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The neural stem cell niches possess the regenerative capacity to generate new functional neurons in the adult brain, suggesting the
possibility of endogenous neuronal replacement after injury or disease. Huntington disease (HD) is a neurodegenerative disease
and characterized by neuronal loss in the basal ganglia, leading to motor, cognitive, and psychological disabilities. Apparently, in
order to make use of the neural stem cell niche as a therapeutic concept for repair strategies in HD, it is important to understand
the cellular and molecular composition of the neural stem cell niche under such neurodegenerative conditions. This paper mainly
discusses the current knowledge on the regulation of the hippocampal neural stem cell niche in the adult brain and by which
mechanism it might be compromised in the case of HD.

1. Adult Neurogenesis

The renowned Spanish neuroanatomist Cajal stated that
“Once development was ended, the founts of growth and
regeneration of the axons and dendrites dried up irre-
vocably. In adult centers, the nerve paths are something
fixed and immutable: everything may die, nothing may be
regenerated” [1]. Therefore, it has been believed that no
new neurons are generated in the adult brain and most
of the common central nervous system (CNS) pathologies
accompanied by neuronal loss cannot be restored. Amongst
them are the well-known ones: Parkinson’s disease (PD)
accompanied by the degeneration of dopaminergic neurons
in the substantia nigra, Alzheimer’s disease (AD) with a
neuronal loss in the cerebral cortex and certain subcortical
regions, and Huntington’s disease (HD), which is an inher-
ited disease that degenerates neurons in the basal ganglia.
According to the above-mentioned dogma, the vast majority
of neurons in the mammalian brain are generated during
embryonic development [2, 3]. This statement stands true

for most of the regions of the adult brain. However, this
doctrine ended in 1965 when newly generated neurons
were found in two specific regions of the adult brain:
the subgranular zone (SGZ) in the dentate gyrus (DG)
generates new granular neurons in granule cell layer (GCL)
of the hippocampus and the subventricular zone (SVZ) of
the lateral ventricle wall that gives rise to new cells that
migrate along the rostral migratory stream (RMS) to become
neurons in the olfactory bulb (OB) [4, 5].

2. Hippocampal Neurogenesis

The hippocampus is a bilateral structure that plays a major
role in processing and storage of new information. In
the hippocampus, stem cells are located along the border
between the granular cell layer (GCL) and the hilus known
as subgranular zone (SGZ), where they produce cluster-
forming precursor cells. From there, neuroblasts migrate
into the GCL and become fully matured functional neurons,
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where they extend dendrites into the molecular layer (ML)
and launch mossy fibers to the CA3 region [6, 7]. Following
the principle “do or die”, the survival depends on how
sufficiently the new cells are integrated into the neural circuit
[8–10]. From the neural stem cell to the mature neuron, the
cells go through defined steps of division, differentiation,
migration, and maturation. Using specific markers, it is
possible to investigate the stage-specific changes of SGZ
neurogenesis in detail [11, 12]. Further, stem and progenitor
cells from adult hippocampus produce neurons that generate
action potentials, received functional GABAergic and gluta-
matergic synaptic inputs [13, 14].

3. Neurogenesis in the SVZ -RMS-OB System

The newborn neurons generated in the OB originate from
the subventricular zone (SVZ) of the lateral ventricle (LV). In
the adult brain, newly generated SVZ young neurons migrate
along the rostral migratory stream (RMS) and proceed to the
OB [15]. These neuronal cells integrate upon their arrival
into the OB as specific subtypes of interneurons. These
subtypes are GABAergic granule cells, which represent the
majority of the new OB neurons and a very small number
of dopaminergic periglomerular interneurons [16, 17]. The
olfactory granule cells are inhibitory interneurons that make
their dendritic connections to the mitral cells and to the
middle tufted cells. The periglomerular neurons project their
dendrites into the corresponding glomerulus and connect to
the incoming olfactory axons from the sensory epithelium.
It has been shown that these newly formed neurons are
functionally integrated into the synaptic circuitry of the OB
[16, 18, 19].

4. The Stem Cell Niches in the Adult Brain

The structural and functional maintenance as well as the
regenerative potential of most organs depend on a local
population of immature cells termed somatic stem cells.
In general, stem cells are placed in defined niches or
microenvironments, in which they remain quiescent, but
where they can be activated to proliferate and to generate
a pool of fast dividing, so-called transient amplifying,
progenitor cells. They generate lineage-specific precursors,
which migrate towards the ultimate destination where they
undergo differentiation into an appropriate functionally
mature cell type. In the adult brain, new neurons are
generated from neural stem and progenitor cells in the
hippocampus and in the SVZ-OB system. These neural stem
cells (NSCs) have the capacity to proliferate and to self renew
giving rise to neurons, astrocytes, and oligodendrocytes. At
present, the functional significance of stem cell-derived adult
neurogenesis is still under debate, but most studies indicate
that adult neurogenesis is involved in learning and memory
processes [20–22]. In addition, the presence of NSCs in
the adult brain provides the basis for endogenous cell
replacement, which could be developed for future therapies
in neurodegenerative disease such as HD. Thus, stimulation
of endogenous NSC proliferation and functional integration

could compensate neuronal loss. Any therapeutic approach
that targets the endogenous neural stem cell population
requires a fundamental understanding of the molecular
regulation of the stem cell niche, in particular in the case
of a degenerative microenvironment as it is present in
neurodegenerative diseases.

