific antigens because animal models of
human disease and inflammation routinely employ granulocyte specific antibodies to PMN
deplete these rodents, and infusion of this antibody did not cause ALI (35;69). Transfusions
PMN-reactive-antibodies to specific host antigens may result in alloimmune neutropenia
depending upon the characteristic of the antibody:antigen interaction (70).

Antibody-mediated TRALI: the infusion of donor antibodies specific for HLA
class II antigens expressed by the recipient—Antibodies specific for HLA class II
antigens have been implicated in a large number of patients with TRALI who express the
cognate antigens (17;23;71-73). Binding of specific HLA class II antibodies to their cognate
antigens on monocytes in vitro resulted in intracellular synthesis of TNFα, IL-1β and tissue
factor over a 4-hour time period as compared to identical monocytes incubated with control
sera (74). Moreover, incubation (20 hours) of monocytes that express the cognate antigens
with antibodies to these HLA class II antigens resulted in the production of both cytokines
and chemokines (IL-8, GROα); the latter peptides could certainly activate PMNs
sequestered in the lung (75). Recent in vitro studies demonstrated that co-cultures of human
pulmonary microvascular endothelial cells (HMVECs) and monocytes stimulated with
antibodies to HLA class II antigens expressed on the monocytes lead to the release of
leukotriene B4 (LTB4) and TNFα into the supernatant with concomitant apoptosis of
HMVECs (76;77). These experiments also identified the importance of monocytes and the
HMVECs together because if alone minimal LTB4 was produced, and if an interfering anti-
Dr antibody was introduced, HMVEC apoptosis and mediator release was inhibited (76;77).
Lastly, because HLA class II antigens may be expressed on ECs the infusion of class II
antibodies into a recipient with the cognate antigen present on the pulmonary EC may
manifest TRALI due to antibody-mediated EC activation, fenestration, and mild leak (74).

Although attractive, this model of TRALI raises a number of issues: 1) while the synthesis
of cytokines by circulating monocytes has the potential to cause TRALI, there is a
significant time delay (4-20 hours) for the synthesis of these cytokines and chemokines, and
at 4 hours these cytokines were never released extracellularly (74;75). By definition, TRALI
occurs within 6 hours of transfusion with most of the reactions occurring during or 1-2 hours
following transfusion; thus, the synthesis of chemokines and cytokines over a 20 hour time
period may have little to do with TRALI (2;3;74;75). However, the production of LTB4 and
TNFα in the model of Nishimura et al is temporally consistent with TRALI. This model
requires further elucidation because the number of circulating monocytes in contact with the
pulmonary EC must be relatively high as monocytes contain the LTA4 hydrolase to
synthesize LTB4 from LTA4; whereas, ECs alone can only synthesize the cysteinyl
leukotrienes via activation of the LTA4 synthetase and glutathione (LTC4, LTD4 & LTE4)
(78-82). 2) Pathologic examination of lungs from a fatal TRALI reaction attributed to HLA
class II antibodies documented that there were no HLA class II antigens on the pulmonary
EC (25). In addition, although prolonged (72 hrs) in vitro cytokine exposure has lead to the
surface expression of HLA class II molecules on PMNs, HLA class II antigen expression on
the PMN surface has only been demonstrated in patients treated with G-CSF or GM-CSF,
and although such cytokine exposure may predispose these individuals to TRALI, this group
of patients is largely neutropenic from chemotherapy and may not manifest PMN-mediated
ALI (4;83-88). These data are important because some interaction must occur between the
pulmonary EC and the monocytes to produce clinically relevant amounts of LTB4 and the
expression of HLA class II molecules is one potential factor.

The two-event model of TRALI—TRALI has been documented in cases in which
antibodies have not been detected in either the donor or the recipient (1;4;5;7;9); moreover,
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if the infusion of specific anti-leukocyte antibodies were sufficient to cause TRALI, then
blood from donors with specific antibodies against common leukocyte antigens should elicit
TRALI reactions in the vast majority of recipients who express the cognate antigen. In “look
back” studies of donors with known high-titer “TRALI-implicated” antibodies to a) HLA
class I alone, b) HNA-3a, c) HLA class I and class II, or d) HLA class II alone, few of the
transfused patients who expressed the cognate antigens developed TRALI (18;57;89-92).
Therefore, the clinical condition of the patient appears important and may serve as the first
event in the two-event model (4;5;57). The second event is inherent to the blood product and
may be either donor-derived anti-leukocyte antibodies which recognize a cognate antigen in
the recipient or BRMs that accumulate during blood storage (4;36;93). During storage of
cellular components, effective PMN priming agents accumulate that are lipids as determined
by solubility in chloroform (94;95). Identification of these lipids determined that a mixture
of lysophosphatidylcholines (lyso-PCs) accumulates in the plasma fraction of all cellular
components and reaches a relative maximal concentration on the day of component outdate
(day 42) in the 100 units of packed red blood cells (PRBCs) tested (94;95). These
compounds effectively prime the PMN oxidase, activate primed, adherent PMNs in vitro,
and may serve as the second event in a two-event models of PMN cytotoxicity and PMN-
mediated ALI (44;94-97).

The two-event model of TRALI was initially verified in an isolated perfused lung model and
then re-confirmed in an in vivo rat model (28;69;98). A two-event rat model was employed
with saline (NS) or endotoxin (LPS) as the first event and the infusion of plasma from
PRBCs or antibodies (OX18 and OX27) against MHC class I antigens as the second event
(69). The plasma from stored PRBCs, both pre-storage leukoreduced and unmodified [10%
D28 and 5-10% D42]FINAL, and antibodies directed against MHC class I antigens caused
ALI as the second event in this two-event in vivo model. ALI was demonstrated in a
concentration-dependent manner in multiple ways including Evans Blue Dye (EBD) leak,
lung histology, increases in total protein and CINC-1 in the bronchoalveolar lavage (BAL),
and for antibody-mediated TRALI increases in EBD in the pulmonary interstitium.
Importantly, in NS-injected rats neither the plasma from stored PRBCs nor the antibodies
caused ALI, even when the concentration of OX27 was increased to 4.5 mg/kg, a level at
which a monoclonal antibody induced ALI alone in vivo corroborating a two-event
mechanism (35). In addition, lipopolysaccharide (LPS) was not lethal and did not cause 1)
EBD leak into the BAL or the pulmonary interstitium, 2) increases in total protein or
CINC-1 in the BAL or histological evidence of ALI, but did induce pulmonary sequestration
of PMNs (28). LPS was employed as the first event because acute, active infection (bacterial
or viral) was implicated as a predisposing clinical event in TRALI (4). Bacterial and viral
infections induce pro-inflammatory activation of the vascular endothelium which leads to
adherence/sequestration of PMNs (42;44;99-101). Other first events have been implicated
including: cytokine administration, massive transfusion, recent surgery (especially
cardiovascular surgery), and induction chemotherapy, but only infections have been studied
to date in vivo (4-6;38;102-105). PMNs were also required because granulocyte depletion
inhibited ALI. Furthermore, the OX18 and OX27 antibodies demonstrated both antigen
recognition and the ability to prime the fMLP-activated respiratory burst of rat PMNs, which
were not affected by Fc receptor blockade, implying that these interactions were specific to
antibody:antigen binding (69). Lastly, a third antibody, which was granulocyte-(PMN)
specific, caused immunodepletion of PMNs from rats, did not elicit ALI, when used in the
two-event model, nor it prime rat PMNs (69). Both clinical TRALI and this model are
similar with the onset of ALI within 6 hours, mortality of 5-10%, identical histological
evidence of ALI, and a dose-response relationship of antibodies or plasma from stored
PRBCs to elicit TRALI as the second event such that lower concentrations did not cause
TRALI or elicited milder ALI (7;34;39). PMN reactive antibodies have varying effects on
PMN physiology in vivo for they may prime or immunodeplete PMNs. A number of donor
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“look-back” studies which demonstrated that transfusion of a donor antibody to a recipient
that expressed the cognate antigen caused TRALI in the minority of cases; thus, these
antibodies appear to induce TRALI as a “second event”; hence, the clinical condition of the
patient may be determinant for its genesis (18;57;89). In addition, these antibodies were
found on the surface of PMNs that were sequestered in the lung, but not on the surface of
pulmonary vascular endothelium as demonstrated in the murine model (35;69). Both OX18
and OX27 primed the rat PMN oxidase in vitro, identical to previous data which
demonstrated that antibodies to HNA-3a could prime PMNs that expressed HNA-3a on their
surface; moreover, Fc receptor blockade did not affect priming activity or cognate antigen
immunoreactivity, implying specificity for these antigen:antibody interactions (69).
Therefore, a number of specific prerequisites appear to be required for antibody-induced
TRALI which may explain its relatively low prevalence: 1) the recipient has an underlying
clinical condition that predisposes to TRALI, 2) the donor antibody must recognize the
cognate antigen on the host’s leukocytes which are sequestered in the lung, and 3) the
antigen:antibody interaction must cause a pro-inflammatory change in the PMN (69). The
presented model is superior to other in vivo modeling because it better approximates clinical
TRALI: 1) the first event, LPS, approximates acute active infection, a proposed risk factor
for TRALI and causes pro-inflammatory activation of the pulmonary capillary bed without
causing death or other organ injury (28;37;98;106-109). LPS has been used in many animal
models and even injected into human volunteers and mimics infection (28;37;98;106-111).
2) ALI was induced by two separate second events, like clinical TRALI, and the second
events demonstrated a concentration:response relationship in ALI using multiple parameters,
unlike other in vivo models (35). 3) The MHC class I antibodies localized to the antigen on
the PMN membrane, identical to Popovsky’s proposed antibody pathophysiology, and did
not implicate Fc-mediated indirect activation, reminiscent of immune complex disease, not
currently implicated in clinical TRALI (1;7;35). 4) The novel pathophysiology of antibody-
and BRM-mediated TRALI in this model are due to direct pro-inflammatory changes
(priming) of PMNs induced by the second events, synonymous with in vitro studies using
human pulmonary endothelium, PMNs, granulocyte antibodies, sCD40L or lipids
(28;44;94;95;112). This pro-inflammatory requirement may explain why not all antibodies
may cause TRALI and induce TRAIN. 5) Disparate from the murine model, this model used
antibody concentrations 15- to 30-fold less and did not require supra-physiologic
concentrations of a specific antibody. If one calculates the amount of this specific antibody
needed to cause clinical TRALI, then this antibody must comprise 10% of all IgG in 200 ml
of transfused FFP (35;69).