5. Regulation of Adult Neurogenesis

Due to the general recognition and acceptance of adult
neurogenesis, there has been an immense response from the
scientific community, resulting in a large number of studies
investigating how neurogenesis is regulated. Adult neuroge-
nesis is a complex multistep process. This process includes
proliferation, cell cycle exit, fate determination of adult
neural progenitors and their differentiation, maturation, and
final integration into the neural circuits [23]. Although the
precise mechanisms that generate new neurons in the adult
brain remain elusive, a range of environmental, behavioral,
genetic, neuroendocrine, neurochemical and growth factors
as well as cytokines have been shown to be involved in
the regulation of adult neurogenesis. A number of stimuli
have been shown to influence neurogenesis: in an enriched
environment the animals are kept in housing conditions
that are more similar to their natural environment. Such an
enriched condition has given rise to increased neurogenesis
and seems to play a neuroprotective role for newly generated
neurons [24–26]. Similar to enriched environmental condi-
tions, wheel-running physical exercise has also been shown
to boost hippocampal neurogenesis drastically through an
increasing rate of progenitor proliferation [27, 28]. The
animals that were exposed to an enriched environment
and physical exercise showed improved motor skills and
better performance in learning tasks [24, 27]. Stroke is a
pathological situation in which blood supply to the brain
is suddenly disrupted. It has been shown that stroke also
stimulates the generation of new neurons [29]. Epileptic
seizure is another pathological situation, which arises from
the abnormal excitation of neuronal networks in the brain.
This epileptic pathological process has also been shown to
provoke neurogenesis in the adult brain [30].

Besides, it has been shown that neurogenesis in the
hippocampus decreases with aging [31, 32]. Stress is a
physiological response to any kind of unpleasant events that
provoke the hypothalamic pituitary axis (HPA) and raise the
release and circulation of adrenal steroid hormones. Adrenal
steroids may be one of the most important neurochemical
regulators of neurogenesis. An increased plasma level of
corticosterone, as it appears as a reaction to applied stress,
has negative effects on hippocampal neurogenesis [33–35].
However, this stress-induced inhibition of neurogenesis can
be prevented by systemic administration of neuropeptides
such as prolactin (PRL) [36].

6. Regulation of Adult Neurogenesis by
Signaling Molecules

In the mammalian tissue, typical homeostasis requires elabo-
rately balanced interactions between cells and the network of
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secreted proteins. These reciprocal communications involve
various extracellular cytokines acting via specific cell surface
receptors. When the balance between the cells and the
extracellular communication is dysregulated, pathogenesis
can result [44]. Growth factors are capable of controlling cel-
lular proliferation, differentiation, maturation, and survival.
Numerous studies have been carried out to demonstrate
that stem and progenitor cells in the adult brain respond
to growth factors. Intracerebroventricular infusion of epi-
dermal growth factor (EGF) and fibroblast growth factor-2
(FGF-2) increased proliferation in the SVZ of the adult rats
brain [12]. Also insulin-like growth factor-1 (IGF-1) seems
to be involved in the regulation of adult neurogenesis. Plasma
levels of IGF-1 are increased by exercise, and this promotes
major increases in GCL precursor proliferation [45]. More-
over, other studies have demonstrated that intracerebral
infusion of IGF increases both cell proliferation and neuro-
genesis in hypophysectomized rats [46]. Like IGF-1, vascular
endothelial growth factor (VEGF) also has a stimulatory
effect on neurogenesis [47]. Furthermore, a recent report
demonstrated that granulocyte colony-stimulating factor (G-
CSF) promotes proliferation of neural progenitors [48].

In contrast, members of the family of transforming
growth factor beta (TGF-beta) are known to inhibit neu-
rogenesis by blocking the proliferation of precursor cells in
the adult brain. Therefore, TGF-betas and their downstream
signaling are at the focus of attention to elucidate their
involvement in adult neurogenesis. Bone morphogenetic
proteins (BMPs) are extracellular signaling molecules that
play diverging roles in neuronal development. Generally, the
BMP molecules are characterized by their antagonistic action
on neurogenesis. Noggin, for example, is a soluble inhibitor
for the BMP4 signal that promotes neurogenesis by blocking
the BMP4 influence on stem cell proliferation [49].