Two clinical studies support the two-event model. The first identified 4 separate first events
that may predispose patients to TRALI that were not present in a control group of patients
with febrile or urticarial transfusion reactions including: 1) active infection, 2) recent
surgery, 3) cytokine therapy, and 4) massive transfusion (4). These first events have been
documented by other investigators in both antibody-mediated TRALI and TRALI caused by
BRMs, including the seminal article of Popovsky and Moore in which all TRALI patients
had a surgical operation 24 hours prior to the transfusion (1;104;105;113-117). In addition, a
nested case control study documented that two patient groups were at particular risk for
TRALI: patients who had cardiac surgery and patients with hematological malignancies in
the induction phase of therapy (all with absolute PMN counts > 500/μl) (5). The second
event was the infusion of bioactive lipids from the stored products as supported by the
following data: 1) the implicated units were stored longer than control units that did not
cause transfusion reactions, 2) the implicated blood products demonstrated significant
plasma PMN priming activity as compared to the identically stored control units, and 3)
there was PMN priming activity in all TRALI patients at the time of recognition, which
consisted of neutral lipids and lyso-PCs, compared to pre-transfusion plasma (5). These
cases of TRALI were not antibody-mediated because of the donors tested, only 1/28
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exhibited a leukocyte antibody with specificity (HLA-A26) (5). Furthermore, patients with
hematological malignancies and patients requiring cardiac surgery comprised the majority of
patients with fatal TRALI in a recent FDA report on transfusion-related mortality (102).
“Healthy” patients who experience TRALI would seem to disprove the two-event model;
however, by definition, patients who require transfusion are not healthy. Lastly, a case of
autologous TRALI has been reported in a patient who required a radical prostatectomy and
transfusion. No leukocyte antibodies were detected but significant amounts of lipid priming
activity were present in his PRBC units and in the post-transfusion plasma at the time
TRALI was recognized (6).

Merging the Pathogenesis
Lipids, sCD40L, antibodies to HNA-3a, and antibodies to MHC class I antigens that cause
TRALI in vivo have been linked to clinical TRALI and prime isolated PMNs that exhibit the
cognate ligand whether it be a G-protein coupled receptor, lipids and sCD40L, or the
cognate antigen, HNA3a or OX18 or OX27 (28;69;96;112;118). Importantly,
immunoglobulins used to immunodeplete rats recognize the rat PMNs but do not induce
TRALI in the two-event model in vivo, and do not prime PMNs. Moreover these BRMs and
antibodies that primed PMNs caused PMN cytotoxicity of pulmonary endothelial cells as the
second event in an in vitro model of two-event PMN-mediated cytotoxicity or TRALI in
vivo (28;44;69;96;112;118). Thus, antibodies that cause pro-inflammatory changes in PMNs
may induce TRALI and those that do not may cause immunodepletion and lead to immune
neutropenia.

Laboratory Work-up of TRALI
The combination of the granulocyte immunofluorescence test (GIFT) and the granulocyte
agglutination test (GAT) is an effective approach for detecting PMN reactive antibodies in
serum or plasma (Fig.2) (119;120). These methods detect antibodies to both HNA and HLA
class I, and possibly HLA class II, although further work is needed (119;121-123); moreover
if antibodies to HNA-3a are suspected GAT is required (120). GAT provides the best
indication as their physiologic relevance because it demonstrates direct antibody
agglutination which is the results of PMN chemotaxis and homotypic PMN:PMN
interactions, distinct from passive IgM cross-liking (124;125). The combination of GAT and
GIFT applied to panels of phenotyped PMNs enable identification of HNA antibody
specificity. These techniques are limited to reference laboratories in the Granulocyte
Working Party (GWP) of the ISBT (www.isbt-web.org) is a necessary reference for finding
the appropriate laboratories in different geographic locales.