7. Transforming Growth Factors

The TGF gene family expresses a set of structurally and
functionally related polypeptides that include TGF-beta1,
TGF-beta2, TGF-beta3, the bone morphogenetic proteins
(BMPs), and the growth differentiation factors (GDFs) [50,
51]. The TGF-beta name was coined in the year 1981
because of its transforming effect on rat kidney and fibroblast
cell lines [52–54]. TGF-betas have been implicated in cell
proliferation, differentiation, migration, survival, apoptosis,
extracellular matrix (ECM) formation, angiogenesis, metas-
tasis, tumorogenesis, inflammation, and tissue regeneration
[51]. TGF-beta1, TGF-beta2, and TGF-beta3 are the highly
homologous isoforms of TGF-beta molecules. Each of these
three isoform genes encodes an inactive precursor protein.
From the 391-amino-acid precursor form of TGF-beta1, the
C-terminal 112 amino acids comprise the mature protein.
The N-terminal peptide is the prodomain, called the latency
associated peptide (LAP). TGF-beta is secreted as a large
latent complex composed of the active TGF-beta form
covalently bound to LAP, which in turn is bound to a latent
TGF-beta-binding protein (LTBP). Since the LTBP is linked
to the extracellular matrix (ECM), the entire complex is
stored in the extracellular space and provides a source of

readily available ligand. Extracellular serine proteases cleave
the LTBP and release the active ligand from LAP [50, 55]. The
biologically active form of TGF-beta consists of a homodimer
built out of two peptides each in size of 12.5 kD, which are
linked through disulfide bonds [56, 57].

8. The TGF-Beta Signaling Pathway

The TGF-beta family members bind to their cognate het-
eromeric receptor complex, which consists of two types of
transmembrane serine/threonine kinases known as type I
(TGF-betaRI or ALK) and type II receptors (TGF-betaRII)
[58, 59]. These transmembrane receptors represent two
families of serine/threonine kinase receptors of 53 to 65 kD
and 80 to 95 kD, respectively. In mammals, five isoforms
of TGF-betaRI and seven isoforms of TGF-betaRII were
identified. TGF-betaRIII (betaglycan and endoglin) is an
indirectly signaling mediator which promotes the affinity
of TGF-betaRII for TGF-beta2. In contrast, TGF-beta1 and
TGF-beta3 bind directly to TGF-betaRII, a constitutively
active kinase that leads to dimerization with the type I
receptor and phosphorylation of the glycine-serine (GS)
domain. Phosphorylation of the GS domain activates the C-
terminal kinase domain, which phosphorylates and thereby
activates receptor Smads (homologous proteins to the
Sma and Mad proteins from Caenorhabditis elegans and
Drosophila melanogaster (R-Smads)). Characteristically, all
Smad proteins possess two domains, the MH1 and MH2
(mad homology) domains; the MH1 domain is located on
the amino-terminus and the MH2 domain is located on
the carboxy-terminus. Functionally, the MH1 is involved in
protein-DNA interaction whereas the MH2 is responsible
for the protein-protein interaction. Accordingly TGF-beta
activates the phosphorylation of Smad2 and Smad3, while
BMPs activates the phosphorylation of Smad1, Smad5, and
Smad8. The phosphorylated R-Smads dimerize with Co-
Smad (Smad4) and transloctate to the cell nucleus where
they exert their function as transcription factors. [50, 51, 60].
TGF-beta1 stimulation leads to the nuclear translocation
of the phosphorylated Smad 2/3 and of the Co-Smad 4
complex that activates the inhibitory I-Smads (Smad6 and
Smad7). These activated I–Smads act as an antagonist for
TGF-betaRI-mediated downstream signal by blocking the
receptor accessibility to R-Smads [50, 51, 60, 61] (Figure 1).

9. TGF-Beta1 as a Major Regulator of
Adult Neurogenesis

Recently, the role of induced level of TGF-beta1 on adult
neurogenesis has been described. Thus infusion of TGF-
beta1 into the ventricles of the adult rat brain revealed a
reduced amount of proliferating cells in the hippocampus
and in the SVZ. Further, infusion of TGF-beta1 lowered the
number of DCX expressing neuronal precursor in these neu-
rogenic niches. This reduced level of proliferation is strongly
correlated with an increased accumulation of phospho-
Smad2, an effector of TGF-beta signaling in Sox2/GFAP-
expressing cells of SGZ in the TGF-beta1 infused brains [62].
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Figure 1: Schematic Illustration: TGF-beta signaling pathway. TGF-beta ligand binds to TGF-betaRII that activates TGF betaRI and induces
the downstream Smad-mediated signal transduction.