The laboratory investigation of HLA class I and II antibodies will not be discussed in detail
as the techniques are widely and there are excellent, recent reviews available (126;127). It is
important to note that many of the assays employed are highly sensitive techniques to detect
the presence of any antibodies in donor or recipient sera that could be clinically relevant
leading to graft rejection and or graft versus host disease. Because HLA antibody screening
is widely available it is often the first step in many TRALI investigations when screening
implicated donors; however, two reports revealed that a disproportionately small number of
HLA class I antibodies actually induce TRALI (89;128). With this in mind and the high
sensitivity of current HLA techniques, one questions the clinical relevance of all of the HLA
antibodies detected in TRALI because most of the current flow-based assays are so sensitive
that a relatively high percentage of non-transfused males demonstrated antibodies (129;130).
Similarly, flow based assays used to detect antibodies to HLA class II antigens in donors are
designed to detect very small amounts of antibodies using a PRA luminex bead assay (One
Lambda, Canoga Park, CA). These tests may overestimate the role of antibodies to HLA
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class II antigens in TRALI because: a) no titers of antibody concentration are employed, b)
without sufficient modeling of HLA class II antibody-mediated TRALI it is not known what
concentration is applicable and c) the role of the antibody has been thought to be PMN-
dependent although PMNs do not “naturally” express HLA class II antigens (1;35;69).
Recently, the current Leukocyte Antibody Prevalence Study (LAPS) determined the
prevalence of HLA class I and II antibodies in large cohorts of non-transfused males,
transfused males, nulliparous females, and parous females (130). Separate analyses were
generated for both antibodies to HLA class I and class II antigens and stratified by donor
group, and the data was log transformed such that positives were defined as three standard
deviations above the mean. Samples were considered antibody positive with normalized
background ratios of >10.8 for HLA class I antibodies and >6.9 for HLA class II antibodies.
Antibody positivity for transfused males (1.7%) was similar to that of non-transfused males
(1.0%) and nulliparous, non-transfused females (1.7%) (130). Such criteria of a less
sensitive cut-off designed to detect passively transfused antibodies rather than an
amamnestic response has never been implemented with respect to the prior data which
implicated antibodies to HLA class II antigens in TRALI that employed a 8-10% shifts by
flow as positive or shifts as low as 8% (17;25;74). These very small flow shifts may be of
import for successful organ transplantation but their relevance is not defined in TRALI.
Effective HLA antibody screening methods for blood donors from various testing sites
reveal challenges in differentiating background noise and defining suitable cut offs such that
if these new normal range of cutoffs are employed, some antibodies implicated in TRALI
never reach a positive titer (130-133). Furthermore, the clinical effects of transfused HLA
antibodies may be attenuated due to absorption by lymphocytes or platelets, and
neutralization by soluble HLA class I molecules which comprise the majority of HLA class I
antigens in the blood (134). One notable exception is HLA-A2 which has been implicated in
many TRALI cases and thus should be included in any first line TRALI investigation screen
(1;135-137).

It is important to determine if the cognate antigen is present in the transfused host, and
currently there is great variability in how TRALI cross-matches are performed. Techniques
employed include the lymphocytotoxicity test (LCT) (1), GIFT alone or GIFT and GAT
combination (123). The LCT is based on lymphocytes which are stable and storable making
them investigator friendly, however lymphocytes are not the primary target cell in TRALI
and do not express PMN-specific antigens (HNA-1 and 2) and thus. will not detect any
incompatibilities with these antigens. Therefore, reports using the LCT cross-match alone
need to be interpreted with these potential limitations in mind. Importantly, while
confirmation of the presence of a cognate antigen implies that the donor antibody has a
target or substrate to react with, it does not confirm that the antibody contributed
etiologically to the TRALI reaction, for in three look-back reports the minority of confirmed
antigen:antibody pairs developed TRALI (74;138;139).

In the majority of cases, antibodies implicated in TRALI are donor-derived. Consequently,
an appropriate cross-match strategy involves only the testing of the associated donor serum/
plasma with the recipient’s effector cells (PMNs). In the rare case where the antibody is
present in the TRALI-affected transfusion recipient, the cross-match should, in addition, test
recipient serum/plasma with the associated donor’s PMNs, especially for TRALI linked to
granulocyte transfusions (137). In a PMN cross-match, serum or plasma from associated
donors should be incubated with the recipient’s PMNs using both the GIFT and GAT
techniques (123;137;140). The PMN cross-match is very valuable because positive cross-
matches or incompatibilities provide in-vitro evidence of a reaction between recipient PMNs
and associated donor serum/plasma antibodies. This is especially useful in cases where
antibody specificities cannot be defined, a common phenomenon in PMN serology, because
of the very small number of well defined and characterized HNAs. In determining if a donor
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antibody did cause TRALI a number of important points need to be considered and should
be the subject of ongoing research including: 1) the method of detection, is the antibody an
agglutinating (GAT) or a binding antibody (GIFT), 2) the antibody titer, 3) epitope
specificity, and 4) antibody isotype, 5) its ability to prime PMNs that express the cognate
antigen. Such detailed antibody information may shed more light on the role of allo-
antibodies in the TRALI mechanism.

Investigation of BRMs implicated in TRALI
These PMN priming assays are only performed in a few laboratories world wide including
the Research Department at Bonfils Blood Center, Denver, CO and by the Australian Red
Cross Blood Service, Brisbane, Australia. Such assays have their inherent quirks and require
trained personnel, but the assays themselves are not difficult. These and comparable
laboratories usually will test samples as part of their research endeavors. When priming
activity is found then further identification is required including lipid identification or
measurement of chemokines or sCD40L by commercial ELISA.

TRALI Avoidance
Manipulation of Blood products

Washing of cellular blood products removes all of the implicated mediators in TRALI,
which are present in the plasma fraction; however, washing is expensive, time consuming,
and the time constraints in critically ill patients may not allow for the time to remove the
plasma from stored cellular components. Decreases in the plasma in cellular blood products
has been employed with some success; however, in a number of TRALI cases only small
amounts of plasma are required to elicit TRALI (141;142). Although pre-storage
leukoreduction does decrease a number of leukocyte and platelet-derived mediators, it was
not effective in inhibiting BRM-mediated TRALI in vivo (69). In Norway no TRALI cases
have been reported since the use of solvent-detergent plasma (SDP), a product manufactured
from enormous pools of plasma in which leukocyte antibodies are thought to be diluted and
neutralized during processing, and cellular fragments are removed during filtration (143).

Donor selection
The use of male predominant plasma in Great Britain has significantly decreased the number
of the total cases of TRALI particularly the cases of fatal TRALI (19). Although there may
be selection bias in these studies for antibody-mediated TRALI as nicely demonstrated by
Dr. Hume, this intervention appears to be effective (19;144). Not all antibody-mediated
TRALI is caused by female donors as emphasized by the look-back study of reported
TRALI cases by Middleburg et al that demonstrated that 48% of the implicated donors who
gave antibody positive units were male (145). Rapid methods of screening for donor HLA
and HNA antibodies appears pertinent, especially for apheresis donors; however, the cost
and time required is not insignificant and many of the assays employed have a level of
sensitivity related to organ transplantation and have not been validated for Transfusion
Medicine. In addition, HNA antibody testing presents a major hurdle as there is currently no
mass screening technology available.

Management of implicated donors
Look-back studies have confirmed that donors of implicated products do cause TRALI in
other recipients (18;131). As discussed previously, screening implicated donors for HLA
class I, class II and HNA antibodies, followed by confirmation of the cognate antigen in the
recipient or incompatible PMN crossmatches between donor and recipient identifies TRALI-
associated donors. Blood centers need to have effective systems to identify implicated
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donors so that future donations do not cause TRALI. If the antibodies recognize common
leukocyte antigens the donors may be excluded or their products used for plasma poor
products.

Conclusions
TRALI is the leading cause of transfusion-related morbidity and mortality (102). Although
much of this review has focused on immunocompetent hosts, TRALI has been reported in
neutropenic patients and the etiology is thought to involve the transfusion of permeability
agents, such as vascular endothelial growth factor, VEGF, or antibody-mediated activation
and fenestration of the pulmonary endothelium both resulting in mild lung leak (146;147).
Proper evaluation of antibodies and BRMs implicated in TRALI using in vivo and in vitro
models may lead to novel clinical strategies to preclude patient exposures or methods to
identify TRALI risk factors and enable their removal to make transfusions safer and to not
needlessly disqualify blood donors. Other than the presence of antibodies, little convincing
evidence supporting the danger of female plasma has been presented. Recently, Palfi et al
demonstrated a statistical decrease in blood oxygenation in patients following transfusion of
female plasma versus the transfusion of male plasma, but this “decrease” was not out of the
normal range for human subjects (148). Gajic et al prospectively investigated the transfusion
of blood components from male donors versus blood transfusion with one or more female
donors to patients in the intensive care unit and found a statistical decrease in oxygenation in
the female containing transfusion group. Interestingly, there was more ALI in the male-only
transfusion group with none being diagnosed with TRALI (149). Other investigators have
refuted the inherent danger of female plasma; however more work is required to determine if
male-predominant plasma transfusion is clinically warranted (150;151). In addition, if the
new transfusion guidelines for military trauma, which included a 1:1 ratio of FFP units to
PRBC units for optimal survival, are implemented in civilian trauma, there will not be
nearly enough male-only plasma to transfuse injured patients (152). Although the use of
male-only plasma transfusion may decrease a handful of fatalities, this practice may be
disastrous to locales in which multiparous women comprise a large proportion of the donor
pool, such as in the western United States (153;154), and newer methods to remove
antibodies and other BRMs from the plasma/ plasma fraction of blood components are
required.
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Practice Points

• TRALI is a complex clinical syndrome that appears to require at least two
clinical events for its development.