Besides, in an in vitro study, treatment of TGF-beta1 in
the neurosphere cultures reduced the proliferation of stem
cell and progenitor cells and induced a shift to G0 phase
of the cell cycle [62]. Subsequently, a study from the Wyss
Coray group has confirmed these findings in the brains of
transgenic animals that overexpress TGF-beta1 under the
control of the glial fibrillary acidic protein (GFAP) promoter
in astrocytes [63]. Besides, other reports mainly focused
on the late stages of adult neurogenesis and describe that
TGF-beta1 facilitates neuronal differentiation and promotes
neuronal survival [64–66].

10. TGF-Beta Expression in the Physio-
and Pathological Brain

TGF-betas are involved in various physiological and patho-
logical processes in the CNS. All three isoforms of TGF-beta
are expressed within the nervous system, in neurons and in
glial cells [51, 67, 68]. Most of the current knowledge about
the expression of TGF-beta in the CNS comes from studies
of the development. In the adult, TGF-beta2 and TGF-beta3
can be found in all areas of the CNS [51]. TGF-beta1 is widely
expressed in the choroid plexus and in the meninges, and
its expression is drastically upregulated, in the CNS during
injury and neurodegeneration [69–72] where it is secreted
predominantly by activated microglial cells [73]. In addition,
cultivated neurons and astrocytes have been shown to secret
TGF-beta1 [74]. In brain pathology, TGF-beta1 is involved in

coordinating the inflammatory responses and brain recovery.
TGF-beta1 and TGF-beta2 are also involved in brain-tumor
development and progression, in particular of high-grade
gliomas [51, 75–79].

11. Elevated TGF-Beta1 Level and
Impaired Neurogenesis in
Neurodegenerative Disorders

Neurodegenerative disorders are devastating hereditary and
sporadic conditions which are characterized by progressive
loss of neuron structure and function, ultimately leading to
the death of selective neuronal populations in specific brain
areas. Many neurodegenerative disorders occur as a result
of degeneration of neurons due to the toxicity of protein
aggregation. So far, no promising treatments are available
to eradicate these disease conditions. During past decades,
series of reports have demonstrated impaired neurogenesis
in the brain under degenerative conditions occurring with
diseases such as AD, PD, and HD [40, 80, 81]. Therefore,
understanding the regulation of neurogenesis in degenerative
brains is of crucial importance for therapeutic intervention.
In most of the neuropathological conditions, it has been
shown that specifically the inflammatory cytokines and their
downstream signaling are altered [82]. For example, while
neurogenesis is impaired in the diseased brain of patients
with AD and HD, the pleiotropic cytokine TGF-beta1
and their downstream signaling components are elevated
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[72, 83]. This alteration in cytokine expression and its
subsequent signaling cascades might be playing a crucial role
in impaired neurogenesis.

12. Huntington’s Disease

Huntington’s disease (HD) is an inherited autosomal dom-
inant disorder resulting from an expansion of the CAG
repeats within the Huntington gene (HD or HTT) located
on chromosome 4 [84]. Healthy individuals have 10 to 35
CAG segment repeats in the HD gene. Individuals with
36 to 40 CAG repeats may or may not develop the signs
and symptoms of Huntington’s disease, while people with
more than 40 repeats have an almost 100% possibility to
develop the disorder [85, 86]. The huntingtin protein has
very rare homology to other proteins and its functions are
poorly understood. The expansion of the CAG repeats causes
polyglutamine stretches in the huntingtin protein inducing
progressive neurodegeneration [87]. The dysfunction or loss
of neurons in the HD brain starts in the striatal region. The
striatum is the part of basal ganglia that contains medium
spiny neurons (MSN) [88]. In the HD brain, medium spiny
neurons are most severely affected resulting in atrophy of the
striatum, first in the caudate nucleus, then in the putamen.
The second hotspot of neurodegeneration in HD is the
cortex. Neurons in layers VI and V of the cortex projecting to
the striatum are mostly affected. Furthermore, hippocampal
atrophy is typically observed in HD and is correlated with
cognitive deficits and depression presented in HD patients
[89, 90]. As a consequence of neuronal loss in HD, motor
functions and cognition are impaired [91, 92]. Thus far
there are no satisfactory therapies available to alleviate this
devastating disease.

The huntingtin protein is widely expressed within the
body with the highest levels in the brain and the testis. Within
the brain, the highest levels of expression are found in the
cerebellar cortex, the striatum and the hippocampus [93, 94].
While the direct function of the huntingtin protein is not yet
known, it is apparently required for normal embryogenesis,
since HD knockout animals die at an early developmental
stage [95]. Conditional knockout studies have demonstrated
that the huntingtin protein plays an essential role during
postnatal development, as the inactivation of the HD gene
in the brain and in the testis leads to degeneration of these
two organs [96]. Most importantly, the huntingtin protein
is required for neuronal survival [96–98]. This effect is
most likely mediated through upregulation of brain-derived
neurotrophic factor (BDNF) expression [99]. A recent report
indicated that the huntingtin protein is localized at spindle
poles during mitosis. Silencing of the HD gene disrupted the
spindle orientation and promoted neuronal differentiation
of cortical progenitors in mouse embryos [100] highlighting
the role of huntingtin in neuronal differentiation.