• TRALI is a clinical diagnosis and should be made on clinical grounds although
laboratory test may be supportive.

• Antibody testing via flow cytometry may be too sensitive and requires
modification for its use in Transfusion Medicine.

• Male predominant plasma transfusion appears effective to reduce TRALI and
further work is needed to include all cases and not just those with donor
antibodies.
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Research Agenda

• TRALI appears to affect the critically ill and further work is needed to
determine appropriate transfusion strategies in this patient population.

• Further work is need with regard to the role of antibodies to HLA class II
antigens in TRALI for the pathophysiology is unknown.

• The at-risk populations for TRALI remain undefined.
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Figure 1.
A. PMN Physiology: The normal response to infection. From an infection (green circles) in
the tissues: (1) pro-inflammatory signals (LPS) are sent out (arrows) that activate ECs (2)
causing chemokine synthesis and release (black stars), increases in P-selectin (red P’s) and
increased surface expression of intercellular adhesion molecule-1 (ICAM-1, pink I’s). This
activation elicits (3) PMN attraction and selectin-mediated tethering (capture) of PMNs
between the PMN P=selectin glycoprotein ligand-1 (PSGL-1, tan C’s) and endothelial P-
selectin. Capture is then followed by (4) firm PMN CD11b/CD18 (orange trapezoids) :
ICAM-1 endothelial cell adherence resulting in PMN pulmonary sequestration. (5) PMNs
diapedese through the endothelial cell layer and chemotax to the site of infection and kill the
pathogens in the tissues.
B. PMN Physiology: PMN-mediated ALI. In response to intravascular stimuli due to a
systemic (first) insult, ECs become (1) activated and synthesize and release chemokines
(black stars) and increase the surface expression of P-selectin (red P’s) and ICAM-1 (pink
I’s) (2). This endothelial activation causes tethering (3). of PMNs via the PMN PSGL-1 (tan
C’s) and P-selectin followed by firm adherence (4) via the PMN CD11/CD18 : ICAM-1
from the endothelial surface resulting in pulmonary PMN sequestration. A second
intravascular stimulus (insult), transfusion of specific antibodies against host PMN antigens
or BRMs activate these primed, adherent PMNs (6) causing release of the microbicidal
arsenal from the PMNs ,including O2

-, resulting in EC damage, capillary leak, and TRALI.
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Figure 2.
Laboratory investigations into the antibody (Ab) mediated and priming mechanism of
TRALI. Patient samples (cellular, serum or plasma) should be as close to the time of the
TRALI event as possible to reflect the physiological circumstances of the event. The
remains of the transfused blood product provide the most ideal sample for the investigation
(primary donor sample), followed by samples from other products manufactured at same
collection date from that donor (secondary donor sample) or finally a new sample from the
donor (tertiary donor sample). This is because antibody titers and priming/biological
response modifiers (BRM) effect can be significantly different between various blood
products from the same donor e.g. FFP versus PRBCs, and antibody titers of a donor can
vary between blood collected on different dates. Laboratory investigation for Ab mediated
TRALI begins with screening for leukocyte antibodies in associated donations and the
recipient. Specificities of donor antibodies need to be determined as typing of recipient cells
will confirm if there is a cognate Ag on the recipient the donor Ab to interact with. A PMN
cross-match (GIFT and GAT) provides in vitro evidence that the donor Ab does react with
the recipient’s cells and reveals they type of interaction – agglutination or binding. Primary
donor samples should be investigated for their PMN priming activity, especially if leukocyte
Abs are not detected.
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