13. Mutant Huntingtin Protein and
Intracellular Dysfunctions

In the HD gene, the number of CAG repeats plays a
critical role for its pathogenic activities. More than 40 CAG

repeats in the HD allele definitively lead to an incorrect
folding of the protein, to loss of function and toxic protein
aggregation. The mechanism of polyglutamine expansion
and its pathogenic roles are unclear. Their direct effect on
the neurodegeneration is still under debate, as both defensive
and toxic functions have been described. It has been
proposed that misfolded huntingtin aggregates translocate
to the nucleus, where they form neuronal inclusions (NI)
and induce caspase-mediated apoptotic cell death pathways
[101, 102]. NIs may interfere with the expression of genes,
which are essential for neuronal survival signaling pathways.
Recent studies also have shown that mutant huntingtin
protein can trap some proteins and dislocate them from their
original locations thus interfering or preventing them from
their physiological functions [103]. For example, mutant
huntingtin protein interferes with the function of cAMP
response element-binding (CREB) protein, an important
regulatory molecule that is essential for neuronal survival
[104, 105]. In addition, mutant huntingtin protein interferes
with the ubiquitin proteasome system (UPS), which is
in charge of eradicating ubiquitin tagged misfolded or
dysfunctional proteins by proteolysis [106–108].

14. Experimental Models of
Huntington’s Disease

14.1. Acute Models for Huntington’s Disease. Injection of
amino acids such as N-methyl- D-aspartate (NMDA), quino-
linic acid (QA), or 3-nitro propionic acid (3-NP) leads
to neuronal loss in the desired brain region [109–111].
Even though these models display a robust neuronal loss,
their value is limited since they do not mirror the genetic
component of HD disease. Thus, the following chapter will
focus on some of the genetic models for HD.

14.2. Transgenic Models of Huntington’s Disease. For Hunt-
ington disease, several transgenic models have been devel-
oped in different organisms ranging from nematodes to pri-
mates. The nematode Caenorhabditis elegans is the simplest
genetic animal model for polyglutamine (PolyQ) neurotoxic-
ity. Here, the N-terminal 171 amino acid fragment of human
huntingtin protein containing an expanded polyglutamine
tract is expressed in neurons, where it induces neurodegen-
eration [112]. Also, PolyQ-expressing fruit flies form NIs
and undergo a progressive neurodegeneration [113, 114]. A
major breakthrough in the field of HD was achieved with
the development of transgenic lines that express the exon1 of
htt with 115 CAG (R6/1) or 155 CAG (R6/2) repeats. These
animals develop progressive behavioural symptoms and an
HD-like neuropathology [115]. They display an early onset
of HD pathology, have a shorter life span, and die within the
first two to four months of age [115]. A yeast artificial chro-
mosome transgenic mouse model of HD (YAC 128), which
expresses the full-length human mutant HD gene with 128
CAG repeats, also shows neurodegeneration in the striatum
and in the cortex and an HD-like behavior such as motor
and cognitive deficits [116, 117]. Moreover, a transgenic rat
model of Huntington’s disease (tgHD rat) was developed by
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Table 1: Adult neurogenesis in HD patients and rodent models.

S.no HD model Neurogenic region Neurogenesis Reference(s)

1 Human Subependymal layer Increased Curtis et al. 2003 [37]

2 QA-lesioned rat Subventricular zone Increased Tattersfield et al. 2004 [38]

3 R6/1 mouse Hippocampus Decreased Lazic et al. 2004 [39]

Gil et al. 2005 [40]

4 R6/2 mouse Hippocampus Decreased Phillips et al. 2005 [41]

Kohl et at. 2007 [42]

5 R6/2 mouse Subventricular zone No Change
Phillips et al. 2005 [41]

Kohl et al. 2010 [43]

6 TgHD rat Hippocampus Decreased Kandasamy et al. 2010 [121]

7 R6/2 mouse Olfactory Bulb Decreased Kohl et al. 2010 [43]

8 YAC 128 mouse Hippocampus Decreased Simpson et al. 2010 [122]

von Hörsten and colleagues [118]. This tgHD rat carries a
truncated huntingtin cDNA fragment encoding for 51 CAG
repeats under the control of the rat huntingtin promoter.
The tgHD rats suffer from mitochondrial dysfunction and
degeneration of MSNs and show a late onset of motor
deficits, emotional disturbance, and cognitive decline [72,
118–120]. The tgHD rat model permits a detailed analysis of
progressive structural and functional alterations over time.
Moreover, it provides a window of opportunity to examine
the impact of any therapeutic attempt.

14.3. Modulation of the Neural Stem Cell Niche and Neuroge-
nesis in Huntington’s Disease. It has been demonstrated that
neurogenesis is impaired in many of the neurodegenerative
diseases. Impaired neurogenesis has been suggested to play
a major role in the disease progression. In Huntington’s
disease, it has been shown that neurogenesis is reduced in the
hippocampus of R6/1 mouse lines [39] but increased in the
SVZ of chemical-induced acute models [38] and HD patients
[37]. (Table 1). The underlying molecular and cellular events
that lead to these differential alterations in neurogenesis in
the HD brains are not known. Strikingly, the expression of
TGF-beta1 and TGF-beta signaling components is elevated in
the degenerating HD brain. Therefore, it can be hypothesized
that TGF-beta1 might be involved in the stem cell niche
remodelling in HD brains.

To investigate the mechanisms that are involved in
impairment or modulation of neural stem cell niche in
HD, the entire processes of neurogenesis has been explored
in the different pathological grade of HD using tgHD
rat and R6/2 mouse model. These tgHD models develop
progressive cognitive deficits during the disease progres-
sion suggesting a possible involvement of hippocampal
dysfunction [115, 119]. Recent reports have demonstrated
that impaired progenitor proliferation is associated with an
increase in neural stem cell quiescence in these transgenic
animal models for HD [42, 121]. These observations have
also been confirmed in the hippocampus of the YAC128
HD model [122] (Table 1). The tgHD animals encountered
a disease-associated progressive decline in hippocampal
progenitor proliferation accompanied by an expansion of
the pool of BrdU-label-retaining Sox-2 positive quiescent

stem cells [121]. Recently, it has been revealed that an
elevated level of TGF-beta1 impairs neural progenitor
proliferation and induces neural progenitors to exit the
cell cycle [62]. Although phospho-Smad2, an effector of
TGF-beta signaling, is normally deficient in the stem cell
niche, it gradually accumulates in Sox2/GFAP-expressing
cells of the subgranular zone in the tgHD brains [121].
Moreover, a comparative transcriptome analysis showed that
mRNA expression of TGF-beta1 and its downstream effector
molecules were elevated in the human HD brains [72].
This line of evidence points towards the elevation of TGF-
beta signaling in tgHD hippocampus, thereby providing an
explanation for the reduced NSC proliferation and induced
NSC quiescence (Figure 2).

Interestingly, in the early phase of the pathology (i.e.,
8 month old tgHD rats), the deficit in NSC proliferation
and induced NSC quiescence were compensated by increased
DCX-expressing neuroblast proliferation, which resulted in
an expansion of the DCX-expressing cell population. Besides
survival of newly generated cells, the total number of dentate
gyrus neurons and neuronal density were also reduced in
tgHD rats and correlated with weaker pCREB signaling
[121]. Therefore, the reduction in proliferation might, at
least partially, be due to an elevated TGF-beta signaling in
the stem cell niche of tgHD animals. Over all, the effect of
TGF-beta1-mediated signaling seems to be crucially involved
in triggering quiescence of stem cells, as suggested by the
accumulation of pSmad2 in Sox2-positive/GFAP-positive
SGZ cells (1) in tgHD rats and R6/2 mice [121], (2) after
TGF-beta infusion [62], and (3) by the TGF-beta1-induced
cell cycle arrest in neural stem and progenitor cultures [62,
121].

15. TGF-Beta1 Signaling as a Potential
Mechanism Triggering Stem Cell Quiescence
to Preserve the Stem Cell Pool in HD

Thus far, the neurodegenerative process-induced quiescence
of NSCs in the hippocampal stem cell niche has not been
recognized. A number of studies have already examined
cell proliferation in the neural stem cell niche of animal
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signaling in the stem cell niche might promote NSC proliferation and contribute to neurogenesis.

models of neurodegeneration and reported reduced pro-
genitor proliferation rates. Hence, this proliferative decline
was documented in the R6/1&2 and YAC 128 HD mouse
lines [39, 42, 122], in the transgenic mouse models of PD,
AD, and ALS [123–125]. A reduction in the numbers of
proliferating cells might result from (1) a reduced number
of competent NSCs, (2) a prolonged cell cycle, (3) premature
differentiation, or (4) a shift of NSCs from the proliferative
status to quiescence stage. The most recent findings strongly
support the final hypothesis, and it is now crucial to
consider the role of TGF-beta1 in the stem cell niche
remodelling and induction of stem cell quiescence during the
neurodegenerative processes in HD.

Under normal environment, it is proposed that NSCs
limit their mitotic activity and remain mostly in quiescent
stage until a self-renewing cycle is required to main-
tain a steady state pool and to prevent stem cell pool
depletion. Acute CNS lesions, such as stroke, QA, and
6-hydroxydopamine-induced striatal atrophies, apparently
provide a stimulus to support NSCs proliferation, which
is probably in an attempt to compensate for the neuronal
loss [38, 126, 127]. Moreover, a recent observation indicated
that neuroblast migration is redirected from SVZ-RMS-OB
path towards the degenerating striatum of R6/2 mouse [43]
(Table 1). On the other hand, slow progressive neurodegen-
eration often compromise NSCs in their proliferative activity.

However, TGF-beta1-induced NSC quiescence might well
serve as a mechanism to maintain or to preserve the stem
cell pool in the degenerating HD brains. Although the
pathways induced by TGF-beta-leading to NSC quiescence
require further molecular investigation, mechanisms are
likely to be similar to those previously described in different
biological systems, in particular in the hematopoietic system.
Observation in the hematopoietic system suggested that
Pbx1 and Pbx1-dependent genes as well as FoxO3 could
be effectors of the TGF-beta-induced quiescence [128, 129].
FoxO3 is a central stem cell maintenance factor integrating
a plethora of signaling cascades including the IL-2R/STAT
pathway, the TGF-beta/Smad pathway, the PI3K/Akt/mTOR
cascade, and Notch signal and is therefore likely involved in
the signalling leading to neural stem cell quiescence [130,
131].

16. Reactivation of Quiescent Stem
Cells as a Regenerative Therapy in
Huntington’s Disease

Huntington’s disease is a progressive neurodegenerative
disease for which no complete cure has been established.
There are certain drug-based treatments which mainly target
reducing the severity of certain symptoms associated with
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this disease. Tetrabenazine (Xenazine) is the first medica-
tion to be prescribed to treat the signs or symptoms of
Huntington’s disease [132, 133]. This medication helps to
reduce the involuntary movements of Huntington’s disease
by metabolizing the amount of dopamine available in the
brain [133, 134]. Also comorbidity of this disease with
depression can be treated with drugs such as fluoxetine,
sertraline, and nortriptyline [135–137]. However, the side
effects of many of these drugs used to treat the symptoms
of Huntington’s disease may result in further complications
rather than cure.

Recent developments in gene silencing technologies such
as RNAi and antisense therapy are considered to play a
major role in reducing the expression of the misfolded
huntingtin protein [138–140]. However, these treatments
also have a disadvantage of suppressing the expression of
physiological allele of the HD gene. Cells containing the
mutant huntingtin protein are known to undergo histone
deacetylases-mediated transcriptional dysregulation [104,
141]. HDAC inhibition by HDAC inhibitors might partially
restore the transcriptional loss in the HD brain [141, 142].
None of these drugs, however, offer a promising treatment
as they involve many side effects and their role in effectively
treating this disease still remains debated.

Alternatively, tissue transplantation strategies such as
striatal grafts have been proposed as an approach for striatal
repair in HD [143, 144]. As a result, this striatal graft onto
the brains of transgenic HD R6-lines did not compromise
the complete functional outcomes[145]. Further the tissue
and cell transplantation strategies exhibit graft rejection
problems. Moreover, these transplants may need unique
tropic support which might be not supported by the
microenvironment in the diseased brain.

Taking the above treatment strategies into consideration,
the possibility of endogenous neural stem cells in the stem
cell niche of the adult brain would have the potential to
compensate and recover neural functions that were lost
due to the degenerative processes seen in HD. In the
adult brain hippocampal DG provides the niche for stem
and progenitors cells and eventually produces new neuron
that proposed to compromise the cognitive outcomes. In
the HD pathology, neurodegeneration takes place in the
hippocampal region but it is inadequately characterized. On
other hand, impairment of hippocampal neurogenesis has
been clearly demonstrated in most of the models for HD [39,
42, 121, 122]. Thus suggested that there might be a demand
of neurons in the hippocampus and that might have an
influence on neurogenesis. The stimulation of endogenous
stem cell pool would represent a strategy to promote
regeneration in the HD brains. However, it has been clearly
demonstrated that in tgHD animal brains, upregulated TGF-
beta1 and its downstream molecules preserve neuronal stem
cells by inducing their quiescent state[121]. Therefore, inac-
tivation of TGF-beta1 signaling specifically in the quiescent
stem cells in the stem cell niche of the HD brains would
reactivate their proliferation. Eventually, this strategy could
compensate the neuronal and functional loss in Huntington’s
disease. In Huntington’s diseased brain, the striatum is the
most vulnerable region that is encountered with neuronal

dysfunction and neurodegeneration. Persistence of stem cells
and its migration capacity in the SVZ region also have
a huge potential for replacement therapy. Normally, stem
cells proliferate in the SVZ and migrate along the RMS
to the olfactory bulb; there they give rise to functional
neurons. In pathological conditions like HD, the precursor
cells population in the SVZ can be redirected towards
adjacent striatum and has possibility for the compensation
of neuronal loss [41, 43, 146].

17. Conclusion

Recent findings strongly support a hypothesis that defects in
progenitor proliferation and an induced NSC quiescence are
coordinated by TGF-beta1 signaling in the stem cell niche
of Huntington’s disease. Thus, TGF-beta1 signaling appears
to be a crucial modulator of neurogenesis in HD pathology
and it can be a promising target for endogenous cell-based
regenerative therapy.
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administration of GH induces cell proliferation in the brain
of adult hypophysectomized rats,” Journal of Endocrinology,
vol. 201, no. 1, pp. 141–150, 2009.

[47] K. Jin, Y. Zhu, Y. Sun, X. O. Mao, L. Xie, and D. A.
Greenberg, “Vascular endothelial growth factor (VEGF)
stimulates neurogenesis in vitro and in vivo,” Proceedings of
the National Academy of Sciences, vol. 99, no. 18, pp. 11946–
11950, 2002.

[48] K. H. Jung, K. Chu, S. T. Lee et al., “Granulocyte colony-
stimulating factor stimulates neurogenesis via vascular
endothelial growth factor with STAT activation,” Brain
Research, vol. 1073-1074, no. 1, pp. 190–201, 2006.

[49] D. A. Lim, A. D. Tramontin, J. M. Trevejo, D. G. Herrera, J. M.
Garcı́a-Verdugo, and A. Alvarez-Buylla, “Noggin antagonizes
BMP signaling to create a niche for adult neurogenesis,”
Neuron, vol. 28, no. 3, pp. 713–726, 2000.
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[68] M. Böttner, K. Unsicker, and C. Suter-Crazzolara, “Expres-
sion of TGF-β type II receptor mRNA in the CNS,” NeuroRe-
port, vol. 7, no. 18, pp. 2903–2907, 1996.

[69] G. W. Jason, O. Suchowersky, E. M. Pajurhova et al.,
“Cognitive manifestations of Huntington disease in relation
to genetic structure and clinical onset,” Archives of Neurology,
vol. 54, no. 9, pp. 1081–1088, 1997.

[70] J. Ilzecka, Z. Stelmasiak, and B. Dobosz, “Transforming
growth factor-beta 1 (TGF-beta 1) in patients with amy-
otrophic lateral sclerosis,” Cytokine, vol. 20, no. 5, pp. 239–
243, 2002.

[71] T. Wyss-Coray, “TGF-β pathway as a potential target
in neurodegeneration and Alzheimer’s,” Current Alzheimer
Research, vol. 3, no. 3, pp. 191–195, 2006.

[72] F. J. Bode, M. Stephan, H. Suhling et al., “Sex differences in a
transgenic rat model of Huntington’s disease: decreased 17β-
estradiol levels correlate with reduced numbers of DARPP32
neurons in males,” Human Molecular Genetics, vol. 17, no. 17,
pp. 2595–2609, 2008.

[73] K. C. Flanders, R. F. Ren, and C. F. Lippa, “Transforming
growth factor-βS in neurodegenerative disease,” Progress in
Neurobiology, vol. 54, no. 1, pp. 71–85, 1998.



Neurology Research International 11

[74] U. Ueberham, E. Ueberham, H. Gruschka, and T. Arendt,
“Connective tissue growth factor in Alzheimer’s disease,”
Neuroscience, vol. 116, no. 1, pp. 1–6, 2003.

[75] R. Derynck, D. V. Goeddel, and A. Ullrich, “Synthesis of
messenger RNAs for transforming growth factors α and β
and the epidermal growth factor receptor by human tumors,”
Cancer Research, vol. 47, no. 3, pp. 707–712, 1987.

[76] P. Jachimczak, U. Bogdahn, J. Schneider et al., “The effect
of transforming growth factor-β-specific phosphorothioate-
anti-sense oligodeoxynucleotides in reversing cellular
immunosuppression in malignant glioma,” Journal of
Neurosurgery, vol. 78, no. 6, pp. 944–951, 1993.

[77] C. Kjellman, S. P. Olofsson, O. Hansson et al., “Expression
of TGF-β isoforms, TGF-β receptors, and smad molecules
at different stages of human glioma,” International Journal of
Cancer, vol. 89, no. 3, pp. 251–258, 2000.

[78] W. Wick, M. Platten, and M. Weller, “Glioma cell invasion:
regulation of metalloproteinase activity by TGF-β,” Journal
of Neuro-Oncology, vol. 53, no. 2, pp. 177–185, 2001.

[79] K. H. Schlingensiepen, R. Schlingensiepen, A. Steinbrecher
et al., “Targeted tumor therapy with the TGF-β2 antisense
compound AP 12009,” Cytokine and Growth Factor Reviews,
vol. 17, no. 1-2, pp. 129–139, 2006.
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